

Second order CMB anisotropies

Kazuya Koyama

Institute of Cosmology and Gravitation, University of Portsmouth

Motivation

- The Universe is non-Gaussian
 CMB anisotropies are inevitably non-Gaussian
 - Non-linear physics at recombination
 - Non-linearity of Einstein's gravity "Einstein's signature in the CMB"

The intrinsic non-Gaussianity is expected to be $f_{NL} \sim O(1)$

Primordial non-Guassianity
 Planck constraints

 $-9.8 < f_{NL}^{local} < 14.3$ (95% CL)

This constraint is still much weaker than theoretical expectations $f_{\rm NL} < O(1)$

History

Analytic approximations

"Consistency relation" in the squeezed limit

Bartolo et.al. 0407505; 1109.2043; Boubekeur et.al. 0905.0980; Creminelli & Zaldariaga 0405428; Creminelli et.al. 1109.1822 Lewis 1204.5018

2nd order Boltzmann equation

Bartolo et.al. 0604416; 0610110; Pitrou 0706.4383; 0809.3245; Beneke & Fidler 1003.1834; Naruko et.al. 1304.6929

Numerical codes

Pitrou et.al. 1003.0481; Huang & Vernizzi 1212.3573; 1311.6105; Pettinari et.al. 1302.0832; 1406.2981; Fidler et.al. 1401.3296 Su et.al. 1212.6968

Squeezed limit

Consistency relation

$$ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + e^{2\zeta(x^{i})} dx_{i} dx_{i} \right]$$

The effect of the long mode ζ_L is to rescale the coordinates

$$\left\langle \zeta(\vec{x}_{2})\zeta(\vec{x}_{3})\right\rangle_{\zeta_{L}} = \xi(|\vec{x}_{3} - \vec{x}_{2}|) + \zeta_{L} \left[\left(\vec{x}_{3} - \vec{x}_{2}\right) \cdot \nabla \xi(|\vec{x}_{3} - \vec{x}_{2}|) \right]$$

$$\left\langle \zeta(\vec{x}_1)\zeta(\vec{x}_2)\zeta(\vec{x}_3) \right\rangle = \left\langle \zeta(\vec{x}_1)\zeta(\vec{x}_+) \right\rangle \left[\vec{x}_{-}\nabla\xi(|\vec{x}_{-}|) \right]$$

$$= \int \frac{d^3k_L}{(2\pi)^3} \int \frac{d^3k_S}{(2\pi)^3} e^{ik_L(x_1-x_+)} P(k_L) P(k_S) \left[k_s \cdot \nabla_{k_s} \right] e^{ik_s x_-}$$

$$\vec{k}_1 \underbrace{ \frac{\vec{k}_2}{\vec{k}_3} }$$

$$\left\langle \zeta(\vec{k}_{1})\zeta(\vec{k}_{2})\zeta(\vec{k}_{3})\right\rangle = -(2\pi)^{3}\delta(\vec{k}_{1}+\vec{k}_{2}+\vec{k}_{3})P(k_{1})\frac{d\left(k_{s}^{3}P(k_{s})\right)}{d\ln k_{s}}$$

Analytic approximation

Ricci focusing

uniform radiation density gauge

$$ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + e^{2\zeta(x^{i})} dx_{i} dx_{i} \right]$$

 $\zeta(x) = \zeta_L(x) + \zeta_S(x)$

the observed angular size of perturbation becomes changes due to long-wavelength perturbations

 $a(\eta_r)(1+\zeta(x^i))\Delta x = \text{physical scale} = \text{const.}$

in this gauge recombination happens at $\eta = \eta_*$ everywhere

Lewis 1204.5018

Analytic approximation

Redshift modulation

 $ds^{2} = a^{2}(\eta) [(1+2\Psi)d\eta^{2} - (1-2\Phi)\delta_{ij}dx^{i}dx^{j}]$

Lewis 1204.5018

Analytic approximations (squeezed limit)

Ricci focusing

rescaling of the spatial coordinate (in 2D)

$$\left\langle \Theta(\vec{n}_1)\Theta(\vec{n}_2)\Theta(\vec{n}_3) \right\rangle = \left\langle \Theta(\vec{n}_1)\zeta_L \right\rangle \left[\vec{n}_1 \cdot \nabla_{n_1} \left\langle \Theta(\vec{n}_2)\Theta(\vec{n}_3) \right\rangle \right]$$

$$b_{l_1 l_2 l_3} \approx -C_{l_1}^{T\zeta_0^*} \frac{1}{l^2} \frac{\mathrm{d}}{\mathrm{d} \ln l} (l^2 \tilde{C}_l) \qquad \qquad \ell_1 << \ell_2, \ell_3$$

