Towards understanding cosmological correlators from boundary perspective

Yuko Urakawa (Bielefeld Univ./Nagoya Univ.)

Acceleration just after "beginning" of Universe

Cosmic inflation

Recall Yasusada's talk

$$H^{2} = \left(\frac{1}{a(t)}\frac{da(t)}{dt}\right)^{2} = \frac{8\pi G}{c^{2}}\rho = \frac{\Lambda c^{2}}{3} \longrightarrow a(t) = a_{i}e^{\sqrt{\frac{\Lambda}{3}}c(t-t_{i})}$$

$$= \int_{a(t)}^{a(t)} \int_{a(t)}$$

Cosmic inflation as natural laboratory

 $H_{\rm inf} < 2.7 \times 10^{-5} M_{\rm pl} \sim 6.6 \times 10^{13} \, {\rm GeV}$ planck18

Natural laboratory to experiment with high energy physics (HEP)

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

UV modification of gravity

- Radiative corrections $G_{\mu\nu} = \frac{8\pi G}{c^4} \langle T_{\mu\nu} \rangle \qquad \langle T_{\mu\nu} \rangle = \frac{k_2}{2990\pi^2} \left(R_{\mu\rho} R^{\rho}{}_{\nu} - \frac{2}{3} R R_{\mu\nu} + \frac{1}{4} g_{\mu\nu} R^2 - \frac{1}{2} g_{\mu\nu} R_{\rho\sigma} R^{\rho\sigma} \right) + \cdots$ Davies (77) \rightarrow Starobinsky (80)
- GR in 4 dim is not UV complete e.g., Horava (09), string theory....

BSM physics

- inflaton
- spectator fields

mass m << H or m > Hspin s=0, 1, 2,

eg. s=1, axionic inflation

Cosmological correlators

Understanding

Understanding

at reheating surface

de Sitter (dS) spacetime

dS and EAdS are both embedded (d+1)-dim hyperboloid

$$\epsilon_{-}X_{-}^{2} + \epsilon_{0}X_{0}^{2} + \sum_{i=1}^{d} X_{i}^{2} = \epsilon_{-}l^{2}$$

in (d+1, 1) flat space

$$ds^{2} = \epsilon_{-}dX_{-}^{2} + \epsilon_{0}dX_{0}^{2} + \sum_{i=1}^{d} dX_{i}^{2}$$

$$\begin{cases} \mathsf{EAdS} & \epsilon_{-} = -1, \, \epsilon_{0} = 1 \\ \mathsf{dS} & \epsilon_{-} = 1, \, \epsilon_{0} = -1 \end{cases}$$

CAS

c.f. AdS $\epsilon_{-} = \epsilon_{0} = -1$

In-in formalism and BD vacuum (Euclidean vac.)

cosmological correlators are expectation values

$$G_F(x_1, x_2), G_D(x_1, x_2), G^{\pm}(x_1, x_2)$$

Enclidean vacuum (Bunch-Davies vac., Adiabatic vac.,...)

All the *n*-point fns. $\langle \phi(x_1), \dots, \phi(x_{n-1})\phi(x_n) \rangle$ should become regular in the limit $t_i \rightarrow -\infty(1 \pm i\varepsilon)$

free-level: dS invariant + Hadamard B. Allen (85)

4D AdS and dS

Anti de Sitter (AdS) Vacuum with $\Lambda < 0$

in $\mathbb{R}^{2,3}$ (-,-, +, +, +) SO(2,3) - X_{ℓ}^{2} - X_{l}^{2} + $\sum_{a=2,3,4} X_{a}^{2}$ = - ℓ^{2} $\frac{\text{de Sitter (dS)}}{\text{Vacuum with } \Lambda > 0}$ in R^{1,4} (-,+, +, +, +) SO(1,4)

 $-X_{\ell}^{2} + X_{l}^{2} + \sum_{a=2,3,4} X_{a}^{2} = \ell^{2}$

$$ds^{2} = l_{AdS}^{2} \left(\frac{-dt^{2} + dx^{2} + dy^{2} + dz^{2}}{z^{2}} \right) \qquad ds^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{AdS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

$$s^{2} = l_{dS}^{2} \left(\frac{-d\eta^{2} + dx^{2} + dy^{2} + dw^{2}}{\eta^{2}} \right)$$

Strominger (01), Witten (01), Maldacena (02),...

dS and AdS are mathematically similar, yet physically different.

