Local Hamiltonian and verification of quantum computing

Tomoyuki Morimae (YITP, Kyoto University) 45min

Outline

- Local Hamiltonian problem
- Verification of quantum computing

k-Local Hamiltonian problem

Given a, b, and

decide

YES: $E_0 < a$

NO: $E_0 > b$

2-local XZ-Hamiltonian problem is QMA-complete

$$H = \sum_{i,j} \alpha_{i,j} (X_i X_j + Z_i Z_j)$$

Local Hamiltonian problem is the hardest problem in QMA

P(BPP)

Problems that can be efficiently solved with classical computer

BQP

Problems that can be efficiently solved with quantum computer

NP(MA)

Problems that can be efficiently verified with classical hint

For yes instance, there exists a witness s.t. the verifier accepts with high probability

For no instance, for any witness, the verifier accepts with small probability

QMA

Problems that can be efficiently verified with quantum hint

A problem is in QMA if and only if

For yes instance, there exists a witness s.t. the verifier accepts with high probability

For no instance, for any witness, the verifier accepts with small probability

Feynmann-Kitaev construction

History state is the ground state of local Hamiltonian!

$$\begin{split} |\Psi\rangle &= U_4 U_3 U_2 U_1 |0^5\rangle \otimes |4\rangle \\ &+ U_3 U_2 U_1 |0^5\rangle \otimes |3\rangle \\ &+ U_2 U_1 |0^5\rangle \otimes |2\rangle \\ &+ U_1 |0^5\rangle \otimes |1\rangle \\ &+ |0^5\rangle \otimes |0\rangle \end{split}$$
Checking whether the initial state is correct Wrong state-> high energy penalty
$$H_{init} |\Psi\rangle = 0$$

$$\begin{split} |\Psi\rangle &= U_4 U_3 U_2 U_1 |0^5\rangle \otimes |4\rangle \\ &+ U_3 U_2 U_1 |0^5\rangle \otimes |3\rangle \\ &+ U_2 U_1 |0^5\rangle \otimes |2\rangle \\ &+ U_1 |0^5\rangle \otimes |1\rangle \\ &+ |0^5\rangle \otimes |0\rangle \end{split}$$

Checking whether propagation is correct

Wrong propagation \rightarrow high energy penalty

 $H_{prop}^{1} = I \otimes |1\rangle \langle 1| + I \otimes |2\rangle \langle 2| - U_{2} \otimes |2\rangle \langle 1| - U_{2}^{\dagger} \otimes |1\rangle \langle 2|$ $H_{prop}^{1} |\Psi\rangle = 0$

In summary, the history state is the ground state of

$$H_{init} + \sum_{t=0}^{4} H_{prop}^{t}$$

Theorem:

If the output is 0, then the history state is the almost-0 ground state of a local Hamiltonian

If the output is 1, the ground energy is high

If the answer is YES, the history state satisfies

The total energy is almost 0

Theorem:

If the output is 0, then the history state is the almost-0 ground state of a local Hamiltonian

If the output is 1, the ground energy is high

If the answer is NO, for any state such that

$$(H_{init} + H_{prop})|\psi\rangle \simeq 0$$

The total energy is almost 1 because

If the answer is NO, for any state such that

$$H_{out}|\psi\rangle\simeq 0$$

The total energy is large because

Theorem:

If the output is 0, then the history state is the almost-0 ground state of a local Hamiltonian

If the output is 1, the ground energy is high

$$H = H_{init} + H_{prop} + H_{out}$$
$$H_{out} = (|1\rangle\langle 1| \otimes I^4) \otimes |4\rangle\langle 4|$$
To encode time, logT qubits are necessary

H is log-local, but by using the perturbation technique,

$$H = \sum_{i,j} \alpha_{i,j} (X_i X_j + Z_i Z_j)$$

We finally have 2-local XZ Hamiltonian!

Problems that can be efficiently solved with ``quantum hint"

A problem is in QMA if and only if

For yes instance, there exists a witness s.t. the verifier accepts with high probability

For no instance, for any witness, the verifier accepts with small probability

Application to verification of quantum computing

Verification of quantum computing

Can the classical verifier check the correctness of quantum computing?

- (1) Security of cloud quantum computing
- (2) Experimental realizations of quantum devices
- (3) Quantum interactive proof system

	Information-theoretical soundness	Computational soundness
Classical verifier	Open	Mahadev protocol
Verifier who can measure/generate single-qubit states	FK protocol, posthoc protocol	

Review: Gheorghiu et al. arXiv:1709.06984

Multi-prover setting

Provers who share entanglement but cannot communicate

Unger-Reichardt-Vazirani 2013

MIP*=RE [Ji, Natarajan, Vidick, Wright, Yuen 2020]

	Information-theoretical soundness	Computational soundness
Classical verifier	Open	Mahadev protocol
Verifier who can measure/generate single-qubit states	FK protocol, posthoc protocol	

Review: Gheorghiu et al. arXiv:1709.06984

FK protocol

Single-qubit generation

- (1) Poly round
- (2) Proof is complicated

Fitzsimons-Kashefi 2017

	Information-theoretical soundness	Computational soundness
Classical verifier	Open	Mahadev protocol
Verifier who can measure/generate single-qubit states	FK protocol, posthoc protocol	

Review: Gheorghiu et al. arXiv:1709.06984

Post hoc verification

Fitzsimons, Hajdusek, and TM, PRL 2018

10 years later..

Correctness of QC can be checked in the post hoc way!

$$|\Psi\rangle = \sum_{t=0}^{T} U_t ... U_1 |0^n\rangle \otimes |t\rangle$$

Measurement of energy can be done with single-qubit measurements! [TM, Nagaj, Schuch, PRA2016]

Mahadev

Posthoc verification

Classical verification (Mahadev 2018)

Zero-knowledge (Broadbent, Grilo 2020)

Local simulatability: local system of encoded history state is classically computable [Grilo-Yuen-Solfstra 2019]

Non-interactive proof

TM, arXiv:2003.10712

- (1) Information theoretical soundness
- (2) Classical verifier

Virtual protocol

Statistical zero-knowledge proof!

Trusted center can be removed?

TM and Yamakawa, arXiv:2102.09149

Sending quantum state is essential

Folklore [See also Brakerski et al., Mahadev FOCS2018]

Unclonable state can be remotely generated with only classical channel!

Remote state preparation

Blind RSP (Qfactory) [Cojocaru et al. 2019]

Verifiable RPS [Andru-Vidick 2019]

FK protocol + RSP

Trusted center cannot be removed

TM and Takeuchi, 2020

END