• Redshift modulation $T(\eta, x^i) = \overline{T}(\eta)(1 + \Theta(\eta, x^i))$

2nd order Boltzmann equation

• Boltzmann equation for distribution function f(x, p)

$$\frac{\partial f}{\partial \eta} + \frac{dx^{i}}{d\eta} \frac{\partial f}{\partial x_{i}} + \frac{dq}{d\eta} \frac{\partial f}{\partial q} + \frac{dn^{i}}{d\eta} \frac{\partial f}{\partial n_{i}} = \mathfrak{C}[f]$$

$$\frac{\partial}{\partial \eta} f + n^{i} \frac{\partial f}{\partial x^{i}} + \left(\frac{dp}{d\eta} \frac{\partial f}{\partial p}\right) + \left(\frac{dn^{i}}{d\eta} \frac{\partial f}{\partial n^{i}}\right) + \left(\frac{dx^{i}}{d\eta} - n^{i}\right) \frac{\partial f}{\partial x^{i}}$$
redshifts lensing time-delay

Brightness temperature

$$1 + \Delta(\eta, \mathbf{x}, \mathbf{n}) = \frac{\int dq \, q^3 f(\eta, \mathbf{x}, q\mathbf{n})}{\int dq \, q^3 f^{(0)}(q)}$$

Fourie transformation and spherical harmonic expansion

2nd order Boltzmann equation

• Multipole decomposition $n = (\ell, m)$

$$\dot{\Delta}_n + k \Sigma_{nm} \Delta_m + \mathcal{M}_n + \mathcal{Q}_n^L = \mathfrak{C}_n$$

- Free streaming term $\dot{\Delta}_n + k \sum_{nm} \Delta_m$ couples neighbouring moments, generating higher moments over time
- Second order metric sources (2nd order ISW, SW)

$$\mathcal{M} = 4 \left(n^i \partial_i \Psi - \dot{\Phi} - n^i \dot{\omega}_i + n^i n^j \dot{\gamma}_{ij} \right) - 4 \left(\Psi - \Phi \right) n^i \partial_i \Psi - 8 \Phi \dot{\Phi}$$

Propagation effects (lensing, redshift and time delay)

$$\mathcal{Q}^{L} = (\Psi + \Phi) n^{i} \partial_{i} \Delta + 4 (n^{i} \partial_{i} \Psi - \dot{\Phi}) \Delta - (\delta^{ij} - n^{i} n^{j}) \partial_{j} (\Psi + \Phi) \frac{\partial \Delta}{\partial n^{i}}$$

Collision terms

• Collision term $\mathfrak{C}_n = -|\dot{\kappa}| \left(\Delta_n - \Gamma_{nm} \Delta_m - \mathcal{Q}_n^C \right) \quad |\dot{\kappa}|$: Compton scattering rate

the first two terms are the same as the first order

$$\Gamma_{nn'} \Delta_{n'} \qquad \xrightarrow{\mathcal{I}} \qquad \delta_{\ell 0} \mathcal{I}_0^0 + \delta_{\ell 1} 4 u_{[m]} + \delta_{\ell 2} \left(\mathcal{I}_m^2 - \sqrt{6} \mathcal{E}_m^2 \right) / 10$$

the quadratic source is made of convolutions over photon density and electron velocity

sources exist at any multipole moments but high multipoles are suppressed

Tight coupling

tight coupling between electron and photon suppresses the free streaming term thus higher order moments L>2 after recombination, higher order multipoles are generated

$$\ell \sim k (\tau - \tau_{\rm rec})$$

Line of sight integration

Line of sight integration

$$\dot{\Delta} + (i \mathbf{k} \cdot \mathbf{n} + \dot{\kappa}) \Delta = S$$

$$\Delta(\tau_0, \mathbf{k}, \mathbf{n}) = \int_{\tau_{\rm in}}^{\tau_0} d\tau \ e^{i \mathbf{k} \cdot \mathbf{n} (\tau - \tau_0)} \ e^{-\kappa(\tau, \tau_0)} \ \mathcal{S}(\tau, \mathbf{k}, \mathbf{n})$$

Multi-pole decomposition

$$\begin{split} \mathcal{I}_{m}^{\ell}(\tau_{0},\boldsymbol{k}) &= \int_{\tau_{in}}^{\tau_{0}} \mathrm{d}\tau \ e^{-\kappa} \ \sum_{L=0}^{L_{max}} \ J_{L\ell m}\left(\boldsymbol{k} \ r\right) \ S_{Lm}^{\mathcal{I}}(\tau,\boldsymbol{k}) \\ J_{L\ell m}(x) &\equiv (-1)^{m} \left(2\,\ell+1\right) \sum_{\ell_{1}=|\ell-L|}^{\ell+L} i^{\ell-\ell_{1}-L} \left(2\,\ell_{1}+1\right) \begin{pmatrix} \ell & \ell_{1} & L \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \ell & \ell_{1} & L \\ -m & 0 & m \end{pmatrix} \ j_{\ell_{1}}(x) \end{split}$$

the second sources
$$S_{n} = -\mathcal{M}_{n}^{(2)} - \mathcal{Q}_{n}^{L} + |\dot{\kappa}| \left(\Gamma_{nm} \Delta_{m}^{(2)} + \mathcal{Q}_{n}^{C}\right)$$