- Holographic direction is timelike, CFT lives on spatial boundary.
- Dual CFT is non-unitary.
 - e.g., $(\Box m^2)\phi = 0$ 4dim AdS $\Delta = \frac{3}{2} \pm \sqrt{\frac{9}{4} + m^2 l_{AdS}^2}$ 4dim dS $\Delta = \frac{3}{2} \pm \sqrt{\frac{9}{4} - m^2 l_{dS}^2}$

Principal series in dS ~ Below BF found in AdS (15000, Lín, Noumí (20)

- Lack of concrete examples.

... yet, Annínos, Hartman, Stromínger (11)

- Relation with area law?

(...yet Tetsnya's talk)

Bulk to Boundary

using eom for 4-dim bulk theory $\delta S \sim \mathcal{L} dz \Big|_{z=z_0}^{z=z_1}$

- Massless free scalar field on EAdS
 - with $Z \sim e^{-S_{\rm EAdS}}$ $\langle \mathcal{O}(\mathbf{k})\mathcal{O}(\mathbf{k}') \rangle \sim \delta(\mathbf{k} + \mathbf{k}') l_{\rm AdS}^2 k^3$
- Massless free scalar field on dS with $Z \sim e^{iS_{\rm dS}}$ $\langle \mathcal{O}(\mathbf{k})\mathcal{O}(\mathbf{k}') \rangle \sim \delta(\mathbf{k} + \mathbf{k}') l_{\rm dS}^2(-k^3)$

$$l_{
m dS} = i\,l_{
m AdS}$$
 Ma

Maldacena(02)

Boundary to Bulk (dS)

- Wave function on future boundary

$$\Psi[\hat{\phi}] \sim Z[\hat{\phi}] = \langle e^{-\hat{\phi} \cdot \mathcal{O}} \rangle$$

Bulk correlators

$$\langle \hat{\phi}(\mathbf{k}_1) \cdots \hat{\phi}(\mathbf{k}_n) \rangle = \int D \hat{\phi} \, \hat{\phi}(\mathbf{k}_1) \cdots \hat{\phi}(\mathbf{k}_n) |\Psi[\hat{\phi}]|^2$$

e.g. $\langle \hat{\phi}(\mathbf{k}) \hat{\phi}(-\mathbf{k}) \rangle' = -\frac{1}{2 \operatorname{Re}[\langle \mathcal{O}(\mathbf{k}) \mathcal{O}(-\mathbf{k}) \rangle']}$

 $\eta = 0$ $\eta = -\infty$

Harrison-Zeldovich spectrum (← 0th approx. of CMB spectrum)

$$\langle \mathcal{O}(\mathbf{k}) \mathcal{O}(-\mathbf{k}) \rangle' \propto k^{6-\Delta} \propto k^3 \longrightarrow \langle \hat{\phi}(\mathbf{k}) \hat{\phi}(-\mathbf{k}) \rangle' \propto 1/k^3$$

$$\uparrow_{\Delta_+ = \frac{3}{2} + \sqrt{\frac{9}{4} - m^2 l_{\rm dS}^2} \sim 3 } \langle \hat{\phi}(\mathbf{k}) \hat{\phi}(-\mathbf{k}) \rangle' \propto 1/k^3$$

c.f. Inflation w/deformed CFT

McFadden, Skenderís (09, 10, 11,...) Bzowskí et al. (12), Schalm et al. (12) Garríga § Y.U. (13, 16), Garríga, Skenderís, Y.U. (14),

Maldacena(02)

Cosmological bootstrap

Arkaní-Hamed, Banmann, Lee, & Pímental JHEP 04 (20) 105

Baumann, Pueyo, Joyce, Lee, & Pímental JHEP 12 (20) 204

Baumann, Pueyo, Joyce, Lee, & Pímental 2005.04234

Cosmological bootstrap

Conformal bootstrap

 $\sum_{k}^{O_1} O_k O_k$

(Goal of) Cosmological bootstrap

- Imposing de Sitter symmetry.
- Imposing correct UV energy singularities.

