Swampland Conjectures and Gravitational Positivity

Toshifumi Noumi (Kobe U)

refs: 2103.xxxx w/J.Tokuda,

work in progress w/K.Aoki, J.Tokuda, L.Tran, 1802.04287 w/S.Andriolo, D.Junghans, G.Shiu

Swampland Conjectures and Gravitational Positivity

- 1. Swampland program
 - quantum gravity constraints on QFT models
 - toward quantum gravity phenomenology
- 2. Gravitational positivity bounds
 - consistency of gravitational scattering
- 3. Exploring swampland w/gravitational positivity
 - QED and dark photon
 - bound on scalar potential

String Theory Landscape

string theory = a framework to generate QFT models which incorporate quantum gravity appropriately

infinitely many QFT models can be generated

by changing brane configurations, shapes of extra dimensions etc,

 \rightarrow string theory landscape

Landscape vs Swampland

Q. Is every QFT model realized in the string theory landscape?

- 1. \exists minimum length in string theory
 - \rightarrow we cannot set extra dimensions arbitrary small (cf. string duality)
 - \rightarrow bounds on model parameters (ex. axion decay const. $f \lesssim M_{\rm Pl}$)

[Banks-Dine-Fox-Gorbatov '03, …]

- 2. AdS/CFT
- consistency requirements from the dual CFT
- holographic quantum information, conformal bootstrap, etc ex. no global symmetry in QG [Banks-Dixon '88, Banks-Seiberg '10, Harlow-Ooguri '18, …]
- 3. thought experiments on BH evaporation [cf. various talks in this workshop]

nontrivial stringy/QG constraints on QFT models \rightarrow swampland [Vafa '06]

We would like to use such QG constraints for phenomenology

No Global Symmetry in Quantum Gravity

option 1: the symmetry is gauged

charged particles are coupled to gauge bosons

no global symmetry just says gauge coupling $g \neq 0$ if $g = 10^{-100}$ is allowed, phenomenologically useless

option 2: the symmetry is broken at some scale

- ex. no global symmetry just prohibits exactly flat potentials
- $(\widehat{ })$

if very very weak symmetry breaking is allowed,

phenomenologically useless (cf. Nakata-san's talk)

For pheno, we need more quantitative QG constraints!

In the swampland program [a review: Palti '19], various quantitative QG constraints are proposed ex. Weak Gravity Conjecture, Distance Conjecture, … But, most of them are still at the level of conjectures. Our motivation:

Can we derive such quantitative QG constraints from consistency of gravitational scattering amplitudes?

Swampland Conjectures and Gravitational Positivity

- 1. Swampland program
 - quantum gravity constraints on QFT models
 - toward quantum gravity phenomenology
- 2. Gravitational positivity bounds
 - consistency of gravitational scattering
- 3. Exploring swampland w/gravitational positivity
 - QED and dark photon
 - bound on scalar potential

Basic idea of positivity: UV constraints on IR EFT

ex. a shift symmetric scalar π coupled to heavy particles

- info of heavy particles are encoded into lpha and higher orders
- unitarity and analyticity of scattering amplitudes imply lpha > 0

[see the next slide for derivation]

Consider $\pi\pi \to \pi\pi$ scattering in the forward limit

IR expansion of the amplitude:

$$M(s) = \sum_{n=1}^{\infty} a_{2n} s^{2n}$$
- we show that $a_n > 0$
- in particular, $a_2 = \frac{4\alpha}{\Lambda^4} > 0$

 a_n can be evaluated as follows:

$$a_{2n} = \oint_{C_0} \frac{ds}{2\pi i} \frac{M(s)}{s^{2n+1}}$$

Consider $\pi\pi \to \pi\pi$ scattering in the forward limit

 a_n can be evaluated as follows:

$$a_{2n} = \oint_{C_0} \frac{ds}{2\pi i} \frac{M(s)}{s^{2n+1}} = \oint_{C_\infty} \frac{ds}{2\pi i} \frac{M(s)}{s^{2n+1}} + \frac{2}{\pi} \int_{s_0}^\infty \frac{ds}{s^{2n+1}} \operatorname{Im} M(s)$$