Sources

 $\mathcal{Q}_n^{\mathfrak{C}}$ Quadratic source include the photon density thus there are contributions from L > 2 but they are tight coupling suppressed (in numerical codes, L_{\max} needs to be treated as a parameter)

thanks to the visibility function, the evolution of photon hierarchy can be stopped right after recommbination

Sources

Second order metric

$$\Delta_{n}(\tau_{0}) \supset \int_{\tau_{\mathrm{in}}}^{\tau_{0}} \mathrm{d}\tau \ J_{nn'}(kr) \mathcal{M}_{n} \qquad \qquad \mathcal{M}_{n} = -\delta_{L0} 4 \left[\dot{\Phi} + 2\dot{\Phi}\Phi\right] \\ - \delta_{L1} 4 \left[\delta_{m0} k \Psi + k_{1}^{[m]} \Psi \left(\Phi - \Psi\right) - i\dot{\omega}_{[m]}\right] - \delta_{L2} 4\dot{\gamma}_{[m]}$$

No visibility function thus the source needs to be evolved until today However radiation contributions can be ignored

Propagation sources

$$\Delta_n(\tau_0) \supset \int_{\tau_{\rm in}}^{\tau_0} \mathrm{d}\tau \ J_{nn'}(kr) \ \mathcal{Q}_n^L \qquad \qquad \sum_{\pm} \pm k_1^{[m_2]} \left(\Psi + \Phi\right) \mathcal{I}_{m_1}^{\ell \pm 1} R_{m_1 m}^{\pm,l}$$

No visibility function thus the source needs to be evolved until today Sources include the photon density thus L_{max} needs to be infinity in principle

There is no real advantage in using the line of sight integration!

Transformation of variable

Redshift terms

transformation of variable

Huang & Vernizzi 1212.3573; 1311.6105; Pettinari et.al. 1302.0832; 1406.2981; Fidler et.al. 1401.3296

$$\begin{split} \tilde{\Delta} &= \Delta - \Delta \Delta/2 \qquad \dot{\Delta} = -n_i \partial^i \Delta - 4 \left(n^i \partial_i \Psi - \dot{\Phi} \right) + \mathfrak{C} \\ \dot{\tilde{\Delta}} &= \dot{\Delta} - \Delta \dot{\Delta} = -n_i \partial^i \tilde{\Delta} - \mathcal{M} + \mathfrak{C} (1 - \Delta) \\ - \mathcal{Q}^L + 4 \left(n^i \partial_i \Psi - \dot{\Phi} \right) \Delta , \end{split}$$

$$\mathcal{Q}^{L} = (\Psi + \Phi) n^{i} \partial_{i} \Delta + 4 (n^{i} \partial_{i} \Psi - \Phi) \Delta - (\delta^{ij} - n^{i} n^{j}) \partial_{j} (\Psi + \Phi) \frac{\partial \Delta}{\partial n^{i}}$$

The redshift term is cancelled while the collision term is modified (but still suppressed by the visibility function)

Lensing and time-delay cannot be removed in this way. We do not include them in the source

Bispectrum

Transfer function

$$\begin{aligned} \Delta_{\ell m}(\tau, \boldsymbol{k}) &= \mathcal{T}_{\ell m}^{(1)}(\tau, \boldsymbol{k}) \, \Phi(\tau_{\rm in}, \boldsymbol{k}) \\ &+ \int \frac{\mathrm{d} \boldsymbol{k_1}' \, \mathrm{d} \boldsymbol{k_2}'}{(2\pi)^3} \, \delta(\boldsymbol{k_1}' + \boldsymbol{k_2}' - \boldsymbol{k}) \, \mathcal{T}_{\ell m}^{(2)}(\tau, \boldsymbol{k_1}', \boldsymbol{k_2}', \boldsymbol{k}) \, \Phi(\tau_{\rm in}, \boldsymbol{k_1}') \, \Phi(\tau_{\rm in}, \boldsymbol{k_2}') \, . \end{aligned}$$

Bispectrum

Þ

$$\langle \Delta^3 \rangle = \int \frac{\mathrm{d} k_1 \, \mathrm{d} k_2 \, \mathrm{d} k_3}{(2 \, \pi)^9} \left\langle \Delta_{\ell_1 m_1}(\tau_0, k_1) \, \Delta_{\ell_2 m_2}(\tau_0, k_2) \, \Delta_{\ell_3 m_3}(\tau_0, k_3) \right\rangle$$

$$\left\langle \Delta^3 \right\rangle_{\text{intr}} = \int \frac{\mathrm{d}k_1 \,\mathrm{d}k_2 \,\mathrm{d}k_3}{(2\,\pi)^6} \,\delta(k_1 + k_2 + k_3)$$

 $\times \left[2\,\mathcal{T}^{(1)}_{\ell_1 m_1}(k_1)\,\mathcal{T}^{(1)}_{\ell_2 m_2}(k_2)\,\mathcal{T}^{(2)}_{\ell_3 m_3}(-k_1, -k_2, \,k_3)\,P_{\Phi}(-k_1)\,P_{\Phi}(-k_2) \,+\,2\,\text{perm.} \right]$

