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motivation

cosmic structure on very largest scales
provides window onto the primordial
density perturbation and hence models of
very early universe

primordial (non-) Gaussianity from inflation

can we trust Newtonian solutions for
large-scale structure formation on the
largest scales?



Newtonian ACDM cosmology

homogeneous (FRW) background (Milne, 1930s)

same evolution+continuity equations for matter density, p

+ Friedmann constraint:
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interpret GR spatial curvature = Newtonian energy

note: cosmological constant A = constant vacuum density



Standard Newtonian+Gaussian universe

Gaussian metric perturbation {(x) on large scales from
single-field, slow-roll inflation

@ Gaussian Newtonian potential @=(3/5){ on large
scales using linear perturbation theory

@ Gaussian initial matter density ¢ using
Poisson equation V® = 47Gdp

@ Newtonian N-body simulations /& e




Primordial Gaussianity from inflation

* Quantum field fluctuations during inflation
— ground state of simple harmonic oscillator
— almost free field in almost de Sitter space
— almost scale-invariant and almost Gaussian
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Planck2013 - ACDM model of primordial cosmology
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Primordial non-Gaussianity from inflation

Starobinsky 85; Salopek & Bond 90; Sasaki & Stewart 96; Lyth & Rodriguez 05
* Power spectra probe background dynamics (H, g, ...)

<§k1§k2>=(2”)3%(k)53(k1"‘kz) ALY S

— 2-pt function contains all the information in a Gaussian random field
— Strong evidence now for deviations from scale-invariance: n-1 = -0.04
— First detection of primordial gravitational waves claimed by BICEP2: r = 0.2

* Higher-order correlations probe interactions
<§klék2§k3> = (2”)335 (k19k2>k3)(53<k1 +k, +k3)

— physics+gravity = non-linearity = non-Gaussianity

David Wands 7



more information in higher-order correlators...
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Second-order relativistic calculations of Einstein-Boltzmann equatior
via SONG, etc, see talks by Koyama, Naruko and Hiramatsu
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Millenium simulation

Large scale structure

Galaxy distribution on large scales:
on
— g
Og(x,t) =

biased tracer of underlying matter
dark matter + baryons):

om Bledi Vi

Assume galaxies form in matter overdensities (halos)
that have collapsed under their own gravity

0g(,t) = by(t) Om(z, 1)

g




Spherical collapse model

GR dynamics = Newtonian 4 a
IN comoving-synchronous gauge
a .
a
>
linear — 1 6
exterior: ds” =-dt’ +a’dQ;
interior: ds” =-dt’ +a’dQ;,, t>
collapse



Spherical collapse model

exact parametric solution for spherical collapse
works same in Newtonian gravity and in GR

small-scale collapse of peaks when linear density contrast exceeds
threshold: 6., > 0. =1.6

6m A
S IS SN 5.




Peak-background split /w%\%/\/

5m — 5sh0rt + 5l0ng
large-scale fluctuations ¢,,,, raise local background density

small-scale collapse of peaks where linear density contrast exceeds
threshold: o, > 6. =1.6

6m A
S IS SN 5.




Peak-background split /%\%/\/

5m — 5sh0rt + 5l0ng

large-scale fluctuations §,,,, raise local background density

small-scale collapse of peaks where linear density contrast exceeds
threshold: 6., > 0. =1.6

6m A

Vv

£
=

e large-scale modes lower effective threshold for collapse
e enhancing number of peaks above threshold
linear bias: §,= b 0,

b — b, = constant on large scales for a Gaussian density



Scale-dependent bias from non-Gaussianity

Dalal et al, arXiv:0710.4560
Local model of non-Gaussianity:

D(x) = 4, (1) + S " ()~ (9,7

peak-background (small-scale — large-scale) split:
D (x) = §,(x) + $(x)
= 2WE+ 2/ > ()

)+ 47 (0 - (4 —<¢f>)
* large-scale modes add to local background density + 5,0ng

and modulate amplitude on small scales x f,, ¢,




Scale-dependent bias from non-Gaussianity

Dalal et al, arXiv:0710.4560
Local model of non-Gaussianity:

D(x) = 4, (1) + S " ()~ (9,7
peak-background (small-scale — large-scale) split:
D (x) = §,(x) + $(x)
= 2WE+ 2/ > ()
a0 - (07)-(87)

* large-scale modes enhance power on small scales « f,, ¢,
* relate potential to density via Poisson equation:

VO =471G, o = ¢l=%(ﬂ) S,

3\ k

aH

2
b—bg+2fNL (7) (bG — 1)I

= scale-dependent bias:
diverges on large scales




fy, constraints from galaxy power spectra
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Future constraints:

ESA Euclid satellite (amendola et al)
|fN|_| <93

SKA (Square Km Array) (santos et aj)
fyl <017

Data used

with priors on by, «,

Giannantonio et al,
arXiv:1303.1349
-36 < fNL < +45 (conservative 95% c.l.)
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Galaxy bias in General Relativity?

peak-background split in GR

» small-scale (R<<H-") peak collapse
o described by Newtonian gravity

> large-scale background needs GR (R=H")
o density perturbation is gauge dependent

t=>t+d&, 0,—>0,=0,+3Hd&, O, —0,=0,+3Hd

=> bias is a gauge-dependent quantity
6, =bo, = 0,=hb0,-3H(b-1)o



FRW cosmology

X

no unique choice of time (slicing) and space coordinates (threading)
in an inhomogeneous universe

t n
f _ FRW cosmology
+ perturbations




What is correct gauge to define bias?

peak-background split works in GR with right variables
(Wands & Slosar, 2009; Bruni, Crittenden, Koyama, Maartens, Pitrou & Wands 2011)

»Newtonian potential = GR longitudinal gauge metric: d =y

»GR Poisson equation:
relates Newtonian potential to density perturbation in comoving-
synchronous gauge: 5 © 2(6!1{ )2(1)

" 3

k
»GR spherical collapse:

local collapse criterion applies to density perturbation in
comoving-synchronous gauge: 6, @ > 6.~=1.6

=>local bias defined in the comoving-synchronous gauge
() _ (c)
6, =hd,

see also Baldauf, Seljak, Senatore & Zaldarriaga, arXiv:1106.5507



Galaxy power spectrum at z="1

Bruni, Crittenden, Koyama, Maartens, Pitrou & Wands, arXiv:1106.3999
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Non-linear equations in GR

Bruni, Hidalgo, Meures & Wands (2013); Bruni, Hidalgo & Wands (2014)

Matter density, p, expansion, ©, and shear, o, for irrotational flow in ACDM
« evolution equations in comoving-synchronous gauge [Ellis, 1971]

p+0O0p=0
v, Lo 2
@+§@ +20° +4nGp— A =0

coincides with Newtownian equations

« constraint relates density and expansion to spatial curvature, ®)R

%@2 —20% + B R =167Gp + 2A

only reduces to Poission equation A® ~ R ~ dp at linear order



Schematic second-order solutions in GR

Tomita (1975)... Bartolo, Matarrese and Riotto (2005); Bruni, Hidalgo, Meures & Wands (2013)

Matter density contrast, 0, obeys second-order differential equation:

 first-order linearly growing mode: L{(S(l)} —0

= 5 = 01 (B) D (t)

constraint : Cq ~ V2C1

 second-order:

L{6®} = Q{(6™)*}
= 0 = Co(Z) Dy (t) + Po(¥) Doy (t, T)
constraint : Co ~ V2C2 + C1V2C1 + (VC1)2

particular solution: P,(x)~(C,(x))?, is the usual “Newtonian” solution
« homogeneous solution: C,(x), set by primordial non-Gaussianity and
intrinsic non-linear GR constraint




What are the non-linear initial conditions in GR?