Consider $\pi\pi \to \pi\pi$ scattering in the forward limit

$$a_{n} \text{ can be evaluated as follows:} \qquad \qquad \text{optical theorem} \\ a_{2n} = \oint_{C_{0}} \frac{ds}{2\pi i} \frac{M(s)}{s^{2n+1}} = \oint_{C_{\infty}} \frac{ds}{2\pi i} \frac{M(s)}{s^{2n+1}} + \frac{2}{\pi} \int_{s_{0}}^{\infty} \frac{ds}{s^{2n+1}} \text{Im } M(s) > 0 \\ - \text{ assumed } |M(s)| < s^{2} \text{ for } |s| \to \infty \text{ (cf. Froissart bound)} \end{aligned}$$

In this way,

unitarity & analyticity of UV theory imply $\alpha > 0$ in IR EFT

Gravitational Positivity Bounds

forward limit of $\pi\pi \to \pi\pi$ scattering in the presence of gravity

IR expansion:
$$M(s) = -\frac{2s^2}{M_{\text{Pl}}^2 t} + \sum_{n=1}^{\infty} a_{2n} s^{2n} + \mathcal{O}(t)$$

- the first term is from t-channel graviton exchange
- $a_2 > 0$ does not follow from the previous argument anymore
- # approximate positivity [Hamada-TN-Shiu '18, Tokuda-Aoki-Hirano '20, …]
 - intuitively, positivity should hold if gravity is subdominant
 - if we assume weakly coupled UV completion of gravity,

$$a_2 > \mathcal{O}(1) \cdot \frac{1}{M_{\text{Pl}}^2 M_s^2}$$
 (*M*_s: mass of higher spin Regge states)

- sign and value of $\mathcal{O}(1)$ depend on details of Regge trajectories

[see Tokuda-Aoki-Hirano '20 for details]

Gravitational positivity bound:

for weakly coupled UV completion of gravity,

 $a_2 > \mathcal{O}(1) \cdot \frac{1}{M_{\text{Pl}}^2 M_s^2} \quad (M_s: \text{mass of higher spin Regge states})$ IR expansion: $M(s) = -\frac{2s^2}{M_{\text{Pl}}^2 t} + \sum_{n=1}^{\infty} a_{2n} s^{2n} + \mathcal{O}(t)$ Swampland Conjectures and Gravitational Positivity

- 1. Swampland program
 - quantum gravity constraints on QFT models
 - toward quantum gravity phenomenology
- 2. Gravitational positivity bounds
 - consistency of gravitational scattering
- 3. Exploring swampland w/gravitational positivity
 - QED and dark photon
 - bound on scalar potential

<u>Strategy</u>

- 1. Suppose that we have a UV complete QFT model w/o gravity
- 2. If we couple it to gravity, the model is no more UV complete
- 3. We can ask if the model w/gravity is UV completable
- 4. If we assume weakly coupled UV completion, we can use gravitational positivity as a criterion
 - \rightarrow provides swampland conditions

application 1: QED and dark photon

[Andriolo-Junghans-TN-Shiu '18 + a bit more]

A Toy Model for Dark Physics

Q. Is this UV completable? Consistent w/gravitational positivity?

positivity of $AB \rightarrow AB$ scattering in the presence of gravity

- If we decouple gravity, we can safely take the limit $\Lambda \to \infty$ (recall that the original QFT model w/o gravity is UV complete)
- If there are no heavy states other than gravitational Regge states, a natural order estimate is $\frac{\alpha}{\Lambda^4} \sim \frac{1}{M_{\text{Pl}}^2 M_s^2}$ \rightarrow the model is in the swampland unless $M_s \lesssim \frac{m_e}{e}$!!!

m_e "

How to get out of the swampland?

