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Geodesic “curve”-of-sight formulae
for the cosmic microwave background

A unified treatment of redshift, time delay and lensing

Atsushi NARUKO (APC -> TITECH )

with R. Saito (APC), T. Hiramatsu, M. Sasaki (YITP)

based on arXiv : 1409.2464 today !!
an alternative approach - 1409.2461 by C. Fidler, K. Koyama, G. W. Pettinari

(see also 1304.6929 by AN, C.Pitrou, KK, MS)



Cosmic Microwave Background (CMB)

The CMB can probe the history of the Universe:

Inflation, thermal history of the early Universe, dark components, ...

Dark matter/energy

Inflation
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| Hot plasma F

CMB photons

Recent precise measurements @) Accurate tool (beyond linear order)
(WMAP, PLANCK ...) (Kinetic theory, Cosmological Perturbation Theory)

Second-order calculation of the CMB

...., [Pitrou], [Huang & Vernizzi], [Portsmouth group], [Cambridge group],
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Difficulty in solving the Boltzmann eq. (at 15t order)

To know the intensity of CMB photons at the present time ...
— solve a 7D differential equation, Boltzmann equation,

)f<n,x,q,n>=¢[f1

direction [2 & 3]
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(comoving) momentum (energy)

@ 4 (energy)—dependence

-- well parameterized by a single parameter: temperature (or brightness, [\ )

x — dependence (or | k|-dependence in Fourier space)

-- Fourier mode evolves independently at linear order

@® n-dependence (or ell-dependence after multi-pole expansion)

-- Multi-pole moments couple with each other == most problematic !!



huge number of coupled differential egs...
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— In Fourier space, after the multi-pole expansion :
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... Toknow A, you need to know A,; and A ;. To know A, ;, you need to know

need to solve coupled differential equations for a huge number of (n, x)-functions A|m



Line-of-sight integration method (1% order)
[Seljak & Zalddariaga 96]

v’ Line-of-sight integration method
(integrating along a photon geodesic # time-const line)
which can reduce the computational cost very much !!!

v The brightness eq. in an integral form along a photon geodesic,
= Jv (77/) : visibility function
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at (n',2'(n'), 0" (1))
[» fluctuations are evaluated at a point on a BG. geodesic (straight line),

#(n) = zb + nd’ (n — no)

() = ng straight line




| line-of-sight formula |
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* Thomson collision term

2
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* SW/ISW term
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v’ Infinite # of A, are determined only by 6 functions: ®, W, A, A, E,q, V..

v Information of the observed higher-order multi-pole moments are
encoded in the known function, exp[ikn,(n’-n,)] .
(the spherical Bessel function j[kn,(n’-n,)] after the multi-pole expansion.)

It is not necessary to solve coupled differential equations for a huge number of functions A|m.




Intuitive picture

Sources [ monopole |

Higher multi-pole moments are
generated during

—> essential task is to solve the geodesic eq.

—> don’t have to solve the Boltzmann eq. !!




Extension to higher orders

v" At non-linear order,
the CMB photons propagate through the perturbed spacetime.

= various (non-linear) effects will be expected (time delay, lensing, redshift ...)
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Standard approach -> Remapping: Ojo50q(0) = Ounlensed (0 + 960)
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extend the LOS formula including
various non-linear gravitational effects
such as redshift, time delay, lensing ???

T = TILSS n="To



Geodesic “curve”-of-sight formulae

-- A unified treatment of redshift, time delay and lensing --



Liouville’s theorem

2 Liouville’s theorem states that
the distribution function along geodesics is conserved,
even when the geodesics are curved by the metric perturbations

f(1n0,%0,¢,n0) = f(NLSS, XLSS, LSS, NLSS)

A photon geodesic

| (xLss, qLss, NLSS)
LSS : 1 = 7TLSS

v’ The observed fluctuations = the projection of fluctuations on the LSS !!!

— the projection should be done along the perturbed geodesics.
(curved photon trajectories)



Intuitive picture (with the gravitational effects)

The projection should be done along

A geodesic is governed by
gravitational perturbations.

Additionally, information on the
evolution of ® and W is necessary.

Again, it is not necessary to solve coupled differential equations for a huge number of functions.




New approach to the gravitational effects

v’ We rewrite the Boltzmann equation
in an integral form along a perturbed geodesic,

10
£ (no, X0, qo, ) = /O dn'go(M)f — Clas (7 x(m').am’)n(n'))

=S a point on a perturbed geodesic

v" The gravitational effects appear as deviations in the mapping
between the phase-space coordinates of the observer and sources.

- Generalization of the remapping approach to CMB lensing

(No approximation and it includes all gravitational effects)

(Cf. Huang & Vernizzi 13, Su & Lim 14, Fidler, Koyama, & Pettinari 14 )




Mapping formula

The gravitational effects can be extracted as, after expanding Q = Qg + 69,

0.f (10, %0, o, Ng) = /Ono dn’ [&(n',x(n"),q(n"),n(n")) — &', x(n"),q(n"), n(n"))]

Perturbed Background

96 96 06 1026 .,
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(5X, 0q, 5n) are written in terms of the line-of-sight integral of the gravitational potentials.

The distribution function can be estimated from the source function 6 and
the gravitational potentials [still a of functions ].

(This property is satisfied at all orders)




Deviations in geodesics

v’ The deviations in a geodesic (6%, d¢, on) can be evaluated
by solving the geodesic eqs. with (§x, iq, dn) = (0,0,0) at n = g

e Displacement & Deflection
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Redshift

D3W(n,x) =0, Sachs-Wolfe effect

DISW(n, x) = (V- d) Integrated Sachs-Wolfe effect (Rees-Sciama effect)



Geometrical meanings

on: in the last scattering surface

X : Lensing + Time delay
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Each term represents the contributions from...

| : Intrinsic (non-gravitational)

Il : Redshift + Source x Redshift + Redshift x Displacements
e.g. Rees-Sciama effect Sachs-Wolfe effect + Integrated Sachs-Wolfe effect

Il : Source x Displacements
= Lensing + Time delay

IV : Source x

V : Redshift x Redshift

All possible second-order effects are included.




Line-of-sight formula at second order

v’ Let us pick up a term, the source x lensing term, for example.
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v’ The effect of the propagation (geometrical effect) is separated as the term T..

v’ The geometrical term is no longer a known function (# Bessel function),
but it is written in terms of the linear gravitational potentials (© and ¥),
which depends on n, (or multi-pole) through a known function.

It is not necessary to solve coupled differential eqs for an infinite # of functions.




Computation of bi-spectrum (technical)

The computation of the bispectrum is simplified.

Angle-averaged bispectrum (Lensing x 15t order x 1%t order):
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Lensing potential



Summary +

v' We have derived Geodesic curve-of-sight formulae, which determines
an infinite number of multi-pole moments of distribution function
from a finite number of functions.

v’ These formulae enable us to treat all non-linear gravitational effects
on the same footing (redshift, time delay, lensing and deflection)
making clear the geometrical meaning of each contribution.

v’ They will reduce the computational cost of non-linear CMB calculations.

v’ Extensions to the spectral distorsion & polarization.

v’ The current status of our numerical code -> Hiramatsu-san’s talk.



