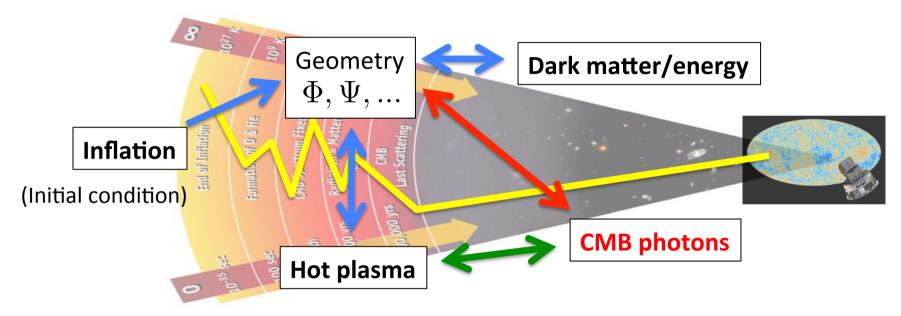


Geodesic "curve"-of-sight formulae for the cosmic microwave background

A unified treatment of redshift, time delay and lensing

Atsushi NARUKO (APC -> TITECH)

with R. Saito (APC), T. Hiramatsu, M. Sasaki (YITP)


based on arXiv: 1409.2464 today!!

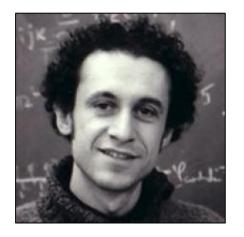
an alternative approach \rightarrow 1409.2461 by C. Fidler, K. Koyama, G. W. Pettinari (see also 1304.6929 by AN, C.Pitrou, KK, MS)

Cosmic Microwave Background (CMB)

The CMB can probe the history of the Universe:

Inflation, thermal history of the early Universe, dark components, ...

Recent precise measurements (WMAP, PLANCK ...)


Accurate tool (beyond linear order)

(Kinetic theory, Cosmological Perturbation Theory)

Second-order calculation of the CMB

...., [Pitrou], [Huang & Vernizzi], [Portsmouth group], [Cambridge group],

Second-order calculation of the CMB

Difficulty in solving the Boltzmann eq. (at 1st order)

To know the intensity of CMB photons at the present time ...

→ solve a 7D differential equation, Boltzmann equation,

$$\frac{\mathrm{d}}{\mathrm{d}\eta}f = \left(\frac{\partial}{\partial\eta} + \frac{\mathrm{d}x^i}{\mathrm{d}\eta}\frac{\partial}{\partial x^i} + \frac{\mathrm{d}q}{\mathrm{d}\eta}\frac{\partial}{\partial q} + \frac{\mathrm{d}n^{(i)}}{\mathrm{d}\eta}\frac{\partial}{\partial n^{(i)}}\right)f(\eta,\mathbf{x},q,\mathbf{n}) = \mathfrak{C}[f]$$
(comoving) momentum (energy) direction [2 \lefta 3]
$$P_{\mu}P^{\mu} = 0$$

- q (energy) dependence
 - -- well parameterized by a single parameter: temperature (or brightness, Δ)
- x dependence (or |k|-dependence in Fourier space)
 - -- Fourier mode evolves independently at linear order
- <u>n dependence (or ell-dependence after multi-pole expansion)</u>
 - -- Multi-pole moments couple with each other -> most problematic!!

huge number of coupled differential eqs... 🚱

$$\left(\frac{\partial}{\partial \eta} + \frac{\mathrm{d}x^i}{\mathrm{d}\eta} \frac{\partial}{\partial x^i} + \frac{\mathrm{d}q}{\mathrm{d}\eta} \frac{\partial}{\partial q} + \frac{\mathrm{d}n^i}{\mathrm{d}\eta} \frac{\partial}{\partial n^i}\right) f(\eta, \mathbf{x}, q, \mathbf{n}) = \mathfrak{C}[f; \eta, \mathbf{x}, q, \mathbf{n}]$$

$$\frac{\mathrm{d}}{\mathrm{d}\eta} \left| \Delta = (\partial_\eta + n^{(i)} \partial_i) \Delta = \underbrace{\mathfrak{C}^\Delta}_{\text{collision}} + \underbrace{\mathfrak{D}^\Delta}_{\text{SW and ISW}} \right|$$

