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The Copernican Principle:

We are not living at a special position in the universe.

The Copernican Principle & Observed isotropy of CMB
= homogeneous and isotropic FLRW universe model

e Fundamental working hypothesis in modern cosmology
e Technological developments may enable us to test the CP
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Effects of the inhomogeneity to observations

The non-Copernican cosmological model
Observed isotropy = isotropic (radial) inhomogeneity

* An alternative model to dark energy Tomita(1999), Célérier(1999), - --
Iy =0.692+0.010 £ 7= 07

e Effects to the energy condition
dark energy & inhomogeneity Valkenburg, Kunz, Marra(2013)

Q) = 0.692,w = % = —1.137013 + 2

It is an essential task in modern precision cosmology to
eliminate these systematic errors.
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A huge void universe model

L

The non-Copernican model
We live close to a center of a huge void
horizon-scale, highly nonlinear
Observational tests of the void model
v SN la distance-redshift relation
v' CMB acoustic peaks
Va- . .

v’ The large-scale structures
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The Cosmological Newtonian system
Well developed nonlinear structures; galaxies, clusters.

The Cosmological Newtonian system in the FLRW model:
1. the length scale of the system is much less than the horizon;

In <K H1

2. the relative velocities are much less than the speed of light
and the energy densities much larger than the stresses;

on| e, p<Lp

3. the self-gravity of the system is not negligible but very weak;

Py| < 1 -



The Newtonian system in the void model

The Newtonian system in the void model:

1. the length scale of the system is much less than the
spacetime curvature radius of the background model;

In <R

2. |on| Ke, p<Kp
3. [dn| K1

In the case of the huge void model, the size of the void is the
same order as the cosmological horizon.

Zlvohﬂ ~ 112_1 ~ R
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Overview of our approximation scheme

The system of our interest:

A huge void + Newtonian perturbations (galaxies, clusters, etc.).

We introduce small parameters:
I N I X
; pot =7
Then, we derive basic equations for the Newtonian system in the
void model as follows.

1. We treat the background void universe model in the system
in a perturbative manner by using k.

2. We add the Newtonian perturbations to the void model, and
expand them by using € and k.
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The Fermi-normal coordinates

The curvature is almost spatially
constant within the system.

4

We treat the background model in a
perturbative manner by using the
Fermi-normal coordinates.
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The Fermi-normal coordinates

timelike geodesic

e

’ -
Fermi frame

From Baldauf et al. JCAP 1110, 031 (2011)
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Lemaitre-Tolman-Bondi(LTB) spacetimes
the void universe model (dust, spherical) = LTB spacetimes

metric & stress energy tensor

d 12

ds®> = —dt’2—|—aﬁ(t’,fr')1 ;( g + a2 (', r")r'*(d’* 4 sin® 0'd¢’?),
— k(r

™™ = o, e ut = (1,0,0,0).

e The isometries in LTB are less than those in FLRW

Radial-Hubble & Transverse-Hubble
|

H)(t,") = Hy(#,r') = %2

CLH ’ a|
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The Fermi-normal coordinates in the void model

the Fermi-normal coordinates x#* = (xo,xi)

metric g,, = —1— Rypjz'2! +0O (l]?)
2 . :
Joi = _gROjik:xjxk + 0 (|=]*),
1 -
gij; = 57;3' — ng’kﬂ.’L’kxl + O (‘LE|3) y
A~ Q:f ! ! 5! _
where Ry,,0(2") = e(#)eé)eyp)e(g) R@’6’7’5’|v =0 (R 2) )

v the origin;x! =0 (1,0, ¢") = (+,),6,, d,")
v In the domain of our interest, || = O(¢n) < R

We can write the metricas g, = 17,, +* h},, + O(x?).
N
h = =,
whnere K R
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The Fermi-normal coordinates in the void model

the energy density

z!' + O (k°pB) ,

Y

p(@") = pp(a®)+~

1_]{3(?",) Vgl ]
(8;.«!R(i’,?“’) ) 87”'10 (t T )]

where  pp(2°) := pr(t, )|, -

v

/

the 4‘Ve|0City timelike geodesic
u (") = 1 —|—O(Iﬁ22),
u'(zh) = "len (z°)z! + O(r?), -
"U,Q(ZCM) = K,HB(.’L‘ ).CC —I—O(fﬁg)’ Fermi frame
w(zh) = rHp(2")2® + O(k?),

Hp (%) = Ht',")|,,

(330) = HJ_(t’,?’")L}/ ]
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The background equations in the Newtonian system

At the leading order of k, we have the following relation:

g

OopB + 0, (;0]3’0%) = 0.
D 60’0%3 + ’U%@j’UE = —0;Pp.
Vibp = 41 pg.
L u
where  ®p(at) := —=hgy(z#).

