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Dark energy

• Current acceleration is compatible with positive cosmological constant

. Impressive fine-tuning is required

• Idea: use new fields besides Einstein gravity to drive acceleration

. Quintessence

Scalar field with appropriate interactions

. Modified gravity

New gravitational d.o.f.’s control the cosmological dynamics

at large scales

Problem: Why didn’t we reveal these new d.o.f.’s at solar system scales?
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Dark energy

• Current acceleration is compatible with positive cosmological constant

. Impressive fine-tuning is required

• Idea: use new fields besides Einstein gravity to drive acceleration

. Quintessence
Scalar field with appropriate interactions

. Modified gravity
New gravitational d.o.f.s control the cosmological dynamics

at large scales

Problems:

• We need very light fields to drive dark energy (m ' H):

• Why don’t we see them with observations at solar system scales?

• For scalars: What’s keeping their mass small?
(scalar masses receive large corrections)
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Dark energy

Screening mechanisms

• Chamaleon, Vainshtein mechanism

Non-linear dynamics at scales below a radius rV :

Strong coupling effects suppress extra forces () GR results)

• Simplest realization of Vainshtein:

Scalars with appropriate derivative self-interactions

Galileons [Nicolis et al]

. Self-interactions drive cosmic acceleration: ⇡ / t2

. At small scales (within rV ) non-linear self-interactions become dominant:

Scalar fifth force gets screened

. Scalar has zero mass because of a symmetry: ⇡ ! ⇡ + c+ bµx
µ
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• Consistent set-up breaking gauge symmetry with derivative vector interac-
tions

. In appropriate decoupling limit, Goldstone boson has Galileon self-
interactions

. The symmetry can be spontaneously broken by Higgs mechanism

Simple embedding of Galileons in particle physics motivated scenario

• Interesting phenomenology

. Screening mechanism

. Consistent vector model for dark energy?

(see e.g. [Goon et al])
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and in terms of canonically normalized field
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↵p
ZMPl

'̂T

Reduced coupling to external source!
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Dark energy

• Current acceleration is compatible with positive cosmological constant

. Impressive fine-tuning is required

• Idea: use new fields besides Einstein gravity to drive acceleration

. Quintessence

Scalar field with appropriate interactions

. Modified gravity

New gravitational d.o.f.’s control the cosmological dynamics

at large scales

Problem: Why didn’t we reveal these new d.o.f.’s at solar system scales?

1

Dark energy

Screening mechanisms

• Chamaleon, Vainshtein mechanism

Non-linear dynamics at scales below a radius rV :

Strong coupling effects suppress extra forces () GR results)

• Simplest realization of Vainshtein:

Scalars with appropriate derivative self-interactions

Galileons [Nicolis et al]

. Self-interactions drive cosmic acceleration: ⇡ / t2

. At small scales (within rV ) non-linear self-interactions become dominant:

Scalar fifth force gets screened

. Scalar has zero mass because of a symmetry: ⇡ ! ⇡ + c+ bµx
µ
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µ

2

Removing the ghost in decoupling limit

Question: is it possible to UV complete FP such to get

⇧ A lagrangian with no ghosts

⇧ With interactions allowing to implement Vainshtein mechanism

Answer: yes [de Rham-Gabadadze]

Focus on decoupling limit:

only ⌅ self-interactions are kept: isolate problematic helicity-0 mode.

• After applying Stückelberg, the lagrangian always contains at least two derivatives on each �.

⌅ Invariant under Galileon symmetry ⌅ ⇤ ⌅ + c + bµxµ

• Add interactions that

– Raise cut-o� to �3 =
�
m2MPl

⇥1
3

– Assemble terms inGalileon combinations [Nicolis-Rattazzi-Trincherini]

⌅ Corresponding EOMs contain at most two time derivatives!!

L2 = �1

2
(⌃⌅)2

L3 = (⌃⌅)22⌅

L4 = (⌃⌅)2
⇤
(2⌅)2 � (⌃µ⌃⇤⌅)

2
⌅

L5 = (⌃⌅)2
⇤
(2⌅)3 + 2 (⌃µ⌃⇤⌅)

3 � 32⌅ (⌃µ⌃⇤⌅)
2
⌅

• How to do in the context of massive gravity?

⌅ Use the quantity

K ⇤
µ = � ⇤

µ �
⇧
� ⇤
µ �H ⇤

µ

built with metric Hµ⇤ [deRham-Gabadadze-Tolley]
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Galileon symmetry + Vainsthein mechanism

+
Powerful non-renormalization theorems!

Galileon Lagrangians are stable under quantum corrections

[Nicolis, Rattazzi]
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Some general considerations on Galileons

• Screening mechanisms as Vainsthein are very e↵ective ) hard to test

– Study systems without spherical symmetry:
then Galileons don’t necessarily screen [Bloomfield et al]

– Study BHs in centre of galaxies that are free-falling in an external
gravitational fiel [Hui, Nicolis]

• Coupling to gravity one breaks galileon invariance:
can be extended to more complex theories with same theoretical dignity

– Hordensky

– Beyond Hordensky [Gleyzes et al; Gao]

– Couple to vectors [De↵ayet et al; GT et al]

Parameter space becomes very large ) hard to test

• Connection Galileons , Vainsthein mechanism , superluminality
[Adams et al]
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Embedding Galileons in a more fundamental set-up

Given these considerations, is it possible to embed Galileons in some larger set-up?

. Consistency conditions (absence of ghosts, new symmetries) impose con-
straints on the structure of the theory: This reduces parameter space

. Prescription for coupling with matter or extra fields

. Suggest new ways to test the theory, or cure theoretical issues

What one can look for:

. Galileons are not put by hand, but arise in well motivated particle physics
set-ups.

. Goldstone bosons of broken symmetries?

First example: dRGT massive gravity

• GR propagates 2 d.o.f.s. Massive gravity propagates 5 (2+2+1).

• In a suitable decoupling limit, the scalar graviton polarization acquires
(restricted) Galileon self-interactions

• Challenging to investigate cosmological dynamics

Second (simpler) example:

Vectors breaking abelian symmetry

Longitudinal polarization of vector mediates dark energy

• Vectors have been important in the history of modifications of GR, since the
early days (Kaluza-Klein, Einstein-Aether, TeVeS)

• Vectors are able to mediate long range forces: think to electromagnetism!

• A small mass mA or small vector couplings can be technically natural.

Task: build vector theory that is ghost-free and interesting

[GT, Heisenberg]
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• Consistent set-up breaking gauge symmetry with derivative vector interac-
tions

. In appropriate decoupling limit, Goldstone boson has Galileon self-
interactions

. The symmetry can be spontaneously broken by Higgs mechanism

Simple embedding of Galileons in particle physics motivated scenario

• Interesting phenomenology

. Screening mechanism

. Consistent vector model for dark energy?