BG

derivative along geodesic

$$=\dot{ au}C^{\Delta}$$

 $=\dot{ au}C^{\Delta}$ optical depth $\dot{ au}\equiv -n_e\sigma_T a$

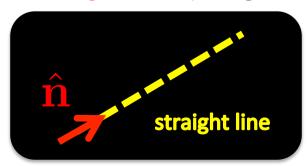
In Fourier space, after the multi-pole expansion:

$$\partial_{\eta} \Delta_{lm} + k \sum_{l'm'} \mathcal{M}_{l \, l'}^{m \, m'} \Delta_{l'm'} = \mathfrak{C}_{lm}^{\Delta} + \mathfrak{D}_{lm}^{\Delta},$$

... To know Δ_{l} , you need to know Δ_{l+1} and Δ_{l-1} . To know Δ_{l+1} , you need to know Δ_{l+2} ...

Line-of-sight integration method (1st order)

[Seljak & Zalddariaga 96]


- ✓ Line-of-sight integration method (integrating along a photon geodesic ≠ time-const line) which can reduce the computational cost very much !!!
- √ The brightness eq. in an integral form along a photon geodesic,

$$\Delta(\eta_0, k^i, n_0^{(i)}) = \int_0^{\eta_0} \mathrm{d}\eta' e^{i\mathbf{k}\cdot\mathbf{n}_0(\eta' - \eta_0)} \left[\frac{=g_v(\eta') \text{ : visibility function}}{-\dot{\tau}e^{-\tau}(\Delta - C^\Delta) + e^{-\tau}\mathfrak{D}^\Delta} \right],$$

$$\mathrm{at}\left(\eta', \bar{x}^i(\eta'), \bar{n}^{(i)}(\eta')\right)$$

fluctuations are evaluated at a point on a BG. geodesic (straight line),

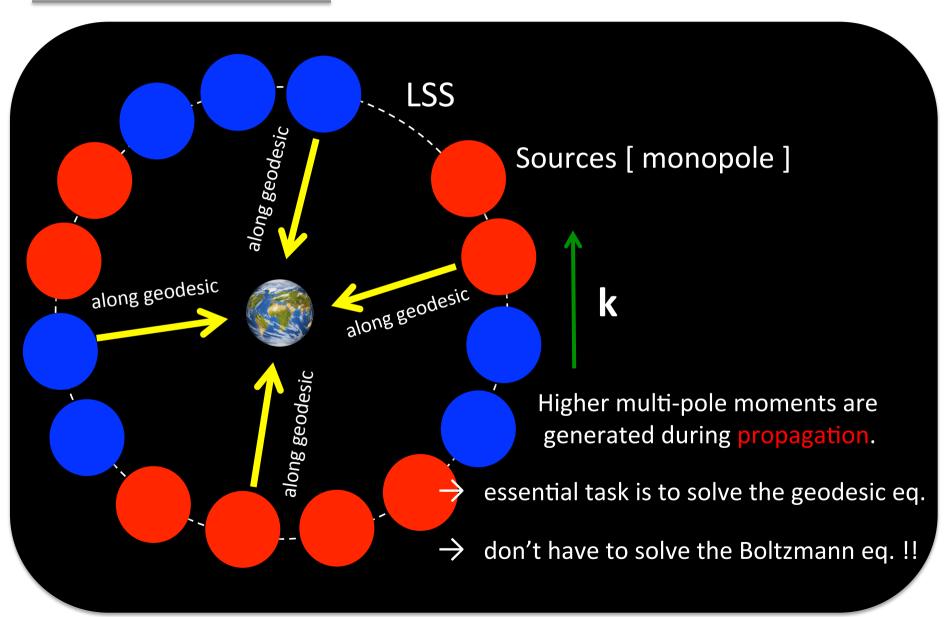
$$\bar{x}^{i}(\eta) \equiv x_{0}^{i} + n_{0}^{(i)}(\eta - \eta_{0})$$
 $\bar{n}^{(i)}(\eta) \equiv n_{0}^{(i)}$

line-of-sight formula

$$\Delta(\eta_0, k^i, n_0^{(i)}) = \int_0^{\eta_0} d\eta' e^{i\mathbf{k}\cdot\mathbf{n}_0(\eta' - \eta_0)} \left[-\dot{\tau}e^{-\tau}(\Delta - C^{\Delta}) + e^{-\tau}\mathfrak{D}^{\Delta} \right],$$