option 1: turn on tiny electron-dark photon coupling \tilde{e}

$$\begin{split} a_2 &\simeq \frac{11}{2880\pi^2} \frac{e^2}{m_e^2 M_{\rm Pl}^2} \left(\frac{2\,\tilde{e}^2 M_{\rm Pl}^2}{m_e^2} - 1 \right) > \mathcal{O}(1) \cdot \frac{1}{M_{\rm Pl}^2 M_s^2} \\ &\rightarrow \tilde{e}^2 > \frac{m_e^2}{2M_{\rm Pl}^2} : \text{hidden electric force > gravity (weak gravity)} \end{split}$$

option 2: introduce heavy states mediating two sectors

s.t.
$$\frac{\alpha}{\Lambda^4} > \frac{11}{2880\pi^2} \frac{e^2}{m_e^2 M_{\text{Pl}}^2} \rightarrow \Lambda \lesssim \alpha^{1/4} \sqrt{\frac{m_e M_{\text{Pl}}}{e}}$$
 (α : coupling)

 M_s

mass

- positivity requires non-gravitational interactions mediating the two sectors
- more comprehensive study is given in [Aoki-TN-Tokuda-Tran in progress] especially in the connection with Tower Weak Gravity Conjecture

application 2: bounds on scalar potential [TN-Tokuda to appear]

Bounds on scalar potential

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} (\partial_\mu \phi)^2 - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4 + \cdots \right]$$

mass

in this talk, I impose the Z_2 symmetry $\phi \rightarrow -\phi$ for simplicity [see our paper for more general cases]

the s^2 coefficient at 1 loop $a_2 = \frac{\lambda^2}{16\pi^2 m^4} - \frac{\lambda}{24\pi^2 M_{\rm Pl}^2 m^2} + \frac{\alpha}{\Lambda^4} \quad \text{(} \alpha : \text{coupling of } \phi \text{ & heavy states)}$ trivially satisfies the gravitational bound

$$\begin{split} \tilde{a}_2 &\simeq \frac{\lambda^2}{16\pi^2\Lambda^4} - \frac{10 - \pi^2}{4608\pi^4} \frac{\lambda^2}{M_{\text{Pl}}^2 m^2} + \frac{\alpha}{\Lambda^4} > \mathcal{O}(1) \cdot \frac{1}{M_{\text{Pl}}^2 M_s^2} \\ \text{when r.h.s. is subdominant,} \\ \text{we obtain a lower bound } m > \frac{1}{150} \frac{\Lambda^2}{M_{\text{Pl}}} \times \sqrt{\frac{\lambda^2}{\lambda^2 + 16\pi^2 \alpha}}. \end{split}$$
Therefore, we cannot set the mass arbitrary small, even though it is allowed in QFT at least if we allow fine-tuning

Summary and Prospects

Summary and Prospects

- 1. Swampland program
 - quantum gravity constraints on QFT models
- 2. Gravitational positivity bounds
 - consistency of gravitational scattering
 - in weakly coupled UV completion,

$$\begin{split} M(s) &= -\frac{2s^2}{M_{\rm Pl}^2 t} + \sum_{n=1}^{\infty} a_{2n} s^{2n} + \mathcal{O}(t) \text{ (IR expansion)} \\ a_2 &> \mathcal{O}(1) \cdot \frac{1}{M_{\rm Pl}^2 M_s^2} \text{ (} M_s \text{ : mass of higher spin Regge states)} \end{split}$$

- Q. Can we constrain the $\mathcal{O}(1)$ factor further?
 - it is non-negative in know string theory examples
 - bounds from holography, energy conditions etc?

Summary and Prospects

- 3. Exploring swampland w/gravitational positivity
 - QED and dark photon
 - positivity requires non-gravitational coupling to hidden sector \rightarrow more realistic models? implications for DM models?
 - bound on scalar potential
 - positivity implies that mass cannot be set arbitrary small
 - \rightarrow implications for SM, inflation, dark energy, neutrino etc?
 - other phenomenological applications?

Thank you!