(see e.g. [Goon et al])
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• Don’t introduce ghosts: the time-component A0 keeps a non-dynamical

Nice feature:
The full theory is relatively easy to study – also beyond decoupling limit!

Go beyond Galileon invariance
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Possibly, due to strong coupling
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Embedding Galileons in a more fundamental set-up

Given these considerations, is it possible to embed Galileons in some larger set-up?

. Consistency conditions (absence of ghosts, new symmetries) impose con-
straints on the structure of the theory: This reduces parameter space

. Prescription for coupling with matter or extra fields

. Suggest new ways to test the theory, or cure theoretical issues

What one can look for:

. Galileons are not put by hand, but arise in well motivated particle physics
set-ups.

. Goldstone bosons of broken symmetries?

First example: dRGT massive gravity

• GR propagates 2 d.o.f.s. Massive gravity propagates 5 (2+2+1).

• In a suitable decoupling limit, the scalar graviton polarization acquires
(restricted) Galileon self-interactions

• Challenging to investigate cosmological dynamics

Second (simpler) example:

Vectors breaking abelian symmetry

Longitudinal polarization of vector mediates dark energy

• Vectors have been important in the history of modifications of GR, since the
early days (Kaluza-Klein, Einstein-Aether, TeVeS)

• Vectors are able to mediate long range forces: think to electromagnetism!

• A small mass mA or small vector couplings can be technically natural.

Task: build vector theory that is ghost-free and interesting

[GT, Heisenberg]
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the vector as

L(0) = −m2AµA
µ , (2)

L(1) = −β2 AµA
µ (∂ρA

ρ) , (3)

L(2) = −
β3
m2

AµA
µ [(∂ρA

ρ) (∂νA
ν)− (∂ρA

ν) (∂ρAν)] , (4)

L(3) = −
β4
m4

AµA
µ
[

− 2 (∂µA
µ)3 + 3 (∂µA

µ) (∂ρ A
σ∂ρAσ) + 3 (∂µA

µ) (∂ρ A
σ∂σA

ρ)

− ∂µA
ν ∂ν A

ρ ∂ρ A
µ − 3 ∂µ A

ν ∂ν A
ρ ∂µ Aρ

]

, (5)

and break the Abelian gauge symmetry Aµ → Aµ + ∂µξ. Here, m has dimension of a mass,
while the βi are dimensionless couplings. The suffix (i) in the Lagrangians indicates the number
of derivatives in each term. Notice that these interactions do not break Lorentz symmetry, in
particular they do not select any preferred frame. The Lagrangians L(i) are built by the following
combinations made with antisymmetric ϵ tensors in four dimensions

L(i) ∝ AµA
µ
(

ϵα1 ...αiγi+1 ... γ4ϵ
β1 ...βiγi+1 ...γ4 ∂β1A

α1 . . . ∂βi
Aαi

)

. (6)

These derivatives self-interactions are chosen in such a way as to lead to a consistent set-up, in
the sense that a fourth ‘ghost-mode’ cannot be excited. Indeed, it is simple to show that, due to
the antisymmetric properties of the ϵ tensor, the Lagrangians L(i) do not contain contributions
containing time derivatives of the time component A0 of the vector (up to total derivatives): hence
the equation of motion for this component is a constraint equation. On the other hand, the
Lagrangians Li break the Abelian gauge symmetry: the theory contains three dynamical modes,
the usual transverse plus the longitudinal polarization of the vector. As we will see, the latter
degree of freedom, when m2 > 0, is well behaved. So, we end up with a consistent theory with
three healthy modes around Minkowski space.

In what follows, we would like to investigate the interesting dynamics of the vector longitudinal
polarization associated with the previous Lagrangians.

A. Vector field produced by a static source

For simplicity, in this subsection we include (besides the standard kinetic term) the Lagrangians
L(0), (1) only. Hence the Lagrangian on which we now focus our attention is

LT = −
1

4
FµνF

µν −m2AµA
µ − βAµA

µ (∂ρA
ρ) . (7)

To gain some initial flavor of the physical effects associated with the non-linear self-couplings of the
vector, let us analyze a static system of a charged density with associated current Jµ = (ρ, 0, 0, 0),
minimally coupled to the vector with a term Aµ Jµ in flat space. We would like to write the
equations corresponding to a vector field configuration produced by such a body. We focus on static
configurations: Aµ = Aµ(0, x⃗), and split the vector potential in components as Aµ = (A0, Ai).
The equations of motion for the vector degrees of freedom are

− ∇⃗2A0 = ρ− 2m2 A0 − 2β A0 ∂iAi , (8)

2m2Ai = ∇⃗2 Ai − ∂i∂jA
j + β ∂i

(

−A2
0 +A2

j

)

− 2βAi ∂jAj , (9)
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Decoupling limit

. Take first symmetry breaking operators

L = �m2AµA
µ � � AµA

µ @⌫A
⌫

. Use Stückelberg trick, adding a scalar ⇡ to make it gauge invariant

L = �m2 (Aµ � @µ⇡) (A
µ � @µ⇡)

�� (Aµ � @µ⇡) (A
µ � @µ⇡) (@⌫A

⌫ �2⇡)

Gauge transformation: Aµ ! Aµ + @µ⇠ ; ⇡ ! ⇡ + ⇠

3 d.o.f. in total: ⇡ plays the role of vector longitudinal polarization

. Canonically normalize, ⇡̂ ⌘
p
2m ⇡,

L = � 1

2

⇣p
2mAµ � @µ⇡̂

⌘⇣p
2mAµ � @µ⇡̂

⌘

� �

2
p
2m3

⇣p
2mAµ � @µ⇡̂

⌘⇣p
2mAµ � @µ⇡̂

⌘ ⇣p
2m @⌫A

⌫ �2⇡̂
⌘

• Take limit m ! 0 ; � ! 0 ; �
m3 = fixed = 1

⇤3

L = � 1

2
@µ⇡̂@

µ⇡̂ +
1

2
p
2⇤3

@µ⇡̂@
µ⇡̂2⇡̂

(2)
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Embedding Galileons in a more fundamental set-up

Given these considerations, is it possible to embed Galileons in some larger set-up?

. Consistency conditions (absence of ghosts, new symmetries) impose con-
straints on the structure of the theory: This reduces parameter space

. Prescription for coupling with matter or extra fields

. Suggest new ways to test the theory, or cure theoretical issues

What one can look for:

. Galileons are not put by hand, but arise in well motivated particle physics
set-ups.