Thomson collision term

$$\Delta - C^{\Delta} = -4\Delta_{00} + 16i[v_e]\mu - \frac{2}{5}(\Delta_{20} - \sqrt{6}E_{20})P_2(\mu)$$

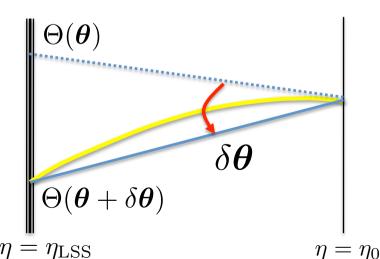

SW/ISW term

$$\mathfrak{D}^{\Delta} = -4(\dot{\Phi} + i\mu\Psi); \quad \mu \equiv \mathbf{k} \cdot \mathbf{n}_0$$

- ✓ Infinite # of Δ_{lm} are determined only by 6 functions: Φ , Ψ , Δ_{00} , Δ_{20} , E_{20} , V_e .
- ✓ Information of the observed higher-order multi-pole moments are encoded in the known function, $\exp[ikn_0(\eta'-\eta_0)]$. (the spherical Bessel function $j_1[kn_0(\eta'-\eta_0)]$ after the multi-pole expansion.)

It is **not** necessary to solve coupled differential equations for a huge number of functions Δ_{lm} .

Intuitive picture


Extension to higher orders

- ✓ At non-linear order, the CMB photons propagate through the *perturbed* spacetime.
- → various (non-linear) effects will be expected (time delay, lensing, redshift ...)

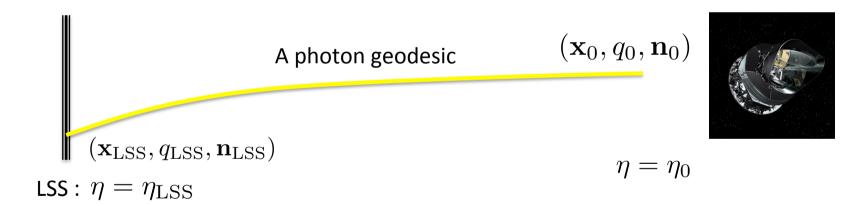
$$\frac{\mathrm{d}f}{\mathrm{d}\eta} = \partial_{\eta}f + \left(n^{(i)} + \frac{\mathrm{d}\,\delta x^{i}}{\mathrm{d}\eta}\right)\partial_{i}f + \frac{\mathrm{d}q^{(1)+(2)}}{\mathrm{d}\eta}\partial_{q}f + \frac{\mathrm{d}n^{(i)}}{\mathrm{d}\eta}\partial_{n^{(i)}}f$$

Standard approach → Remapping : (

$$\Theta_{\text{lensed}}(\boldsymbol{\theta}) = \Theta_{\text{unlensed}}(\boldsymbol{\theta} + \delta \boldsymbol{\theta})$$

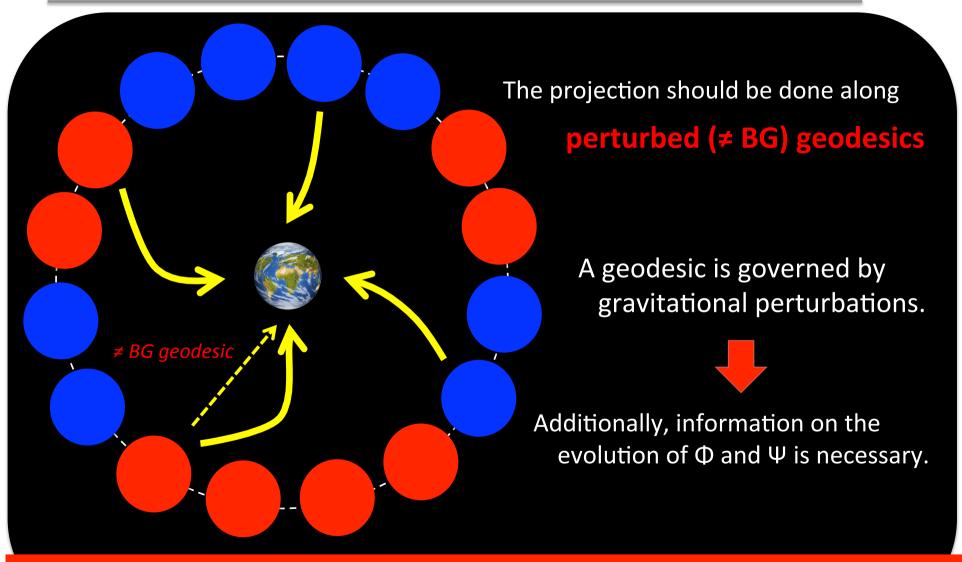
$$\frac{\mathrm{d}n^{(i)}}{\mathrm{d}\eta} = -S^{(i)(j)}(\Psi - \Phi)_{,j} + \cdots$$