Bispectrum

Statistical isotropy

$$\left\langle \Delta_{\ell_1 m_1} \Delta_{\ell_2 m_2} \Delta_{\ell_3 m_3} \right\rangle = \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} B_{\ell_1 \ell_2 \ell_3} [\Delta]$$

Integration over angles

D

$$B_{\ell_{1}\ell_{2}\ell_{3}}^{\text{intr}}[\Delta] = \sum_{m=-\infty}^{\infty} \sum_{L_{3}=|\ell_{3}-|m||}^{\ell_{3}+|m|} \sum_{L_{1}=|\ell_{1}-|m||}^{\ell_{1}+|m|} 8 i^{L_{1}+\ell_{2}+L_{3}} 4\pi (2L_{1}+1)(2\ell_{2}+1)(2L_{3}+1)$$

$$\times \begin{pmatrix} L_{1} \ \ell_{2} \ L_{3} \\ 0 \ 0 \ 0 \end{pmatrix} \begin{pmatrix} \ell_{1} \ L_{1} \ |m| \\ 0 \ 0 \ 0 \end{pmatrix} \begin{pmatrix} \ell_{3} \ L_{3} \ |m| \\ m \ 0 \ -m \end{pmatrix} \begin{cases} \ell_{1} \ \ell_{3} \ \ell_{2} \\ L_{3} \ L_{1} \ |m| \end{cases} \int \frac{dk_{1} dk_{2} dk_{3} dr}{(2\pi)^{6}} (k_{1} k_{2} k_{3} r)^{2}$$

$$\times \widetilde{\mathcal{T}}_{\ell_{1}0}^{(1)}(k_{1}) \widetilde{\mathcal{T}}_{\ell_{2}0}^{(1)}(k_{2}) 2 \overline{\mathcal{T}}_{\ell_{3}m}^{(2)}(k_{1}, k_{2}, k_{3}) P_{\Phi}(k_{1}) P_{\Phi}(k_{2}) j_{L_{1}}(rk_{1}) j_{\ell_{2}}(rk_{2}) j_{L_{3}}(rk_{3}) + 2 \text{ perm.}$$

$$B_{\ell_1\ell_2\ell_3}^{\text{intr}} = \sum_m B_{\ell_1\ell_2\ell_3}^{\{m\}}$$
 scalar contribution (m=0) gives dominant contributions

Observed temperature

Temperature perturbations

$$f(\eta, \mathbf{x}, \mathbf{q}) = \left[\exp\left(\frac{q}{T\left(1 + \Theta(\eta, \mathbf{x}, \mathbf{q})\right)}\right) - 1 \right]^{-1} \qquad 1 + \Delta(\eta, \mathbf{x}, \mathbf{n}) = \frac{\int dq \, q^3 \, f(\eta, \mathbf{x}, q\mathbf{n})}{\int dq \, q^3 \, f^{(0)}(q)}$$

 Spectral distortion at second order, "temperature" depends on momentum
 Pitrou et.al. 0912.3655; Naruko et.al. 1304.6929; Renaux-Petel et.al. 1312.4448; Pitrou et.al. 1402.0968

$$I\left(q, n^{(i)}\right) \simeq I_{\rm BB}\left(\frac{q}{aT}\right) + y\left(n^{(i)}\right)q^{-3}\frac{\partial}{\partial\ln q}\left[q^{3}\frac{\partial}{\partial\ln q}I_{\rm BB}\left(\frac{q}{aT}\right)\right]$$

Bolometric and observed temperature

$$B \equiv \int dq \ q^3 I_1 = \frac{2\pi^4 a^4}{15} T^4 (1+4y) = \bar{B}(1+\Theta)^4 (1+4y) \quad \Delta = 4\Theta + 6\Theta^2 + 4y,$$

 $B_{\ell_1\ell_2\ell_3}^{\text{intr}}[\Theta] = \hat{B}_{\ell_1\ell_2\ell_3}^{\text{intr}}[\Delta] - 3 h_{\ell_1\ell_2\ell_3} (C_{\ell_1}C_{\ell_2} + C_{\ell_2}C_{\ell_3} + C_{\ell_3}C_{\ell_1})$

A second order Boltzmann code @ Portsmouth

- G.W.Pettinari, C. Fidler, R. Crittenden, K.Koyama, D.Wands
 JCAP 1304 003 (2013) 1302.0832
- C. Fidler, G.W. Pettinari, M. Beneke, R. Crittenden, K.Koyama, D.Wands
 JCAP 1407 011 (2014) 1401.3296;
- G.W.Pettinari, C. Fidler, R. Crittenden, K.Koyama, A. Lewis, D. Wands PRL submitted 1406.2981
- G.W. Pettinari, PhD thesis (Portsmouth) 1405.2280

SONG (Second Order Non-Gaussianity)

- We have written SONG to compute
 - → Second order non-Gaussianity
 - Second order B-polarisation
- induced from
 - → Scattering sources
 - → Metric sources
 - → Redshift terms
 - → Including scalar, vector and tensor sources
- Inherits structure from CLASS
- Numerically optimised and parallelised
- Numerical stability tested
- All results double checked by independent computation based on Green functions