. Goldstone bosons of broken symmetries?

First example: dRGT massive gravity

• GR propagates 2 d.o.f.s. Massive gravity propagates 5 (2+2+1).

• In a suitable decoupling limit, the scalar graviton polarization acquires
(restricted) Galileon self-interactions

• Challenging to investigate cosmological dynamics

Second (simpler) example:

Vectors breaking abelian symmetry

Longitudinal polarization of vector mediates dark energy

• Vectors have been important in the history of modifications of GR, since the
early days (Kaluza-Klein, Einstein-Aether, TeVeS)

• Vectors are able to mediate long range forces: think to electromagnetism!

• A small mass mA or small vector couplings can be technically natural.

Task: build vector theory that is ghost-free and interesting

[GT, Heisenberg]
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Galileon symmetry + Vainsthein mechanism

+
Powerful non-renormalization theorems!

Galileon Lagrangians are stable under quantum corrections

[Nicolis, Rattazzi]
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Embedding Galileons in a more fundamental set-up

Given these considerations, is it possible to embed Galileons in some larger set-up?

. Consistency conditions (absence of ghosts, new symmetries) impose con-
straints on the structure of the theory: This reduces parameter space

. Prescription for coupling with matter or extra fields

. Suggest new ways to test the theory, or cure theoretical issues

What one can look for:

. Galileons are not put by hand, but arise in well motivated particle physics
set-ups.

. Goldstone bosons of broken symmetries?

First example: dRGT massive gravity

• GR propagates 2 d.o.f.s. Massive gravity propagates 5 (2+2+1).

• In a suitable decoupling limit, the scalar graviton polarization acquires
(restricted) Galileon self-interactions

• Challenging to investigate cosmological dynamics

Second (simpler) example:

Vectors breaking abelian symmetry

Longitudinal polarization of vector mediates dark energy

• Vectors have been important in the history of modifications of GR, since the
early days (Kaluza-Klein, Einstein-Aether, TeVeS)

• Vectors are able to mediate long range forces: think to electromagnetism!

• A small mass mA or small vector couplings can be technically natural.

Task: build vector theory that is ghost-free and interesting

[GT, Heisenberg]
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3

the vector as

L(0) = −m2AµA
µ , (2)

L(1) = −β2 AµA
µ (∂ρA

ρ) , (3)

L(2) = −
β3
m2

AµA
µ [(∂ρA

ρ) (∂νA
ν)− (∂ρA

ν) (∂ρAν)] , (4)

L(3) = −
β4
m4

AµA
µ
[

− 2 (∂µA
µ)3 + 3 (∂µA

µ) (∂ρ A
σ∂ρAσ) + 3 (∂µA

µ) (∂ρ A
σ∂σA

ρ)

− ∂µA
ν ∂ν A

ρ ∂ρ A
µ − 3 ∂µ A

ν ∂ν A
ρ ∂µ Aρ

]

, (5)

and break the Abelian gauge symmetry Aµ → Aµ + ∂µξ. Here, m has dimension of a mass,
while the βi are dimensionless couplings. The suffix (i) in the Lagrangians indicates the number
of derivatives in each term. Notice that these interactions do not break Lorentz symmetry, in
particular they do not select any preferred frame. The Lagrangians L(i) are built by the following
combinations made with antisymmetric ϵ tensors in four dimensions

L(i) ∝ AµA
µ
(

ϵα1 ...αiγi+1 ... γ4ϵ
β1 ...βiγi+1 ...γ4 ∂β1A

α1 . . . ∂βi
Aαi

)

. (6)

These derivatives self-interactions are chosen in such a way as to lead to a consistent set-up, in
the sense that a fourth ‘ghost-mode’ cannot be excited. Indeed, it is simple to show that, due to
the antisymmetric properties of the ϵ tensor, the Lagrangians L(i) do not contain contributions
containing time derivatives of the time component A0 of the vector (up to total derivatives): hence
the equation of motion for this component is a constraint equation. On the other hand, the
Lagrangians Li break the Abelian gauge symmetry: the theory contains three dynamical modes,
the usual transverse plus the longitudinal polarization of the vector. As we will see, the latter
degree of freedom, when m2 > 0, is well behaved. So, we end up with a consistent theory with
three healthy modes around Minkowski space.

In what follows, we would like to investigate the interesting dynamics of the vector longitudinal
polarization associated with the previous Lagrangians.

A. Vector field produced by a static source

For simplicity, in this subsection we include (besides the standard kinetic term) the Lagrangians
L(0), (1) only. Hence the Lagrangian on which we now focus our attention is

LT = −
1

4
FµνF

µν −m2AµA
µ − βAµA

µ (∂ρA
ρ) . (7)

To gain some initial flavor of the physical effects associated with the non-linear self-couplings of the
vector, let us analyze a static system of a charged density with associated current Jµ = (ρ, 0, 0, 0),
minimally coupled to the vector with a term Aµ Jµ in flat space. We would like to write the
equations corresponding to a vector field configuration produced by such a body. We focus on static
configurations: Aµ = Aµ(0, x⃗), and split the vector potential in components as Aµ = (A0, Ai).
The equations of motion for the vector degrees of freedom are

− ∇⃗2A0 = ρ− 2m2 A0 − 2β A0 ∂iAi , (8)

2m2Ai = ∇⃗2 Ai − ∂i∂jA
j + β ∂i

(

−A2
0 +A2

j

)

− 2βAi ∂jAj , (9)

• Break gauge symmetry: the longitudinal vector polarization gets dynamical
and acquires Galileon interactions in a decoupling limit.

Metti figura

• Don’t introduce ghosts: the time-component A0 remains non-dynamical

Nice feature:
The full theory is relatively easy to study – also beyond decoupling limit!

Go beyond Galileon invariance

Screening with vectors

Possibly, due to strong coupling

To do: Check what happens coupling to other fields

A Higgs mechanism

Typically theories with hard symmetry breaking encounter issues:

. Lack of unitarity

. Di�cult to quantize

Spontaneous symmetry breaking leads to better behaved set-ups

A Higgs mechanism for derivative vector self-interactions

[Hull, Koyama, GT]
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Modified electromagnetism

• Gravity is not the only observed long range force.

Electromagnetic force is also long range!

Electromagnetic force mediated by spin 1 vector Aµ = (A0, A1, A2, A3)

metti figura cmb

Question: How to modify EM so to find connection with Galileons?