extend the LOS formula including various non-linear gravitational effects such as redshift, time delay, lensing ???


Geodesic "curve"-of-sight formulae

-- A unified treatment of redshift, time delay and lensing --

Liouville's theorem


Liouville's theorem states that the distribution function along geodesics is conserved, even when the geodesics are curved by the metric perturbations:

$$f(\eta_0, \mathbf{x}_0, q, \mathbf{n}_0) = f(\eta_{\text{LSS}}, \mathbf{x}_{\text{LSS}}, q_{\text{LSS}}, \mathbf{n}_{\text{LSS}})$$

- ✓ The observed fluctuations = the projection of fluctuations on the LSS !!!
 - → the projection should be done along the perturbed geodesics.
 (curved photon trajectories)

Intuitive picture (with the gravitational effects)

Again, it is *not* necessary to solve coupled differential equations for a huge number of functions.

New approach to the gravitational effects

✓ We rewrite the Boltzmann equation
in an integral form along a perturbed geodesic,

$$f(\eta_0, \mathbf{x}_0, q_0, \mathbf{n}_0) = \int_0^{\eta_0} \mathrm{d}\eta' \underline{g_v(\eta')} [f - C]_{\mathrm{at} \ (\eta', \mathbf{x}(\eta'), q(\eta'), \mathbf{n}(\eta'))}$$

$$\equiv \mathfrak{S} \quad \text{a point on a perturbed geodesic}$$

- ✓ The gravitational effects appear as deviations in the mapping between the phase-space coordinates of the observer and sources.
- → Generalization of the remapping approach to CMB lensing

(No approximation and it includes all gravitational effects)

(Cf. Huang & Vernizzi 13, Su & Lim 14, Fidler, Koyama, & Pettinari 14)

Mapping formula

The gravitational effects can be extracted as, after expanding $\mathcal{Q}=\mathcal{Q}_0+\delta\mathcal{Q}$,

$$\delta f(\eta_0, \mathbf{x}_0, q_0, \mathbf{n}_0) = \int_0^{\eta_0} \mathrm{d}\eta' \left[\mathfrak{S}(\eta', \underline{\mathbf{x}(\eta'), q(\eta'), \mathbf{n}(\eta')}) - \mathfrak{S}(\eta', \underline{\bar{\mathbf{x}}(\eta'), \bar{q}(\eta'), \bar{\mathbf{n}}(\eta')}) \right]$$
Perturbed Background

$$= \int_0^{\eta_0} d\eta' \left[\frac{\partial \mathfrak{S}}{\partial q} \, \delta q(\eta') + \frac{\partial \mathfrak{S}}{\partial x^i} \, \delta x^i(\eta') + \frac{\partial \mathfrak{S}}{\partial n^i} \, \delta n^i(\eta') + \frac{1}{2} \frac{\partial^2 \mathfrak{S}}{\partial q^2} \, \delta q(\eta')^2 + \cdots \right]$$

 $(\delta \mathbf{x}, \delta q, \delta \mathbf{n})$ are written in terms of the line-of-sight integral of the gravitational potentials.

The distribution function can be estimated from the source function and the gravitational potentials [still a finite number of functions].

