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Hawking radiation from an evaporating BH

• Suppose the initial state of matter is pure

ρpure = |Ψ〉〈Ψ|

but after gravitational collapse a black hole is
formed

• BH starts to evaporate due to Hawking radiation

• After the evaporation of BH, the system is in a
mixed state of thermal radiation:

ρpure −−−−−−−−−→
BH evaporation

ρmixed

which appears to contradict with unitarity [Hawking 76]
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Page curve for the radiation

To model an evaporating BH with radiation, suppose

|Ψ〉 ∈ HBH ⊗HR , HBH : BH system , HR : radiation system

• For a pure state |Ψ〉 Page showed [Page 93]

when dimHR � dimHBH the radiation system is
almost maximally entangled :

SR ≈ log dimHR

• In the opposite limit, dimHR � dimHBH,
from unitarity

SR ≈ log(dimHtot − dimHR)
t ≡ log dimHR

SR

tPage
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Island formula for the radiation entropy

• To reconcile with the Page curve, the entropy of
radiation should be calculated by the island formula
[Penington 19, Almheiri-Engelhardt-Marolf-Maxfield19,

Almheiri-Mahajan-Maldacena-Zhao 19]:

SR = min
ΣI

{
ext
ΣI

[
Area(∂ΣI)

4GN
+ Smat(ΣR ∪ ΣI)

]}
• ΣR: radiation region R
• ΣI : island region I

• No island → linear growth at early time
• With island → saturation or decay at late time
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Replica wormholes

• The island formula is a generalization of the
Ryu-Takayanagi formula for entanglement entropy
[Ryu-Takayanagi 06], which has a gravitational path
integral derivation [Lewkowycz-Maldacena 13, · · · ]

• The island regions are accounted for by replica
wormholes [Almheiri-Maldacena-Hartman-Shaghoulian-Tajdini

19, Penington-Shenker-Stanford-Yang 19]
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Goal of this talk

• We will examine if Hawking radiation (or replica wormholes) can be captured by capacity
of entanglement, a quantum information measure other than entanglement entropy

• Calculate the capacity for two toy models of radiating black holes:

• End of the world (EOW) brane model [Penington-Shenker-Stanford-Yang 19]

• Moving mirror model [Akal-Kusuki-Shiba-Takayanagi-Wei 20] → Kusuki-san’s talk for detail

• The capacity has a peak or discontinuity at the Page time, showing a good probe of the
radiation
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Entanglement entropy

Divide a system to A and B = Ā: Htot = HA ⊗HB

Entanglement entropy

SA = −trA [ρA log ρA]

• The reduced density matrix

ρA ≡ trB[ρtot]

• For a pure ground state |Ψ〉

ρtot = |Ψ〉 〈Ψ|

t

A

B
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Replica trick and Rényi entropy

Entanglement entropy

SA = lim
n→1

Sn

nth Rényi entropy

Sn ≡
1

1− n
log trA[ρnA] =

1

1− n
logZ(n)

Z(n): partition function on the n-fold cover branched over A

φA1

φA2

φA2

φA3

φAn

φA1

Tatsuma Nishioka (YITP, Kyoto) March 3, 2021 @ YITP workshop 11 / 28



Analogy to statistical mechanics

We regard Z(n) ≡ trA[ρnA] as a thermal partition function at an inverse temperature β ≡ n:

Statistical mechanics Rényi entropy

inverse temperature β = n

Hamiltonian HA = − log ρA

partition function Z(β) = trA
[
e−β HA

]
free energy F (β) = −β−1 logZ(β)

energy E(β) = −∂β logZ(β)

thermal entropy S̃(β) = β2 ∂βF (β)

heat capacity C(β) = −β ∂βS̃(β)
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Capacity of entanglement

• The “thermal" entropy is not the Rényi entropy

Sn = − 1

n− 1
logZ(β) =

n

n− 1
F (β) 6= β2 ∂βF (β)

but a refined one (improved Rényi/modular entropy [Dong 16, Nakaguchi-TN 16]):

S̃n ≡ S̃(β) = β2 ∂βF (β) = n2 ∂n

(
n− 1

n
Sn

)
• The capacity of entanglement [Yao-Qi 10] is non-negative for a unitary theory:

Cn ≡ C(β) = n2〈 (HA − 〈HA 〉n)2 〉n ≥ 0

where 〈X 〉n ≡ trA
[
X e−nHA

]
/Z(β)
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Capacity of Hawking radiation in toy models of BH
[Kawabata-TN-Okuyama-Watanabe 21]

• We will examine if the capacity can probe the Hawking radiation, i.e., replica wormholes:

Capacity of entanglement (n = 1)

C ≡ Cn=1 = −∂nS̃n|n=1 (= −2 ∂nSn|n=1)

• Two toy models of radiating black holes

• End of the world (EOW) brane model [Penington-Shenker-Stanford-Yang 19]

• Moving mirror model [Akal-Kusuki-Shiba-Takayanagi-Wei 20]
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EOW brane model [Penington-Shenker-Stanford-Yang 19]

• A quantum mechanical model of a radiating black hole:

ji

hyperbolic
disk

EOW
brane Black hole

system B

Auxiliary
system R

|Ψ〉 =
1√
k

k∑
i=1

|ψi〉B |i〉R 〈ψj |ψi〉B |i〉〈j|R =

• B: BH system of dimension eS0 (JT gravity + EOW brane)
• R: auxiliary system of dimension k to measure Hawking radiation