• Renounce to Abelian gauge invariance:

metti figura cmb

– Gauge symmetry: 2 transverse polarizations (2 dof)

– No gauge symmetry: 2 transverse + 1 longitudinal (3 dof)

⇥ Add dynamics to longitudinal polarization �: Ai = AT
i + ⌅i �

⇥ But do it without introducing ghosts ! I.e. do not excite the ‘fourth’ mode

• The minimal interesting Lagrangians with derivative self-couplings are
(gravity added later)

• Nice theoretical features

⇥ EOM for time-component A0 is constraint: no ghost!

⇥ In decoupling limit the longitudinal polarization is controlled by Galileons.
Galileon and Abelian symmetries are recovered!

Decoupling limit (different from massive gravity)

You get plenty of symmetries that protect the theory!

Question: Before starting to talk about cosmology, isn’t all this ruled out by
. precision measurements?

Not in an obvious way

⇥ Current constraints on photon mass: m� ⇤ 10�19eV .
Tiny, but technically natural: protected by gauge symmetry.

⇥ Non-linear self interactions might lead to strong coupling e�ects screening
the longitudinal polarization

(Analogue of Vainshtein mechanism)

⇥ Example: Electric field produced by point charge

metti figura point charge
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� Example: Electric field produced by point charge

metti figura point charge

Sufficiently far from the source, electric potential and

longitudinal polarization scale with different powers of r

6

5

to the ‘strong coupling’ scale at which the argument in the square root in eq. (15) becomes
appreciably different than one: this scale is given by

rs ≡
√
β

m
. (18)

By choosing β sufficiently small, rs can be made parametrically smaller than rm. The regime
rs ≪ r ≪ rm is interesting since the non-linear contributions weighted by β in eq (13) can be
neglected, as well as the mass term, and the power-law configurations A0 ∼ 1/r, χ ∼ r2s/r

2 are
solutions for the equations of motion. It is an intermediate regime in which, although χ acquires
a non-trivial profile due to the non-linear interactions weighted by β, its effect is too weak to
appreciably influence the configuration for A0. It would be interesting to numerically investigate
the full strong coupling regime r ≪ rs, in particular to understand whether interesting screening
effects on this vector set-up appear, similarly to what happens for the gravitational Vainsthein
effect [17].

B. Relation with scalar Galileons

That some interesting non-linear regime exists nearby a source is suggested by observing that the
non-linear equations (11-12) preserve a (spatial) Galileon symmetry in the longitudinal polarization,
χ → χ+ a + bixi, and Galileon systems are known to exhibit a screening Vainshtein mechanism
[2] in gravitational set-ups. Indeed, our motivation for presenting the non-linear coupled equations
sourced by a static charge was precisely to point out this fact. We now investigate in more detail
how the vector Lagrangian (7) is connected with Galileons. We adopt the Stückelberg formalism,
trading everywhere Aµ for Aµ + 1/

(√
2m

)

∂µφ: the resulting Lagrangian is invariant under the

gauge symmetry Aµ → Aµ−∂µξ, φ → φ+
√
2m ξ. The scalar field φ plays the same physical role as

that of the longitudinal vector polarization. The use of the Stückelberg approach renders clearer
the interactions among the different degrees of freedom. The total Lagrangian reads, assuming
m2 > 0 to avoid ghost instabilities,

LT = −
1

4
FµνF

µν −
1

2

(√
2mAµ + ∂µφ

)(√
2mAµ + ∂µφ

)

−
β

√
8m3

(√
2mAµ + ∂µφ

)(√
2mAµ + ∂µφ

) (√
2m ∂νA

ν + ∂ν∂
νφ

)

. (19)

To isolate the (self-)interactions of the Stückelberg field φ we take the ‘decoupling’ limit

m → 0, β → 0,
β

m3
= fixed =

√
2

Λ3
G

, (20)

leading to

Ldec = −
1

4
FµνF

µν −
1

2
∂µφ∂

µφ−
1

2Λ3
G

(∂µφ∂µφ) ∂ν∂
νφ . (21)

The result of taking such a decoupling limit is a theory with two different symmetries 1: a
free vector Lagrangian that satisfies the Abelian gauge symmetry, plus a cubic Galileon scalar
Lagrangian controlled by the strong coupling scale ΛG, and respecting a Galileon symmetry π →

1 Analogous arguments straightforwardly apply also to the complete set of interactions L(i) in eq. (1), leading to
higher order scalar Galileon Lagrangians.
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Lagrangian controlled by the strong coupling scale ΛG, and respecting a Galileon symmetry π →

1 Analogous arguments straightforwardly apply also to the complete set of interactions L(i) in eq. (1), leading to
higher order scalar Galileon Lagrangians.
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with ∇⃗2 ≡ δij∂i∂j . The main difference with respect to the gauge invariant (and Proca) cases
is that the β contribution renders the A0 equation dependent on the quantity ∂iAi. Taking the
divergence of eq (9), we find

2m2 ∂iAi = −β∇2 A2
0 − 2β (∂iAi ∂jAj − ∂iAj ∂jAi) . (10)

In looking for a static field configuration, we separate the spatial vector components in transverse
and longitudinal parts, Ai = AT

i + ∂i χ with ∂iAT
i = 0. We focus here on a simplifying Ansatz

setting to zero the transverse polarizations AT
i = 0. Hence we end up with the coupled equations

for A0 and χ

− ∇⃗2A0 = ρ− 2m2 A0 − 2β A0 ∇⃗2χ , (11)

∇⃗2χ = −
β

2m2
∇⃗2A2

0 −
β

2m2

[

(

∇⃗2 χ
)2

− (∂i∂j χ)
2
]

. (12)

Notice that, although the longitudinal polarization χ is not directly coupled to the source, never-
theless it ‘feels’ it via the non-linear term in eq. (11). Let us make the further simplifying Ansatz
of spherical symmetry, where all the functions depend only on the distance r from the origin, and
the previous two equations (11-12), after some manipulations, read

−
d

dr

(

r2A′
0

)

= r2 ρ− 2m2 r2A0 + 2β A0
d

dr

(

r2χ′) , (13)

χ′ =
2β

m2

χ′2

r
+

βA0A′
0

m2
, (14)

where a prime indicates derivative along r. Eq. (14) is a second order algebraic equation for χ′,
whose solution provides a relation between χ and A0 (we focus only on the branch that decays for
large values of r):

χ′ =
m2 r

4β

(

1−

√

1−
8β2 A0A′

0

m4 r

)

. (15)

This relation can be substituted in eq (13) to obtain a non-linear differential equation that govern
the behavior of the ‘electric field’ produced by the source. At large distances from the source,
where A0 is small, eq. (15) can be expressed as

χ′ ≃
β

m2
A0A

′
0

and one finds that both A0 and χ acquire a Yukawa-like suppression (we normalize to unity the
charge of the source):

A0 ≃
e−

√
2mr

r
, (16)

χ ≃
β e−2

√
2mr

2m2 r2
. (17)

Notice that χ decays more rapidly than A0. We call rm ≡ 1/
(√

2m
)

the distance at which the
Yukawa-like behavior due to the vector mass becomes important in determining the profile for A0:
well below this radius, the solution for the vector potential, eq (16), can be approximated by a
power-law. In this regime r ≪ rm, one can identify another characteristic distance, corresponding

� Example: Electric field produced by point charge

metti figura point charge

Sufficiently far from the source, electric potential and

longitudinal polarization scale with different powers of r

Safe regime
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Modified electromagnetism

• Gravity is not the only observed long range force.

