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Introduction

Though observations indicate the existence of a graviton,

we still know few about its features. . . _
does it have its mass? how many species?

Suppose there are two (or more) gravitons,

in order to realize 1/r gravitational force
— at least, one of them is sufficiently light.

* Two interacting massless gravitons can not exist.

- A massless graviton and a massive graviton can exist.

The theory including two gravitons ( = a massless graviton and a massive graviton)

—_— We can realize such a theory with two metrics
interacting each other.



Bimetric grav1ty (de Rham et. al., 2011, Hassan and Rosen, 2012)

g - Physical metric
two metrics ~

Jus : the other metric

In order that the theory has stable solutions,
the form of the interaction terms are determined.
(with five theoretical parameters)
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Bimetric action

S = Ag/d“x\/_R[g,w]

kinetic terms of physical metric
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kinetic terms of the other metric interaction terms of the metrics
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Constraints in Bimetric gravity

* the first class constraints

The general coordinate invariance 1s kept only 1f the
metrics are simultaneously transformed.

— 4 constraints ~
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 the second class constraints

The form of the interaction terms produces a primary
constraint and the time derivative gives a secondary
constraint.

— 2 constraints



Inflation 1n bimetric gravity

e ™
If the other metric exists,
will anything go well? do some problems arise?

- How are the effects on observations? )

For example, about inflation

o Can we construct inflating solutions with a

inflaton as in the case of GR? == Yes, we can.

. One branch of
® Are they stable solutions? " he solutions is

guaranteed to
What is the feature of the gravitational waves be stable. (YSetal2013)
generated during inflation?
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Outline

(1) We include a inflaton

and construct homogeneous isotropic inflating solutions.

(2) We impose slow-roll approximation.

(We consider up to the first order of the slow-roll parameter.)

(3) We calculate tensor perturbations

on the homogeneous 1sotropic solutions.



Bimetric gravity + inflaton

S = Agz / d'z/—gR[gu] + / d4x\/—_g(—%9“”6‘u¢8u¢—V[¢])

kinetic terms of physical metric scalar field (inflaton)
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homogeneous 1sotopic solutions

substitute guwdaidr’ = —N*(t)dt* + 2 (dz® + dy* + d2*)
the homogeneous isotropic ansatz fu,,dx”dx” _ (t)dt2 L2 8()(dz? + dy? + d22)

wess variational principle
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homogeneous 1sotopic solutions

guwdatda” = —N?(t)dt* + e20()(dz® + dy® + d2°)
fudatda” = —MP(t)dt* + 2 V(da” + dy* + dz°)

determine  (

EoMs — @ —
1 relation
> o ds
_ 90 ’MZCEN where C—a
constraints — N7

— determine the ratio of
‘ the scale factors
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homogeneous 1sotopic solutions
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tana = M,/M;

homogeneous 1sotopic solutions
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Stability: This branch satisfies Higuchi bound in de Sitter limit. (YSetal2013)
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Slow-roll approximation

H s < 1
H? We neglect O(s%), §

Slow-roll parameter S =
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Tensor perturbation
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flavor eigen state (g and f)
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mixing(interaction) terms

Cross terms remain in the slow-roll(de Sitter) limit.

It 1s difficult to obtain solutions analytically.



Mass eigen state
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Terms disappearing in the slow-roll limit

~ diagonal in the slow-roll it

We can obtain analytic solutions in the slow-roll limit and construct higher-order
solutions in the slow-roll parameter successively.



Calculation of Tensor Spectra

(1) Scale transformation into canonical variables (X, ¥) = (X, Y)

H = 7ax X' + 1Y —06°L
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(2) Construction of homogeneous solutions X, Y[

(3) Introduction of the effect up to the first order of the slow-roll parameter
using the interaction picture

(Since the interacting Hamiltonian includes XY terms,
the effect of the first order of the slow-roll parameter contributes only to the XY correlation. )
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Tensor Spectra in the mass eigen state

In the first order of the slow-roll parameter, ...
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Tensor Spectra 1n the flavor eigen state
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Features

Tensor amplitudes are suppressed due to the mixing in flavor eigen states.

, _ competitive
The amplitudes do not conserve on the super-horizon

and amplified in the order of the slow-roll parameter.
2¢2(1 — €g)
kg + €5 >
The amplitudes are suppressed due to the variation of the propagation speed
in mass eigen states.

spectral index np = —2s (1 +



slow-roll parameter = 0.01

Amplitude and Spectral index

near Massive Gravity < » near General Relativity
My >> M, My = M, My << M,
Amplitude

k=0.1

0.8

L RrR=10
Spectral index
. =10
x-axis: €g in the range of (0, 1) €0 ~ 0 for m* < V/3M;
which 1s determined by the ratio of the bare a finite value for m? ~ V/3M?

mass and the inflation energy scale. €0 ~ 1 for m? > V/3M



Note

If we consider m* < V/ 3Mg2 situation,

this solution will suffer gradient instability in the radiation
dominant era. (de Felice et al, 2014)

Since we have thought only about a minimal bimetric model,

the extension of this discussion to more general model
may circumvent this instability.



Future work

@ How about the scalar tensor ratio?

» Calculation of scalar perturbations

@ Perturbations do not conserve on the super-horizon in the order
of the slow-roll parameter.

» We need to solve the growth history of the perturbations
after inflation.

For instance, how 1s the behavior in the radiation dominant era?

@® The mass term of the other metric vary depending on the scalar

field value. .9

¥
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» The scalar field oscillates in the reheating era.

Parametric resonance may enhance the tensor amplitudes
through the interaction terms.