• ∃replica wormhole: 〈ψi|ψk〉B = δij + e−S0/2Rij (Rij : random variable)

trR [ρnR] =
1

(k eS0)n

k∑
i1,··· ,in=1

〈ψi1 |ψi2〉B · 〈ψi2 |ψi3〉B · · · 〈ψin |ψi1〉B
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Planar approximation

• In the planar limit, eS0 � 1 with k e−S0 fixed

trR[ρnR] ≈ 1

kn−1

[
1 +

(
n

2

)
· k Z2

(Z1)2
+ · · ·+ kn−1Zn

(Z1)n

]
Zn(∝ eS0): replica wormhole partition function of disk topology with n boundaries

Example (n = 3):

k (Z1)3

fully disconnected

k2Z2Z1

partly connected

k3Z3

fully connected
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Entanglement entropy at early and late times

• dimHR = k ⇐⇒ # of radiation particles ≈ log k

• log k: time of BH evaporation

• Early time (log k � S0): fully disconnected solution dominates

trR[ρnR] ≈ 1

kn−1
⇒ SR ≈ log k

• Late time (log k � S0): fully connected solution dominates

trR[ρnR] ≈ Zn

(Z1)n
⇒ SR ≈ lim

n→1
(1− ∂n) logZn
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Capacity and Page curve
• The asymptotic behavior of the capacity:

CR ≈

{
k Z2

(Z1)2
∝ elog k (early time)

limn→1 ∂
2
n logZn (late time)

t ≡ log k

SR

CR

tPage = S0

What happens for the capacity around the Page time?
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Microcanonical ensemble

• Replica partition functions Zn can be solved analytically in the microcanonical ensemble by
fixing the energy of BH (in planar limit):

• Entanglement entropy reproduces the Page curve for an eternal BH

• The capacity shows a peak around the Page time and decays to zero at late time
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Canonical ensemble

• Numerically calculate Zn in the canonical ensemble by fixing the inverse temperature β of
BH (in planar limit):

• Entanglement entropy reproduces the similar Page curve as in the microcanonical ensemble

• The capacity shows a peak around the Page time and approaches to a constant at late time
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Moving mirror model of radiating BH [Davies-Fulling 76, Birrel-Davies 84, · · · ]

• CFT2 on flat space with reflecting boundary condition at a moving mirror

• Known to have thermal energy flux (Hawking radiation) at null infinity
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Conformal map to BCFT2

• After a conformal map, the model becomes Boundary CFT2 on the right half plane:

x

tu v

inside
the mirror

conformal
map

x̃

t̃ũ ṽ

inside
the mirror

ho
riz

on
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v=p(u)
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Measuring Hawking radiation

• Take an interval R at a fixed distance from the
mirror and measure the radiation

• Replica partition functions can be calculated using
twist operators:

trR[ρnR] ∝ 〈σn(t0, x0) σ̄n(t1, x1) 〉BCFT

• Two-point functions in BCFT can be fixed by
conformal block [McAvity-Osborn 93]

x

tu v

σn

R

σ̄n
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Holographic CFT

• Two-point functions greatly simplify in holographic CFT with large central charge
[Takayanagi 11, Sully-Van Raamsdonk-Wakeham 20]:

〈 σ̃n(t̃0, x̃0) ˜̄σn(t̃1, x̃1) 〉RHP

= max

{
〈 σ̃n(t̃0, x̃0) ˜̄σn(t̃1, x̃1) 〉R1,1 (connected OPE channel)

e2(1−n)Sbdy ·
∏
i∈{0,1}〈 σ̃n(t̃i, x̃i) ˜̄σn(t̃i, x̃i) 〉

1
2

R1,1 (disconnected OPE channel)

• Sbdy ≡ log 〈0|B〉: boundary entropy for a boundary state |B〉

• Twist correlator in flat space:

〈 σ̃n(t̃, x̃) ˜̄σn(t̃′, x̃′) 〉R1,1 =
∣∣(t̃′ − t̃′)2 − (x̃− x̃′)2

∣∣− c
12(n− 1

n)
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Entanglement entropy and Page curve [Akal-Kusuki-Shiba-Takayanagi-Wei 20]

• Entanglement entropy can have two phases
corresponding to the two OPE channels:

SR = min
[
Scon
R , Sdis

R

]
• This model has a phase transition between the

two phases and reproduces the Page curve for a
non-evaporating BH
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Capacity in the moving mirror model

• The capacity takes a universal form in each
phase:

CR =

{
Scon
R (connected channel)
Sdis
R − 2Sbdy (disconnected channel)

• ∃ discontinuity at the Page time:

Ccon − Cdis∣∣
tPage

= 2Sbdy

• The capacity captures a phase transition
between the two phases
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Summary and future direction

• The capacity of entanglement can be a good probe of Hawking radiation

• EOW model: sensitive to the dominant replica wormhole saddle, dependent on the choice of
ensembles

• Moving mirror model: discontinuous at the Page time (in holographic CFT)

• A general formula for the capacity of Hawking radiation like the island formula for
entropy?

• Gravitational path integral derivation in JT gravity + CFT2 [Kawabata-TN-Okuyama-Watanabe,
WIP]
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