Electromagnetic force is also long range!

Electromagnetic force mediated by spin 1 vector Aµ = (A0, A1, A2, A3)

metti figura cmb

Question: How to modify EM so to find connection with Galileons?

• Renounce to Abelian gauge invariance:

metti figura cmb

– Gauge symmetry: 2 transverse polarizations (2 dof)

– No gauge symmetry: 2 transverse + 1 longitudinal (3 dof)

⇥ Add dynamics to longitudinal polarization �: Ai = AT
i + ⌅i �

⇥ But do it without introducing ghosts ! I.e. do not excite the ‘fourth’ mode

• The minimal interesting Lagrangians with derivative self-couplings are
(gravity added later)

• Nice theoretical features

⇥ EOM for time-component A0 is constraint: no ghost!

⇥ In decoupling limit the longitudinal polarization is controlled by Galileons.
Galileon and Abelian symmetries are recovered!

Decoupling limit (different from massive gravity)

You get plenty of symmetries that protect the theory!

Question: Before starting to talk about cosmology, isn’t all this ruled out by
. precision measurements?

Not in an obvious way

⇥ Current constraints on photon mass: m� ⇤ 10�19eV .
Tiny, but technically natural: protected by gauge symmetry.

⇥ Non-linear self interactions might lead to strong coupling e�ects screening
the longitudinal polarization

(Analogue of Vainshtein mechanism)

5

⇤ Example: Electric field produced by point charge

metti figura point charge

Sufficiently far from the source, electric potential and

longitudinal polarization scale with different powers of r

Safe regime

A0 ⇥ �Q

r

⇥ ⇥ � �Q

m2 r2

6

Additions

• Photon has two degrees of freedom: Aµ =
�
A0, AT

i + ⌃i ⇤
�
with ⌃iAT

i = 0

⌅ The longitudinal component ⇤ can be gauged away

⌅ The EOM for A0 is a constraint: this component does not propagate

⌅ One ends with two transverse components AT
i

• Included Stückelberg scalar to make the Lagrangian gauge invariant:
Aµ ⇤ Aµ + ⌃µ�, ⇥ ⇤ ⇥�

⌅
2m�

– ⇥ plays the same physical role of longitudinal photon polarization

With Ai = AT
i + ⌃i ⇤ and ⌃iAT

i = 0

Focus on the first two interactions

10

Nice feature:
The full theory is relatively easy to study – also beyond decoupling limit!

Screening with vectors

A Higgs mechanism

Typically theories with hard symmetry breaking have problems: lack of unitarity.

Spontaneous symmetry breaking leads to better behaved set-ups

A Higgs mechanism for derivative vector self-interactions [Hull, Koyama,

GT]

5



Coupling to gravity

7
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π + b + aµxµ. This feature makes stable the size of the parameters m and β, since keeping them
small is technically natural in the ’t Hooft sense [18]. It would also be interesting to analyze in
detail the issue of quantum corrections to this set-up. In particular, to try to understand whether
additional operators – that would spoil the structure of our Lagrangian – can be kept under control
when working in some strong or intermediate coupling regimes, in analogy with what happens for
Galileons or massive gravity [7, 8]. Related to this, it would be interesting to understand whether
conformal versions of this vector Lagrangian can be constructed, using for example the methods
of [19], to find relations with conformal Galileon theories [2].

Moreover, the connection we found with Galileons provides another perspective on why the
theory under consideration is consistent (ghost free) around Minkowski space, and promises to
lead to interesting cosmological applications as accelerating configurations.

C. Coupling to gravity

Coupling our theory to gravity presents the very same issues one meets in the covariantization
of scalar Galileon theories. In order not to propagate ghosts, we require that our set-up does not
lead to derivatives higher than two in the equations of motion for vector and gravitational degrees
of freedom. Applying for example the approach developed in [20, 21], one finds a consistent
covariantization of the Lagrangian densities L(1), L(2):

Lcov
(1) = −β1AµA

µ (∇ρA
ρ) , (22)

Lcov
(2) = −

β2
m2

AµA
µ

[

(∇ρA
ρ) (∇νA

ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ

]

, (23)

with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice that the
vectors couple non-minimally to gravity, thanks to the coupling with the Ricci scalar in eq. (23).
For our purposes, we will not need to covariantize L(3): this is left for future work. It is simple
to check that in an appropriate decoupling limit (as discussed in subsection IIB) the previous
formulae reduce to the covariantized cubic and quartic scalar Galileon Lagrangians. It would be
interesting to analyze whether the vector interactions can contribute to a gravitational Vainshtein
mechanism around a spherically symmetric source, as investigated for a scalar-vector set-up in [22].

Armed with these results, we will now focus on the action

S =

∫

d4x
√
−g

[

M2
P l

2
R−

1

4
FµνF

µν −m2AµA
µ + Lcov

(1) + Lcov
(2)

]

(24)

with the aim to study its cosmological implications.

III. APPLICATIONS TO COSMOLOGY

We consider a homogeneous FRW metric with flat spatial curvature

ds2 = −dt2 + a2(t) δij dxi dxj (25)

with a the scale factor, and H = ȧ/a the corresponding Hubble parameter. The vector potential is
Aµ = (A0, Ai). The spatial vector components are decomposed in Ai = AT

i +∂i χ with ∂iAT
i = 0.

We investigate homogeneous configurations. We consider a background vector profile with only
the time-component turned on: Aµ = (A0(t) , 0 , 0 , 0). We avoid to turn on spatial components
for the vector to avoid anisotropies and the corresponding generic instabilities pointed out in [23].