(+ Choosing Bunch-Davies vacuum,)

Possible (4pt) exchange diagrams

Arkaní-Hamed, Baumann, Lee, & Pímental (18)

Scattering amplitude

- Getting around redundancies in Lagrangian.
- Bootstrapping scattering amplitude from physical principles.

Massless spinning particles

Compute
$$A(1^{h_1} \cdots n^{h_n}) = e_{\mu_1}^{h_1} \dots e_{\mu_n}^{h_n} A^{\mu_1 \cdots \mu_n},$$

using spin helicity variables $[ij] = \tilde{\lambda}_{i\dot{\alpha}}\tilde{\lambda}_{j\dot{\beta}}\epsilon^{\dot{\alpha}\dot{\beta}}, \langle ij \rangle = \lambda_{i\alpha}\lambda_{j\beta}\epsilon^{\alpha\beta}$

(MHV) Gluon scattering amplitude

$$A(\cdots i^{-} \cdots j^{-} \cdots) = \frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}$$

Parke & Taylor (86)

1) Identify contact diagrams from UV singularity

η=0

$$\bigvee \sim \int_{-\infty}^{0} \mathrm{d}\eta \, \eta^{p-1} e^{ik_t \eta} A(k_1, k_2, k_3, k_4) \to \frac{A_{\mathrm{flat}}}{k_t^p} \qquad \qquad k_t \equiv \sum_n |\mathbf{k}_n| \to 0$$

2) Compute exchange diagrams from seed 1) Arkaní-Hamed et al. (18) WT identify of SCT

Cosmological colliders

Excitation of massive scalar cheng

Chen & Wang (09), Noumí, Yamaguchí, Yokoyama (12)....,

Mellin space approach

Sleight JHEP 01 (20) 090

Sleight & Taronna JHEP 02(20) 098

Sleight & Taronna arXív:2007.09993

Mellin transformation

Various advantages to analyze CFT (on \mathbb{R}^{d}). encoding unitarity, causality, ... Recall Toshifumi's talk c.f. Fourier trans. 2pt fn. $1/(x^2)^{\Delta} \leftrightarrow (p^2)^{\Delta-d/2}$ branch cut at origin

Mellin transformation

$$f(x) = \int_{-i\infty}^{i\infty} ds x^{-s} \tilde{f}(s)$$
 ICTP lecture by Gopakumar

Picking out different scaling behaviors for power-law decomposition.

Sleight (19) Sleight & Taronna (19) Sleight & Taronna (20)

AdS 1) Well defined notion of Unitarity2) Non-perturbative understanding of singularities

Using AdS as a guide to understand dS.

 Bulk-boundary/Bulk-Bulk propagator in Mellin-Barnes representation for dS.

Sleight (19) Sleight & Taronna (19)

Harmonic function in AdS $\left(\nabla^2_{AdS} - m^2\right)\Omega_{\nu}\left(x_1, x_2\right) = 0$

Expressing K in MB rep, Performing analytic continuation $z = -e^{\pm i\frac{\pi}{2}}\eta$

MB rep. of Wightman fn. for BD vac. in dS

$$G_{\mathbf{k}}(\eta_{1}, \eta_{2}) \propto (\eta_{1}\eta_{2})^{d/2} \prod_{i=1}^{2} \int_{-i\infty}^{i\infty} \frac{du_{i}}{2\pi i} (\cdots) \prod_{j=1}^{2} \frac{\Gamma(u_{j} + i\frac{\nu}{2})\Gamma(u_{j} - i\frac{\nu}{2})(-\frac{k\eta_{j}}{2})^{-2u_{j}}}{\mathsf{poles}} \eta = 0$$

- bulk-boundary(bulk) propagator by sending $\eta_1 \rightarrow 0$
- · contact diagram by integrating bulk-boundary propagator

Sleight (19) Sleight & Taronna (19) Sleight & Taronna (20)

AdS 1) Well defined notion of Unitarity2) Non-perturbative understanding of singularities

Using AdS as a guide to understand dS.