(This property is satisfied at all orders)

Deviations in geodesics

 \checkmark The deviations in a geodesic $(\delta \mathbf{x}, \delta q, \delta \mathbf{n})$ can be evaluated by solving the geodesic eqs. with $(\delta \mathbf{x}, \delta q, \delta \mathbf{n}) = (\mathbf{0}, 0, \mathbf{0})$ at $\eta = \eta_0$

Displacement & Deflection

• Displacement & Deflection
$$\delta x^i(\eta') = -\int_{\eta'}^{\eta_0} \mathrm{d}\eta_1 \left[D^i(\eta_1, \bar{x}^i, \bar{n}^{(i)}) - (\eta_1 - \eta') D^{n^{(i)}}(\eta_1, \bar{x}^i, \bar{n}^{(i)}) \right]$$

$$\delta n^{(i)}(\eta') = -\int_{\eta'}^{\eta_0} \mathrm{d}\eta_1 D^{n^{(i)}}(\eta_1, \bar{x}^i, \bar{n}^{(i)})$$

$$D^{n^{(i)}}(\eta, \mathbf{x}, \mathbf{n}) \equiv (\Psi - \Phi) n^i,$$

$$D^{n^{(i)}}(\eta, \mathbf{x}, \mathbf{n}) \equiv -\nabla_{\perp}^i (\Psi - \Phi)$$
 • Redshift
$$\delta \ln \alpha \text{ in terms of the Brayitational potentials.}$$

$$\delta \ln \alpha \text{ in terms of the Brayitational potentials.}$$

$$D^{n^{(i)}}(\eta, \mathbf{x}, \mathbf{n}) \equiv -\nabla_{\perp}^i (\Psi - \Phi)$$
 • Redshift
$$\delta \ln \alpha \text{ in terms of the Brayitational potentials.}$$

$$D^{n^{(i)}}(\eta, \mathbf{x}, \mathbf{n}) \equiv -\nabla_{\perp}^i (\Psi - \Phi)$$
 • Redshift
$$\delta \ln \alpha \text{ in terms of the Brayitational potentials.}$$

$$\delta \ln \alpha \text{ in terms of the Brayitational potentials.}$$

$$D^{n^{(i)}}(\eta, \mathbf{x}, \mathbf{n}) \equiv -\nabla_{\perp}^i (\Psi - \Phi)$$
 • Redshift
$$\delta \ln \alpha \text{ in terms of the Brayitational potentials.}$$

$$\delta \ln \alpha \text{ in terms of the Brayitational potentials.}$$

$$D^{n^{(i)}}(\eta, \mathbf{x}, \mathbf{n}) \equiv -\nabla_{\perp}^i (\Psi - \Phi)$$
 • Redshift
$$\Delta \ln \alpha \text{ in terms of the Brayitational potentials.}$$

$$\delta \ln \alpha \text{ in terms of the Brayitational potentials.}$$
 • Sachs-Wolfe effect

$$\frac{\delta \ln \alpha'}{\text{are written}} = \frac{\delta \ln \alpha'}{-\delta x(\eta') \partial_i D^{\text{SW}}(\eta', \bar{\mathbf{x}}) + \delta x^i(\eta_1) \partial_i D^{\text{ISW}}}{-\delta x^i(\eta_1) \partial_i D^{\text{ISW}}}$$

$$D^{
m SW}(\eta,{f x})\equiv \Psi,$$
 Sachs-Wolfe effect $D^{
m ISW}(\eta,{f x})\equiv (\Psi-\Phi)^{\cdot}$ Integrated Sachs-Wolfe effect (Rees-Sciama effect)

Geometrical meanings

 $\delta \mathbf{x}$: Lensing + Time delay

$$\int_{0}^{\eta_{0}} d\eta' \left[\mathfrak{S} + \frac{\partial \mathfrak{S}}{\partial q} \, \delta q(\eta') + \frac{\partial \mathfrak{S}}{\partial x^{i}} \, \delta x^{i}(\eta') + \frac{\partial \mathfrak{S}}{\partial n^{i}} \, \delta n^{i}(\eta') + \frac{1}{2} \frac{\partial^{2} \mathfrak{S}}{\partial q^{2}} \, \delta q(\eta')^{2} + \cdots \right]$$

Each term represents the contributions from...