Coupling to gravity

• Same technical issues one meets coupling to gravity scalar Galileons

Must ensure that EOMs remain second order

• The result is

• The total action is
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3

II. THE SYSTEM UNDER CONSIDERATION

We consider a theory of vector fields coupled to gravity, described by an action

S =

∫

d4x
√
−g

[

M2
∗

2
R−

1

4
FµνF

µν − Lcov
(0) − Lcov

(1) − Lcov
(2) − Λcc

]

, (1)

where M2
∗ R/2 is the Einstein-Hilbert term weighted by the square of Planck scale, −FµνFµν/4 is

the standard kinetic term for a vector potential Aµ, Λcc is a bare cosmological constant, and the
vector interactions Lcov

(i) that break the Abelian symmetry are defined as

Lcov
(0) = m2AµA

µ , (2)

Lcov
(1) = β1 AµA

µ (∇ρA
ρ) , (3)

Lcov
(2) =

β2
m2

AµA
µ

[

(∇ρA
ρ) (∇νA

ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ

]

. (4)

This is the minimal ghost-free Lagrangian studied in [12] that couples a vector field with gravity,
and leads to cosmological solutions with interesting features that we are going to analyze. Lcov

(0) is a
Proca mass term, while Lcov

(1, 2) are ghost-free derivative self-interactions. The structure of the self-
interactions is chosen in such a way that the equation of motion for the time-component A0 of the
vector field does not contain time derivatives. Hence the equation for A0 is a constraint equation
that fixes one degree of freedom, and the theory propagates only three degrees of freedom in the
vector sector 1. The Lagrangian can be further generalized maintaining the ghost free condition,
see for example [20]: however the minimal form of the action that we consider is particularly
interesting for us because of symmetry properties that we will exploit in what follows. We add a
bare cosmological constant Λcc in order to analyze how cosmological solutions depend on its size,
but for simplicity we will not explicitly discuss couplings with standard matter – although we will
comment on this topic from time to time.

In general, this theory does not have any symmetry besides the diffeomorphism invariance of
GR: indeed, the Lagrangians Lcov

(i) break the U(1) Abelian gauge symmetry Aµ → Aµ + ∂µξ.

On the other hand, as explained in [12], there exists a limit in which, by neglecting gravity and
taking small values for m, βi the theory acquires Abelian and Galileon symmetries acting on
the transverse and longitudinal vector polarizations. This limit is made particularly manifest
by adopting a Stückelberg approach, and supplementing the Lagrangians Lcov

(i) of eqs (2-4) with
interactions to a new scalar π, introduced in such a way to obtain a gauge-symmetric theory

Lcov
(0) = m2

(

Aµ +
1√
2m

∂µπ

) (

Aµ +
1√
2m

∂µπ

)

(5)

Lcov
(1) = β1

(

Aµ +
1√
2m

∂µπ

) (

Aµ +
1√
2m

∂µπ

) (

∇ρA
ρ +

1√
2m

!π

)

, (6)

Lcov
(2) =

β2
m2

(

Aµ +
1√
2m

∂µπ

) (

Aµ +
1√
2m

∂µπ

)

×
[

(

∇ρA
ρ +

!π√
2m

)(

∇νA
ν +

!π√
2m

)

−
(

∇ρA
ν +

∇ρ∂ν π√
2m

)(

∇νA
ρ +

∇ν∂ρ π√
2m

)

−
1

4
R

(

Aσ +
1√
2m

∂σπ

) (

Aσ +
1√
2m

∂σπ

)

]

. (7)

1 A similar set of interactions is studied in [19], but the coupling of the Ricci scalar with gravity is not taken in due
account, rendering the theory not ghost-free when dynamical gravity is considered.



Cosmology

• Vector-tensor theories have long history in cosmology

� Will, Nordvedt, Hellings theories of early ’70.

� Einstein-Aether [Jacobson, Mattingly]

� TeVeS covariantization of MOND [Bekenstein]

The approach here emphasizes symmetry principles to build the set-up:
in particular the connection with Galileons.

• Look for homogeneous cosmological expansion driven by vectors

� Metric Ansatz

� Vector Ansatz
Vector equation is algebraic

� de Sitter solution:
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π + b + aµxµ. This feature makes stable the size of the parameters m and β, since keeping them
small is technically natural in the ’t Hooft sense [18]. It would also be interesting to analyze in
detail the issue of quantum corrections to this set-up. In particular, to try to understand whether
additional operators – that would spoil the structure of our Lagrangian – can be kept under control
when working in some strong or intermediate coupling regimes, in analogy with what happens for
Galileons or massive gravity [7, 8]. Related to this, it would be interesting to understand whether
conformal versions of this vector Lagrangian can be constructed, using for example the methods
of [19], to find relations with conformal Galileon theories [2].

Moreover, the connection we found with Galileons provides another perspective on why the
theory under consideration is consistent (ghost free) around Minkowski space, and promises to
lead to interesting cosmological applications as accelerating configurations.

C. Coupling to gravity

Coupling our theory to gravity presents the very same issues one meets in the covariantization
of scalar Galileon theories. In order not to propagate ghosts, we require that our set-up does not
lead to derivatives higher than two in the equations of motion for vector and gravitational degrees
of freedom. Applying for example the approach developed in [20, 21], one finds a consistent
covariantization of the Lagrangian densities L(1), L(2):

Lcov
(1) = −β1AµA

µ (∇ρA
ρ) , (22)

Lcov
(2) = −

β2
m2

AµA
µ

[

(∇ρA
ρ) (∇νA

ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ

]

, (23)

with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice that the
vectors couple non-minimally to gravity, thanks to the coupling with the Ricci scalar in eq. (23).
For our purposes, we will not need to covariantize L(3): this is left for future work. It is simple
to check that in an appropriate decoupling limit (as discussed in subsection IIB) the previous
formulae reduce to the covariantized cubic and quartic scalar Galileon Lagrangians. It would be
interesting to analyze whether the vector interactions can contribute to a gravitational Vainshtein
mechanism around a spherically symmetric source, as investigated for a scalar-vector set-up in [22].

Armed with these results, we will now focus on the action

S =

∫

d4x
√
−g

[

M2
P l

2
R−

1

4
FµνF

µν −m2AµA
µ + Lcov

(1) + Lcov
(2)

]

(24)

with the aim to study its cosmological implications.

III. APPLICATIONS TO COSMOLOGY

We consider a homogeneous FRW metric with flat spatial curvature

ds2 = −dt2 + a2(t) δij dxi dxj (25)

with a the scale factor, and H = ȧ/a the corresponding Hubble parameter. The vector potential is
Aµ = (A0, Ai). The spatial vector components are decomposed in Ai = AT

i +∂i χ with ∂iAT
i = 0.