©Christian Fidler

- 1) We solve the full differential system including photons, neutrinos, dark matter and baryons from the deep radiation era, till last scattering
- After last scattering higher multipoles are exited by free streaming complicating the differential system Instead we solve a simplified hierarchy until today, neglecting ultra-relativistic species.
- We build the line-of-sight sources for photon perturbations using the result of the differential systems
- The line-of-sight integration is used to evolve the photon perturbations until today
- 5) We compute the bispectrum and compare the shape against the templates for local, equilateral and orthogonal shapes

©Christian Fidler

Differential system

- We include photon temperature and polarisation, neutrinos, dark matter and baryons → about 100 equations per (k₁, k₂, k) configuration
- We solve the system for about 1.000.000 configurations in (k₁, k₂, k)

Computation time: ~ 2 hours

Full-sky bispectrum

Involved 4D integral on 6 highly oscillatory functions

Computation time: ~ 1 hour

Results

Comparison with analytic results

Ricci focusing + redshift modulation

$$b_{\ell_1 \ell_2 \ell_3}^{\mathrm{sq}, XYZ} = -\frac{1}{2} C_{\ell_1}^{X\zeta} \left[\frac{\mathrm{d} \left(\ell_2^2 C_{\ell_2}^{YZ} \right)}{\ell_2 \,\mathrm{d} \,\ell_2} + \frac{\mathrm{d} \left(\ell_3^2 C_{\ell_3}^{YZ} \right)}{\ell_3 \,\mathrm{d} \,\ell_3} + C_{\ell_1}^{XT} \left[\delta_{ZT} C_{\ell_2}^{YT} + \delta_{YT} C_{\ell_3}^{ZT} \right],$$

Very good agreements for squeezed configurations both for intensity and polarisation

 $b_{6\ell\ell}$

Fisher matrix

Fisher matrix

$$F^{(i),(j)} = \sum_{ABC,XYZ} \sum_{2 \le \ell_1 \le \ell_2 \le \ell_3}^{\ell_{\max}} \frac{1}{\Delta_{\ell_1 \ell_2 \ell_3}} B^{(i),ABC}_{\ell_1 \ell_2 \ell_3} \left(\widetilde{C}_{tot}^{-1} \right)^{AX}_{\ell_1} \left(\widetilde{C}_{tot}^{-1} \right)^{BY}_{\ell_2} \left(\widetilde{C}_{tot}^{-1} \right)^{CZ}_{\ell_3} B^{(j),XYZ}_{\ell_1 \ell_2 \ell_3}$$

Signal to noise ratio • Signal to noise ratio $S/N = \sqrt{F^{\text{intr,intr}}}$ Ideal experiment dashed: T only PRISM solid: T, E, B (8 spectra) CoRF Planck 3. Inclusion of polarisation **v/s** 2 significantly enhances our ability to detect the intrinsic bispectrum $2.1\sigma, 1.3\sigma, 0.46\sigma$ PRISM, COrE and Planck 2000 3000 1000 4000 Multipole *l* The bias to local type non-Gaussianity remains small

 $f_{\rm NL}^{\rm intr} = 0.58, 0.45, 0.37$ PRISM, COrE and Planck

Polarisation

Temperature v polarisation

Temperature: Sourced by density and velocity Acoustic peaks are blurred

Polarisaiton:

Sourced only by scattering the peakes are sharper, giving larger Ricci focusing terms

$$b_{l_1 l_2 l_3} \approx -C_{l_1}^{T\zeta_0^*} \frac{1}{l^2} \frac{\mathrm{d}}{\mathrm{d} \ln l} (l^2 \tilde{C}_l)$$

Lensing variance reduces siganl for squeezed configurations

Effects on the squeezed limit bispectrum

$$b_{\ell_{1}\ell_{2}\ell_{3}}^{\mathrm{sq},XYZ} = -\frac{1}{2} C_{\ell_{1}}^{X\zeta} \left[\frac{\mathrm{d}\left(\ell_{2}^{2} C_{\ell_{2}}^{YZ}\right)}{\ell_{2} \mathrm{d}\ell_{2}} + \frac{\mathrm{d}\left(\ell_{3}^{2} C_{\ell_{3}}^{YZ}\right)}{\ell_{3} \mathrm{d}\ell_{3}} \right] + C_{\ell_{1}}^{XT} \left[\delta_{ZT} C_{\ell_{2}}^{YT} + \delta_{YT} C_{\ell_{3}}^{ZT} \right], \qquad C_{\ell}^{YZ} \longrightarrow \widetilde{C}_{\ell}^{YZ} \quad \text{(lensed)}$$

lensing smears acoustic peaks, further reducing the signal

isotropic part is similar to Ricci focusing term (this is the reasons why lensing variance reduces the signal-to-noise)

However, the full intrinsic bispectrum is sufficiently different (a correlation is 0.6%) so we can distinguish between the two contributions

This bispectrum was detected by Planck at 4 sigma level!