* external scalar field is general. Recall Arkaní-Hamed et al. (18)

- Propagators in Mellin-Barnes rep. for dS.
- Contact interaction

Relation between exchange diagrams for dS and AdS

Detectability of spinning particle

1

3pt fn. from spinning particle

k₃/k₁, k₃/k₂ << 1 Particle creation <δΦδΦδΦ> ∝ (**k**₁ ⋅ **k**₃)^s

Arkaní-Hamed & Maldacena (15)

Minimum extension from dS

k3/k1, k3/k2 << 1

$$\Delta = \frac{3}{2} \pm i \sqrt{\left(\frac{M}{H}\right)^2 - \left(s - \frac{1}{2}\right)^2} \qquad \mathcal{P}$$

P(k):power spectrum

1) Boltzmann suppression

2) Dilution of massive fields

Higuchi bound
$$M > O(H)$$

d8 global rotation
Bordín et al. (18) Kehagías § Ríotto (17)

3) Weak coupling

Large coupling tends to make 1) more severe.

Wang ξ Xíanyu (19, 20)

3pt fn. from spinning particle

1) Cosmic microwave background $<\delta T\delta T\delta T>$

PLANCK18, Bartolo et al. (17), Franciolíní et al. (18), Bordín & Cabass (19)

2) Galaxy number count $<\delta n \delta n >$

Moradinezhad et al (181,182)

3) Galaxy shape correlation <(shape) (shape)> schmidt et al (15, 16), Kogai, Matsubara, Nishizawa, γ, μ, (18)

Kogaí, Akítsu, Schmidt, Y,U,. (20)

k3/k1, k3/k2 << 1

Particle creation

 $<\delta\Phi\delta\Phi\delta\Phi> \propto (\mathbf{k}_1 \cdot \mathbf{k}_3)^{\mathrm{s}}$

Arkaní-Hamed & Maldacena (15)

LargeScaleStructure surveys in the next decade

Wide and Deep survey missions

Euclid launch 2020

LSST science operation mid2020s

Roman space telescope launch mid2020s

SPHREx launch 2023

Galaxy imaging survey as spin sensitive detector

Kogaí, Akítsu, Schmídt, g γ.υ. (20)

What about w/o de Sitter symmetry?

w/d8, studies of dS are still useful??

$g\delta N$ formalism

T.Tanaka & Y.U. 2101.05707

w/Takahíro Tanaka (Kyoto, YITP)

Large scale evolution

Large scale evolution for scalar field system

Gradient expansion (GE) \rightarrow delta N formalism

Salopek&Bond(90) Shíbata & Sasakí(90), Deruelle & langloís (94),... Starobínsky (82, 85), Sasakí & Stewart (95), Sasakí & Tanaka (98), Lyth, Malík, & Sasakí (04),...

Large scale evolution

Basic assumption in gradient expansion

Scale of interest λ (>> λ_s)

Fine-grained view

Coarse-grained view

size of mono color stone

= smoothing scale λ_s

Let her get aged.

(\Rightarrow) Her history in detailed view = Her history in coarse-grained view

Separate universe

Salopek&Bond(90)

- (☆) Evolution of inhomogeneous Universe
- = Evolution of glued numerous homogeneous universes

Scale of interest $\lambda >>$ Smoothing scale $\lambda_s >$ Size of casual patch

Fine-grained view Solving PDEs

Coarse-grained view

Solving ODEs (Inhomogeneity: Different ICs)

Separate universe

SalopekgBond (90)

- (☆) Evolution of inhomogeneous Universe
- = Evolution of glued numerous homogeneous Universes

Scale of interest $\lambda >>$ Smoothing scale $\lambda_s >$ Size of casual patch

When (\cancel{x}) holds?

$g\delta N$ formalism

Tanaka ξ Y.U. (21)

a local theory w/gravity, spatial Diff

fields in $\mathcal L$

solving constraints (C)

physical fields {φ_{phys}} non-local

e.g., MC
$$\mathcal{H}_i \equiv \frac{\partial (N\sqrt{g}\mathcal{L})}{\partial N^i} = 0$$
 $\partial_i(\cdots) + (\cdots)\partial_i(\cdots) = 0$

$g\delta N$ formalism

a local theory w/gravity, spatial Diff

* Initial correlators should satisfy nonlocal *C*.

Infrared universality

Summary: Comprehensive studies of inflation