We investigate homogeneous configurations. We consider a background vector profile with only
the time-component turned on: Aµ = (A0(t) , 0 , 0 , 0). We avoid to turn on spatial components
for the vector to avoid anisotropies and the corresponding generic instabilities pointed out in [23].
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The equation of motion for A0 is a constraint equation, since the Lagrangian does not depend on
time derivatives of A0, and reads

A0

(

m2 − 3β1 A0 H + 9
β2
m2

A2
0 H

2

)

= 0 .

We can identify various branches of solutions: one is the trivial A0 = 0, while the most
interesting ones for us are

A±
0 (t) =

β1 ±
√

β2
1 − 4β2

6β2

m2

H(t)
, (26)

=
c±m2

H(t)
. (27)

These branches require β2
1 ≥ 4β2 to have a real square root. In the second line we defined the

dimensionless parameters c± built in terms of β1, β2. From now on, for definiteness, we will focus
on the case β1 ≥ 0, β2 ≥ 0. Using the non-trivial solutions (27) for A0, one finds that the content of
the energy momentum tensor has a perfect fluid structure, with vector energy density and pressure
given by

ρV =
c2±

(

9β2c2± − 2
)

m6

2H2
, (28)

pV =
c2±

(

2− 9β2c2±
)

m6

2H2
+

c3± (9β2c± − 2β1) Ḣ

H4
. (29)

It is simple to show that, in order to have a positive vector energy density, ρV ≥ 0, one has to focus
on the positive branch of solutions in eq (26), that require a non-vanishing β2. The Friedmann
equation reads

H2 =
c2±

(

9β2 c2± − 2
)

m6

6H2 M2
P l

, (30)

that is solved for a constant Hubble parameter. A real solution for the scale factor can be found
focussing on the positive branch of eq (26), where the (square of the) Hubble parameter results

H2 =

(

c+√
6

√

9β2 c2+ − 2

)

m3

MP l
(31)

and is well defined when β2
1 > 9β2/2, a condition that we will impose from now on. The overall

dimensionless coefficient in front of the right hand side of the previous equation – call it cβ –

simplifies in the small β2 limit, reducing to cβ ≃ β2
1/

(

108β3
2

)1/2
.

Hence, the dynamics associated with the new vector interactions is able to drive cosmological ac-
celeration with a constant (de Sitter) equation of state. At the background level, such cosmological
acceleration is identical to the one driven by a positive ‘cosmological constant’ of size

Λ4
V = 6 cβ m

3 MP l (32)

where the quantity ΛV has the dimension of a mass, and allows us to write more concisely H2 =
Λ4
V /(6M

2
P l). In order to be able to drive a de Sitter expansion with the current value for the

Hubble parameter, the mass parameter m should be chosen to be of order

m ≃ c−1/3
β 10−13 eV . (33)
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Cosmology

• Vector-tensor theories have long history in cosmology

⇤ Will, Nordvedt, Hellings theories of early ’70.

⇤ Einstein-Aether [Jacobson, Mattingly]

⇤ TeVeS covariantization of MOND [Bekenstein]

The approach here emphasizes symmetry principles to build the set-up:
in particular the connection with Galileons.

• Look for homogeneous cosmological expansion driven by vectors

⇤ Metric Ansatz

⇤ Matter content: �cc and vector
Vector equation is algebraic
Vector solution:

⇤ de Sitter solution:
Behaves as cosmological constant, with

�4
V = m3MPl

⇤ To match present-day acceleration rate,

m ⇤ �1

3

Interesting: technically natural value for the acceleration rate!

Since in the limit of small m, �i you recover Abelian and Galileon symmetries

de Sitter solutions

• Friedmann equation

• For small values of ⇥/�V , one gets Renormalization of Planck mass

• Cosmological fluctuations

⇤ Checked vector fluctuations neglecting gravity: they’re fine

⇤ TO DO: include coupling with gravity

Symmetry arguments can explain the size of dark energy scale
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Additions

• Photon has two degrees of freedom: Aµ =
�
A0, AT

i + ⌃i ⇤
�
with ⌃iAT

i = 0

⌅ The longitudinal component ⇤ can be gauged away

⌅ The EOM for A0 is a constraint: this component does not propagate

⌅ One ends with two transverse components AT
i

• Included Stückelberg scalar to make the Lagrangian gauge invariant:
Aµ ⇤ Aµ + ⌃µ�, ⇥ ⇤ ⇥�

⌅
2m�

– ⇥ plays the same physical role of longitudinal photon polarization

With Ai = AT
i + ⌃i ⇤ and ⌃iAT

i = 0

Focus on the first two interactions

Great advantage with respect to the scalar case

Non-renormalization theorem:

The structure of the theory is protected from large quantum corrections

Chosen such that only 3 dof propagate

Although A0 does not propagate, it acquires a non-trivial profile

10

• Break gauge symmetry: the longitudinal vector polarization gets dynamical
and acquires Galileon interactions in a decoupling limit.

Metti figura

• Don’t introduce ghosts: the time-component A0 remains non-dynamical

Nice feature:
The full theory is relatively easy to study – also beyond decoupling limit!

Go beyond Galileon invariance

Screening with vectors

Vector dark energy

Possibly, due to strong coupling

To do: Check what happens coupling to other fields

A Higgs mechanism

Typically theories with hard symmetry breaking encounter issues:

. Lack of unitarity

. Di�cult to quantize

Spontaneous symmetry breaking leads to better behaved set-ups

A Higgs mechanism for derivative vector self-interactions

[Hull, Koyama, GT]
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with matter will also govern the scale of the typical vev for the vector longitudinal polarization
π, offering the possibility to develop screening effects analogous to the gravitational Vainshtein
mechanism [27] (see also [28] for a realization of a Vainshtein mechanism in a vector-scalar-tensor
theory of gravity). This subject has been partially explored in [12], but will be further developed
elsewhere.