Full effects of lensing on the intrinsic bispectrum are still unknown (in the S/N calculation, we only included the lensing variance)

SONG

A code to solve the second order Boltzman-Einstein system including all physical effects A bispectum module gives an efficient computation of the full-sky bispectra

Full intrinsic bispecta including polarisation

have been calculated by SONG

future experiments may be able to detect the intrinsic non-Gaussianity

• ... except late-time propagation effects (lensing and time-delay)

Remapping approach

Lensing

$$\begin{split} \tilde{\Theta}(\hat{\mathbf{n}}) &= \Theta(\hat{\mathbf{n}} + \nabla\phi) \\ &= \Theta(\hat{\mathbf{n}}) + \nabla_i \phi(\hat{\mathbf{n}}) \nabla^i \Theta(\hat{\mathbf{n}}) \\ \phi(\hat{\mathbf{n}}) &= -2 \int_0^{\chi_*} d\chi \left(\frac{\chi_* - \chi}{\chi\chi_*}\right) \Psi(\chi \hat{\mathbf{n}}, \eta_0 - \chi) \end{split}$$

Bispectrum

$$b_{l_1 l_2 l_3} \approx -C_{l_1}^T \dot{\phi} \left[(\mathbf{l}_1 \cdot \mathbf{l}_2) \tilde{C}_{l_2}^{TT} + (\mathbf{l}_1 \cdot \mathbf{l}_3) \tilde{C}_{l_3}^{TT} \right] \\ \approx l_1^2 C_{l_1}^{T\psi} \frac{1}{\phi_2} \left[\cos 2\phi_{l_1 l} \frac{\mathrm{d}\tilde{C}_l^{TT}}{\mathrm{d}\ln l} + \frac{1}{l^2} \frac{\mathrm{d}(l^2 \tilde{C}_l^{TT})}{\mathrm{d}\ln l} + \mathcal{O}(l_1^2/l^2) \right]$$

χ

in the squeezed limit

A new line-of-sight approach to the non-linear Cosmic Microwave Background

Christian Fidler,¹ Kazuya Koyama,¹ and Guido W. Pettinari²

¹Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK* ²Department of Physics & Astronomy, University of Sussex, Brighton BN1 9QH, UK

Geodesic *curve*-of-sight formulae for the cosmic microwave background: a unified treatment of redshift, time delay, and lensing

Ryo Saito¹, Atsushi Naruko², Takashi Hiramatsu³, and Misao Sasaki³

¹ APC (CNRS-Université Paris 7), 10 rue Alice Domon et Léonie Duquet, 75205 Paris, France,
 ² Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
 ³ Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

D

Unified treatment of propagation effects

$$\mathcal{J}D\tilde{f} + [\mathcal{D}, \mathcal{J}]\tilde{f} + \tau \mathcal{J}\tilde{f} = 0$$

transformed distribution function propagates in homegeneous spacetime

$$\mathcal{D}\tilde{f} = 0$$
 $[\mathcal{D},\mathcal{J}] + \tau \mathcal{J} = 0$

Transformation operator

A differential basis

$$\tau = \tau_p \frac{\partial}{\partial p} + \tau_n^i \frac{\partial}{\partial n^i} + \tau_x^i \frac{\partial}{\partial x^i} = \tau_p \frac{\partial}{\partial p} + \tau_n^i \bar{D}_i + (\tau_x^i - \eta \tau_n^i) \frac{\partial}{\partial x^i}$$
$$\bar{D}_i = \frac{\partial}{\partial n^i} + \eta \frac{\partial}{\partial x^i}$$
$$\partial_a = \left\{ \frac{\partial}{\partial p}, \frac{\partial}{\partial x^i}, \bar{D}_i \right\} \qquad \left[\partial_a, \mathcal{D} \right] = 0$$

 $[\mathcal{D}, \tau] = \mathcal{D}(\tau_a)\partial_a$

Transformation operator

expand the operator using the differential basis

$$\mathcal{J}_{a...c}\partial_{a...c} = \mathcal{J} + \mathcal{J}_a\partial_a + \mathcal{J}_{ab}\partial_{ab} + \dots$$

Equations for transformation operator

Differential equations

$$\mathcal{D}(\mathcal{J}_{a...c})\partial_{a...c} = \tau_d \partial_d \Big(\mathcal{J}_{e...g}\partial_{e...g}\Big)$$

Perturbation in the transport operator

first order

$$\left[\mathcal{D}(\mathcal{J}_a^{(1)})\right]\partial_a = \tau_a\partial_a$$

second order

$$\begin{bmatrix} \mathcal{D}(\mathcal{J}_{a}^{(2)}) \end{bmatrix} \partial_{a} = \begin{bmatrix} \tau_{d}(\partial_{d}J_{a}^{(1)}) \end{bmatrix} \partial_{a}$$
$$\begin{bmatrix} \mathcal{D}(\mathcal{J}_{ab}^{(2)}) \end{bmatrix} \partial_{a}\partial_{b} = \begin{bmatrix} \tau_{a}J_{b}^{(1)} \end{bmatrix} \partial_{a}\partial_{b}$$