2

e The tidal force produced by the void causes the anisotropic
volume expansion.

e The radial inhomogeneities of the energy density and the
volume expansion do not appear at the leading order.
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A huge void + Newtonian perturbations

G = N + K hyy, + O(K®) + Ry,

p = pB+O(kpB)+ pN

vt = kvl + O(K?) + vk
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Ordering of the magnitude of perturbations

There are two time-scales in the system;

R 14
T:=2= and ty:i= —.
C UN

By their definition, we have

T € x| N

— . Where €e:=——, K:=—.
c
K

tn
For the Newtonian perturbation ¥, we have

YN

OxY

= 9

\

( O(e %Z’T?) for e>r (T > tn),

O(ﬁ; %iN) for e <k (T < tn),

19/33



Classifying into three cases; € > k, € ~ k,€ K K

v 14
where € := |cN|’ K= %
Examples of those three cases:
* EDK
The solar system; € ~ 1074 >» x ~ 1071°
* €K

the cluster of galaxies; € ~ k ~ 1073

* KK
the BAO; € =~ 1073 K k =~ 1072
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In the case of € > Kk

Basic equations governing the Newtonian perturbations at the
leading order:

dopx + 0i (pnvy) = 0,
801;& + /UJNaj’qu — —6’Z<I>N,
VQ(I)N — 471',01\1.

where @y := —hy/2

e The effects of the background void model do not appear up to
the leading order.
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In the case of € =~ Kk

Basic equations at the leading order:

dopN + 0; (PN’Uf\I) + 0 (PN’UE) + 0; (PBU@ = 0,
Aol + vl 00k + v dvh + U];@ vy = —0'®y,
V (I)N — 47TpN.

e The effects of the background void model appear through pg
and vj.
e Non-linear terms of the Newtonian perturbations exist, and

the equations may be studied by the N-body numerical
simulations.
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In the case of € K Kk

Basic equations at the leading order:

dopn + 0; (PN’{J%) + 0; (;QBUf\T) = 0,
dovy + v 0vp + vpojuy = —0'Py,
V2<I>N = 47TpN.

e The effects of the background void model appear through pg
and v5.

 Non-linear terms of the Newtonian perturbations do not exist,
and we can easily solve the equations numerically.

e We call the system the Newtonian linear perturbations.
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rewriting the basic equations

expansion, shear, vorticity :
1
3

0jv; = 5005 + 0(ijy + Wiy

The Lagrangian coordinates g# for the background :

0 ; 0
_ — 80 —+ U‘}Ba} and 8(]%

50 = 9.

The Fourier transform for perturbations :

0 i dk ikiq’ 5 0 1.0
5N(q 7q ) — (27{_)3/28 I 5N(q 3k )
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The Newtonian linear perturbations

o = e
%(201\1 = _geBéh 264 §F B 0 33—4’;’1',013(51\7,
Z’if = —%@Béﬁ—gémﬁ- 2(5“%;}1 35,,.J5“5W* mag;)
+ (kikj—%k%ij)&m,
%i? = —%(—)B +25“UH 1\]1
—k2®y = 4mppdn,

» The ordinary differential equations with respect to g°.
e Fourier modes are decoupled with the other modes.

We note that linear perturbation equations in LTB cannot be
reduced to a decoupled set of ordinary differential equations.
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Evolution of density contrast

OON .

- — —0O

qu N

5Oy . ,., )

5q0 = _§®B®N — 60]3(711\2 — 47TpB5N,

o5\ 4 2 i 1Y -
8(]101 — —gJB@N — §®BalN1 — 20’30?1 — 4’1Tp]3 (uz — g) 5N-,~

1

where @B(azo) = HF(ZO) + QHE@?OL UB(GUO) 3

o= kl/k

HP () - HE ("),

Due to the existence of the background shear, the density
contrast couples with the shear perturbations.
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The growth factor

The growth factor depends on the direction of the wave vector
and the radial position of the system.

On(q° k%) = D(q° p;ry)o(k").

where =k /k
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a huge void model

The energy density & Hubble functions

24, . . . 1.0f
2.2l R _
: p(ty, 1) 09l
2.0l . ] &
p(fo. 0)
18} :
0.8
18} :
14} : 0 ?5 H(ty, 1)
1.2} | [ Hj (1, 0)
1.0k ' ' ' . 0 [ L L L
0.0 05 1.0 15 20 85 05 0 7 o0
!/ /
r / ty "“'/ tf)

Qin — 0.3, Qo =1.0
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Growth factors D(q°, u,7,") atr,’ = 0.6 t;
g

~ 10

The anisotropy of the growth factor is about 10 % at the present

time.

108}

1,06}
1.{]4}
1,{12'j

100 k=
0.0

D(q°, 1: 0.6 1)

D(q", 0:0.61¢,)
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Evolution of density contrast in the void model
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Summary

We derived the basic equations of the Newtonian system in
the huge void model.

We solved the linear Newtonian perturbations, and showed
that the growth of perturbations in the void model
significantly differ from that in the FLRW.

Future work

Comparing with observational results on the Redshift Space
Distortions. P,(u) with = 0,2,4,6, ---

N-body numerical simulation in the huge void model.
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Thank you for your attention.
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