Bruni, Hidalgo & Wands (2014)

Matter density, p, and expansion, ©, in ACDM
* GR constraint relates density and expansion to spatial curvature

2
5@2 —20% + B R =167Gp + 2A

Non-linear perturbations about FRW: O(t, xi) = 3H(t) + 0(t, :ci) :
p(t,x") = p(t) [1+6(t, z")]
At early times use large-scale limit — gradient expansion
§~O~o~BR~V?
 GR constraint becomes

B)R
— + HO=47Gpo + OV

Spatial curvature is a non-linear function of the metric perturbation



Non-linear density from Gaussian {(x)
Spatial metric on large scales is conformally flat:
ds® = —dt® + a*(t)e** ") 6 da” da?
hence simple non-linear form for spatial (Ricci) curvature, R = ®)Ra2:
_ 2 2
R = exp(—2()[-4V7¢ — 2(V()7]
determines amplitude of growing mode / large-scale density perturbations

Om X R(x)Dy(t)



Non-Gaussian structure from Gaussian ((x)

Peak-background split: C — CS + C ,

Long-wavelength mode modulates spatial curvature (rescales background)
R = exp(—2¢¢)Rs + O(V ()
and hence growing mode / large-scale density perturbation:

Om = exp(—2(y)ds + O(V{y)

URAVAARY

large scale ¢, modulates smaller scale o,



Compare GR curvature R(x) and non-Gaussian ®(x)

GR density perturbations from Gaussian {(x)

Om = exp(—2(z)0s + CE(VQ)
= (1 —2¢ + 2¢} — gCeB +...)0s + O(V(y)

Newtonian density perturbations from non-Gaussian @(x)

Om = (1 +2fN1rde + 3gnL07 + 4hnr o) + .. )0s + O(Vy)

compare term by term using linear relation:

Pe = (3/5)Ce

Einstein’s signature Iin large-scale structure:

GR
NL
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Bartolo et al: Verde & Matarrese;
Bruni, Hidalgo & Wands (2014)



alternative viewpoints:

“even to the second order perturbations, equations for
the relativistic irrotational flow... coincide exactly with
the previously known Newtonian equations”

Hwang & Noh gr-qc/0412128

fluid flow evolution are same

but there are non-linear constraints in GR

there is no simple Poisson equation relating density to metric potential
beyond first order

GR corrections to non-linear growing mode at second- and higher-order
from a given primordial metric perturbation, , e.g. from inflation



alternative viewpoint;

“synchronous gauge is an inappropriate coordinate
choice when handling the growth of the large-scale
structure” Hwang et al, arXiv:1408.4656

comoving-synchronous gauge ( v = 0 ) = Newtonian Lagrangian frame
total matter ( v, # 0 ) = Newtonian Eulerian frame

both have time-slicing orthogonal to matter 4-velocity, hence same density at
first order

frame-dependent density at second order (exactly as in Newtonian theory)
2 .
52 =52 —2p,6) / O'vp dr

Bruni, Hidalgo, Meures & Wands, arXiv:1307.1478
local Eulerian bias # local Lagrangian bias Matsubara, arXiv:1102.4619



¢ FRW cosmology
u = matter 4-velocity
equals
n = constant spatial
coordinates

X

time-slicing orthogonal to matter 4-velocity
but alternative choices of spatial coordinates (“threading”)

r n

LA

x  conformal
(Eulerian)
spatial coordinates



Conclusions

Large-scale structure probes primordial density
perturbation and hence the very early universe
primordial non-Gaussianity can give rise to scale-dependent bias
future LSS observations might detect f,,=0(0.1)?
Newtonian cosmology works remarkably well in ACDM
but requires care for correct interpretation within GR
Galaxy bias is a gauge-dependent quantity
use comoving-synchronous gauge for local Lagrangian bias in GR
GR vs Newtonian growth of structure
non-linear constraints in GR -> non-Gaussian initial density

observations also introduce non-linearities (e.g., lensing)
observables are independent of gauge (but calculations are not)

GR initial conditions give intrinsic non-Gaussianity
for=-5/3, gny=-50/3, hy, =-125/81...