Solutions

Differential operator

$$\partial_{d} = \partial_{d}^{\rightarrow} + \partial_{d}^{\uparrow} \qquad \qquad \partial_{d}^{\rightarrow} (\mathcal{A}_{a...c} \partial_{a...c}) = \partial_{d} (\mathcal{A}_{a...c}) \partial_{a...c}$$
$$\partial_{d}^{\uparrow} (\mathcal{A}_{a...c} \partial_{a...c}) = \mathcal{A}_{a...c} \partial_{a...cd}$$

$$\mathcal{D}(\mathcal{J}_{a...c}^{(n)})\partial_{a...c} = \tau_d(\partial_d^{\rightarrow} + \partial_d^{\uparrow})\mathcal{J}_{e...g}^{(n-1)}\partial_{e...g}$$

Integration

$$\mathcal{J}_{a...c}^{(n)}(\eta_{0})\partial_{a...c} = \int_{\eta_{ini}}^{\eta_{0}} d\eta_{1} e^{-n^{i}\frac{\partial}{\partial x^{i}}(\eta_{0}-\eta_{1})} \tau_{d}(\eta_{1}) (\partial_{d}^{\rightarrow}(\eta_{1}) + \partial_{d}^{\uparrow}(\eta_{0})) \mathcal{J}_{e...g}^{(n-1)}(\eta_{1}) \partial_{e...g}$$
$$\mathcal{J}^{(n)}(\eta_{0}) = \int_{\eta_{ini}}^{\eta_{0}} d\eta_{1} e^{-n^{i}\frac{\partial}{\partial x^{i}}(\eta_{0}-\eta_{1})} \tau_{d}(\eta_{1}) (\partial_{d}^{\rightarrow}(\eta_{1}) + \partial_{d}^{\uparrow}(\eta_{0})) \mathcal{J}^{(n-1)}(\eta_{1})$$

"Lens-Lens coupling"

Recursive solutions

$$\mathcal{J}^{(n)}(\eta_0) = \int_{\eta_{ini}}^{\eta_0} d\eta_1 e^{-n^i \frac{\partial}{\partial x^i}(\eta_0 - \eta_1)} \tau_{a_1}(\eta_1) (\partial_{a_1}^{\rightarrow}(\eta_1) + \partial_{a_1}^{\uparrow}(\eta_0))$$
$$\int_{\eta_{ini}}^{\eta_1} d\eta_2 e^{-n^i \frac{\partial}{\partial x^i}(\eta_1 - \eta_2)} \tau_{a_2}(\eta_2) (\partial_{a_2}^{\rightarrow}(\eta_2) + \partial_{a_2}^{\uparrow}(\eta_0))$$
$$\vdots$$
$$\vdots$$
$$\int_{\eta_{ini}}^{\eta_{n-1}} d\eta_n e^{-n^i \frac{\partial}{\partial x^i}(\eta_{n-1} - \eta_n)} \tau_{a_n}(\eta_n) \partial_{a_n}(\eta_0) .$$

applied to lensing, this describes lens-lens coupling

Collision

Collision term

$$D\tilde{f} = \mathcal{J}^{-1}C(\mathcal{J}\tilde{f}) \quad C(f) = -\dot{\kappa}f + \chi(f)$$

Line of sight integration

$$f(\eta_0) = \underbrace{\mathcal{J}(\eta_0)}_{\eta_{ini}} \int_{\eta_{ini}}^{\eta_0} d\eta e^{-n^i \frac{\partial}{\partial x^i}(\eta_0 - \eta) - \kappa} \underbrace{\mathcal{J}^{-1}(\eta)\chi(f(\eta))}$$

Encodes all spacetime effects before today from initial conditions

This part can be calculated non-linear Newtonian approximations for example Cancels propagation effects prior to the source

This part can be calculated using the 2nd order cosmological perturbation theory

This formalism achieves a split between early time (primary) and late time (secondary) effects

cf. Saito, Naruko, Hiramatsu, Sasaki 2014

Initial conditions

• Initial condition $\mathcal{J}(\eta_{ini}) = 1$ right after inflation

$$[D,\mathcal{J}] + \tau \mathcal{J} = -\dot{\kappa}(\mathcal{J}-1)$$

 ${\mathcal J}$ deviates from one only after recombination

$$f(\eta_0) = \mathcal{J}(\eta_0) \int_{\eta_{ini}}^{\eta_0} d\eta e^{-n^i \frac{\partial}{\partial x^i}(\eta_0 - \eta) - \kappa} \mathcal{J}^{-1}(\eta) (\chi(f(\eta)) + \dot{\kappa}_{rec}(1 - \mathcal{J}^{-1})f(\eta))$$

$$\approx \mathcal{J}(\eta_0) \int_{\eta_{ini}}^{\eta_0} d\eta e^{-n^i \frac{\partial}{\partial x^i}(\eta_0 - \eta) - \kappa} \chi(f(\eta)) ,$$

at the first order in the perturbation theory

Alternative initial conditions

• Initial conditions for \mathcal{J} can be taken freely

this formula agrees with the approach performing the line of sight integration along the full geodesic