I : Intrinsic (non-gravitational)

II: Redshift + Source × Redshift + Redshift × Displacements

e.g. Rees-Sciama effect Sachs-Wolfe effect + Integrated Sachs-Wolfe effect

IV : Source × Deflections

V : Redshift × Redshift

All possible second-order effects are included.

Line-of-sight formula at second order

✓ Let us pick up a term, the source × lensing term, for example.

$$\delta f \supset \int_0^{\eta_0} d\eta' \frac{\partial \mathfrak{S}}{\partial x^i} \, \delta x_{\perp}^i(\eta') = \int \frac{d^3 k_1}{(2\pi)^3} \int_0^{\eta_0} d\eta' \, k_1^i \, \mathfrak{S}^{(1st)}(\eta', \mathbf{k}_1) \, T_i(\eta', \mathbf{k}_1)$$

where

$$T_i(\eta, \mathbf{k}) \equiv \int \frac{\mathrm{d}^3 k'}{(2\pi)^3} \int_{\eta}^{\eta_0} \mathrm{d}\eta' k'_{\perp i}(\eta' - \eta) (\Psi - \Phi) e^{i[\mathbf{k}(\eta_0 - \eta) + \mathbf{k}'(\eta_0 - \eta')] \cdot \mathbf{n}_O}$$

- ✓ The effect of the propagation (geometrical effect) is separated as the term T_i.
- ✓ The geometrical term is no longer a known function (\neq Bessel function), but it is written in terms of the linear gravitational potentials (Φ and Ψ), which depends on $\mathbf{n_0}$ (or multi-pole) through a known function.

It is *not* necessary to solve coupled differential eqs for an infinite # of functions.

Computation of bi-spectrum (technical)

The computation of the bispectrum is simplified.

Angle-averaged bispectrum (Lensing \times 1st order \times 1st order):

$$B_{l_1 l_2 l_3}[\Delta] = \sqrt{\frac{(2l_1 + 1)(2l_2 + 1)(2l_3 + 1)}{4\pi}} \begin{pmatrix} l_1 & l_2 & l_3 \\ 1 & -1 & 0 \end{pmatrix} b_{l_1 l_2 l_3}[\Delta] + 2 \text{ sym.}$$

with

$$b_{l_1 l_2 l_3} = 2[1 + (-1)^{l_1 + l_2 + l_3}] \int_0^{\eta_0} d\eta' b_{l_1}^S(\eta') b_{l_2}^T(\eta')$$

where

$$b_{l_1}^S(\eta') = \frac{2}{\pi} \sqrt{\frac{l_1(l_1+1)}{2}} \int k_1^2 dk_1 P_{\phi}(k_1) \mathcal{T}_{l_1}^{(I)}(k_1) \frac{S\left(\eta', k_1, \frac{i}{k_1} \frac{d}{d\eta'}\right)}{k_1(\eta_0 - \eta')}} j_{l_1} \left[k_1(\eta_0 - \eta')\right]$$

Power spectrum First-order transfer function

$$b_{l_2}^T(\eta') = \frac{2}{\pi} \sqrt{\frac{l_2(l_2+1)}{2}} \int k_2^2 dk_2 P_{\phi}(k_2) \mathcal{T}_{l_2}^{(I)}(k_2) \int_{\eta'}^{\eta_0} d\eta_1 \frac{\eta_1 - \eta'}{\eta_0 - \eta_1} (\Psi_{k_2}^{(I)} - \Phi_{k_2}^{(I)}) j_{l_2} \left[k_2(\eta_0 - \eta_1) \right]$$

Its multi-pole dependence is simple.

$$\propto (\eta_0 - \eta')\psi_{l_2}(\eta', k_2)$$

Lensing potential

Summary +

- ✓ We have derived Geodesic curve-of-sight formulae, which determines an infinite number of multi-pole moments of distribution function from a finite number of functions.
- ✓ These formulae enable us to treat all non-linear gravitational effects on the same footing (redshift, time delay, lensing and deflection) making clear the geometrical meaning of each contribution.
- ✓ They will reduce the computational cost of non-linear CMB calculations.
- ✓ Extensions to the spectral distorsion & polarization.
- ✓ The current status of our numerical code -> Hiramatsu-san's talk.