Applications

• Redshift term $ds^2 = a(\eta)^2 \Big(-(1+2A)d\eta^2 + (1+2D)\delta_{ij}dx^i dx^j \Big)$ $\mathcal{J}_p(\eta_0, k_0) = \left(\int_0^{\eta_0} d\eta_1 e^{-in^i k_0(\eta_0 - \eta_1) - \kappa(\eta_0, \eta_1)} \tau_p(\eta_1, k_0) \right) \frac{\partial}{\partial p} \quad \tau_p = -p \frac{\partial}{\partial x^i} n^i A - p \dot{D}_p$

$$\mathcal{J}_{p}^{(1)}(\eta_{0}) = 1 - \theta_{\mathrm{ISW}} p \frac{\partial}{\partial p} \qquad \theta_{\mathrm{ISW}}(\eta) = \int_{0}^{\eta} d\eta_{1} \Big(\dot{\kappa} A + (\dot{D} - \dot{A}) \Big) e^{-in^{i}k_{0}(\eta - \eta_{1}) - \kappa(\eta, \eta_{1})}$$

$$f(\eta_0) = \mathcal{J}_p(\eta_0) \int_{\eta_{ini}}^{\eta_0} d\eta e^{-n^i \frac{\partial}{\partial x^i}(\eta_0 - \eta) - \kappa} \chi(f(\eta))$$

$$(1) \qquad \partial = 0 \qquad (1)$$

$$= \mathcal{J}_p(\eta_0) f_{coll}(\eta_0) = (1 - \theta_{\rm ISW} p \frac{\partial}{\partial p}) f_{coll} \approx f_{\rm coll}^{(1)} - \theta_{\rm ISW} p \frac{\partial}{\partial p} (f^{(0)} + f_{\rm coll}^{(1)})$$

At the second order $\tilde{\Delta} = \Delta - \Delta_{ISW} \Delta$ is enough to remove the redshift term (this is better for polarisation)

Lensing

D

• Lensing
$$\tau_n^i = \sigma^{ij} \frac{\partial}{\partial x^j} (D - A)$$
 $\sigma^{ij} = \delta^{ij} - n^i n^j$

$$\mathcal{J}^{(1)}(\eta_0, k_0) = \left(\int_0^{\eta_0} d\eta_1 e^{-in^i k_0(\eta_0 - \eta_1) - \kappa(\eta_0, \eta_1)} \tau_n^i(\eta_1, k_0) \right) \left(\frac{\partial}{\partial n^i} + \eta_0 \frac{\partial}{\partial x^i} \right) - \left(\int_0^{\eta_0} d\eta_1 e^{-in^i k_0(\eta_0 - \eta_1) - \kappa(\eta_0, \eta_1)} \eta_1 \tau_n^i(\eta_1, k_0) \right) \frac{\partial}{\partial x^i}.$$

Assuming all sources are located at LSS $\frac{\partial}{\partial x^i} = \frac{1}{(\eta_{rec} - \eta_0)} \frac{\partial}{\partial n^i}$

$$\mathcal{J}^{(1)}(\eta_0, k_0) = \frac{\partial}{\partial n_i^{\perp}} \left(\int_0^{\eta_0} d\eta_1 \frac{\eta_{rec} - \eta_1}{(\eta_0 - \eta_{rec})(\eta_0 - \eta_1)} e^{-in^i k_0(\eta_0 - \eta_1)} (D - A) \right) \frac{\partial}{\partial n_{\perp}^i}$$

Remapping formula

Remapping approach

$$f(\eta_0) = \mathcal{J}(\eta_0) \int_{\eta_{ini}}^{\eta_0} d\eta e^{-n^i \frac{\partial}{\partial x^i}(\eta_0 - \eta) - \kappa} \chi(f(\eta))$$

$$= \mathcal{J}(\eta_0) f_{coll}(\eta_0) = f_{coll} + \left(\frac{\partial}{\partial n_i^\perp} \psi(n^i)\right) \left(\frac{\partial}{\partial n_i^\perp} f_{coll}\right)$$

$$\psi(n^i) = \int \frac{d^3k}{(2\pi)^3} \int_0^{\eta_0} d\eta_1 \frac{\eta_{rec} - \eta_1}{(\eta_0 - \eta_{rec})(\eta_0 - \eta_1)} e^{-in^i k(\eta_0 - \eta_1)} \left(D(\eta_1, k) - A(\eta_1, k)\right)$$

Final formula

D

$$f(\eta_0) = f^{(0)} + f^{(1)}_{coll} - \theta_{\rm ISW} p \frac{\partial}{\partial p} (f^{(0)} + f^{(1)}_{coll}) + \left(\frac{\partial}{\partial n_i^{\perp}} \psi^{(1)}(n^i)\right) \left(\frac{\partial}{\partial n_{\perp}^i} f^{(1)}_{coll}\right)$$

Redshift-lensing correction

D

Conclusion

• Our universe is non-Gaussian, so are the CMB anisotropies

 We have now a tool to calculate the intrinsic bispectrum including all physical effects
 (2nd order Boltzmann code + new line of sight approach)