These considerations suggest that, when limiting our interest to cosmological space-times with
Hubble parameter smaller than the strong coupling scale ∆ for the vector longitudinal interactions,
it is possible to maintain a sufficient degree of symmetry to protect in a technically natural way
the structure of our theory. This is a feature that will have important implications for our argu-
ments. Let us then pass to analyze, for the remaining of this section, the homogenous cosmological
evolution associated with the above theory, extending results first presented in [12]. The Ansätze
for the FRW background metric and vector profiles that we consider are

ds2 = −dt2 + a2(t) δij dx
idxj , (11)

Aµ = (A0(t), 0, 0, 0) . (12)

Notice that the homogeneous vector profile does not break spatial isotropy. The homogenous
equation of motion for the vector component is a constraint equation, that reads

A0
(

m4 − 3β1m
2 A0 H + 9β2 A

2
0 H

2
)

= 0 , (13)

where H = ȧ/a is the Hubble parameter. The above algebraic equation, a part from the solution
A0 = 0 (that does not lead to interesting cosmological expansion), admits the solutions

A0 =
c±m2

H
, (14)

c± =
β1 ±

√

β2
1 − 4β2

6β2
, (15)

where from now on we set m2 > 0, β1 > 0. Hence we learn that, in a homogeneous FRW setting,
the constraint equation for A0 leads to a profile for this field that is inversely proportional to the
Hubble parameter. In order to ensure real values for c±, we will impose β2 ≤ β2

1/4. For handling
more easily our formulae, it is convenient to make the following parameter redefinition:

β2 =
(1 − γ2)β2

1

4
, (16)

Λcc =
m3 M∗

3β1
λ , (17)

where γ, λ are dimensionless quantities. This implies that we trade β2 for γ; in terms of the
parameters β̂i of eq. (9) (useful to investigate the decoupling limit (8) in which we recover Abelian
and Galileon symmetries) we can write

β̂2 =
(1− γ2) β̂2

1

4
. (18)

That is, γ is not affected by the limit (8). Notice that eq (17) means that we are going to use the
dimensionless parameter λ to quantify the size of the cosmological constant. For the moment we
do not impose any requirement on the size of λ, that could also be very large (so to drive Λcc up to
the gravitational cut-off of our theory). How the cosmological expansions depends on λ and then
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on the bare cosmological constant Λcc will be the main topic of Section IV. Using eq. (16), the
parameter c± reads

c± =
2

3β1 (1∓ |γ|)
. (19)

Notice that the c± are distinguished by the sign in front of |γ|. Hence in what follows, without
lack of generality, we will write in an unified way these two branches as

c0 =
2

3β1 (1 + γ)
, (20)

and allow for an arbitrary sign of γ. In terms of these parameters, the Einstein equations reduce
to the following condition for the Hubble parameter

0 = H2

(

−2Λcc + 6H2 M2
⋆ − 2m2 A2

0 + 12β1 H A3
0 −

45β2
m2

H2 A4
0

)

(21)

and substituting (14) in the previous equation we find two allowed branches of non-vanishing
constant solutions for the Hubble parameter

H2
∓ =

m3

18β1 M∗

[

λ∓

√

λ2 −
24(1 + 3γ)

(1 + γ)3

]

. (22)

So, we learn that the higher order self-couplings of the vector, controlled by the interaction La-
grangians (2-4), switch on a non-trivial time-dependent profile for the component A0(t), that drives
cosmological expansion. Choosing parameters such that the right hand side of eq. (22) is positive,
the resulting cosmological evolution corresponds to a de Sitter universe with constant Hubble rate.
To have a positive argument for the square root in (22), we impose the following condition on the
dimensionless parameters λ and γ:

λ2 ≥
24(1 + 3γ)

(1 + γ)3
. (23)

After imposing (23), we can distinguish two options to obtain a positive value for the square of the
Hubble parameter:

1. If λ is positive, the positive branchH+ is always well defined, in the sense that H2
+ is positive.

In the case of negative branch H−, moreover, to have a positive H2
− we have to additionally

demand

1 + 3γ

(1 + γ)3
≥ 0 → γ ≤ −1 or γ ≥ −

1

3
. (24)

2. If λ is negative, the negative branch H− is never well defined. In the case of positive branch
H+, moreover, to have a positive H2

+ we have to additionally demand

1 + 3γ

(1 + γ)3
≤ 0 → −1 ≤ γ ≤ −

1

3
. (25)

The negative branch H− for the Hubble parameter in eq (22) appears particularly interesting, since
the minus sign inside the square parenthesis in (22) compensates possibly large contributions asso-
ciated with the parameter λ (appearing in the expression (17) for the bare cosmological constant).
We will explore in detail this feature in section IV. In the next section, instead, we analyze the
behavior of cosmological fluctuations around the homogeneous configurations we have determined.
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In the previous formula, a plus or minus sign depends on the choice for the branch of the Hubble
parameter in eq (37). M∓ correspond to the effective Planck mass in the de Sitter solution of inter-
est, while M⋆ is the original gravitational Planck scale around a flat solution with no homogeneous
vector profile.

A. Large bare cosmological constant

These results have potentially interesting consequences for the scale of dark energy. Let us start
by considering the case in which the numerical coefficient λ in eq (36) is positive and large (with
‘large’ we mean λ much bigger than (1+3γ)/(1+γ)) corresponding to the case of potentially large
vacuum energy |Λcc|.

We obtain for the two branches (37) of the Hubble parameter the following limiting values

H2
− ≃

2 (1 + 3γ) m3

3β1 (1 + γ)3 λM∗

, (39)

H2
+ ≃

λm3

9β1 M∗
. (40)

In this large λ limit, the effective Planck mass for the two branches of solutions is

M2
− ≃

(1 + γ)3 (γ − 1) λ2

6 (1 + 3γ)2
M2

∗ +
(3 + γ)

(1 + 3γ)
M2

∗ , (41)

M2
+ ≃ M2

∗ . (42)

The simplest and most interesting case to analyze corresponds to the negative branch, H−, M−,
and γ = 1. In this case, the parameter β2 = 0, and eq (41) tells us that the Planck mass does not
get renormalized, M− = M⋆. Eq (39) leads to

H2
− =

m3

3β1 λM⋆
(43)

=

(

m3

3β1

)2
1

Λcc
(44)

=

(

∆3

3 β̂1

)2
1

Λcc
(45)

In the second line of the previous expression, eq (44), we used eq (36): interestingly, the Hubble
scale results inversely proportional to the value of the bare cosmological constant. In the third
line, we used the definition in (9), showing that the previous relation holds also in the limit of
very small parameters m, β1 in which we recover the Abelian and the (approximate) Galileon
symmetries. So, the larger is the bare cosmological constant Λcc, the smaller is H2

−: the actual
value of H2

− then depends on the strong coupling scale ∆ controlling the Galileonic self-interactions
of the longitudinal vector polarization. For example, requiring that H− is of order of present day
Hubble scale,

H− ∼ 10−33eV , (46)

one finds

∆ ≃
(

3β̂1
)

1

3

(

Λcc

M4
⋆

)
1

6

107 eV . (47)

The Friedmann equation

• It is convenient to re-express

Hence

� The negative branch allows to compensate large cc:
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where L(quad)
EH is the expansion of the Einstein-Hilbert action at quadratic order, and the effective

Planck scale is given by

M2
± = M2

∗

(

1−
3β2 c40 m

6

2H4
±M2

∗

)

. (29)

In the previous formula, the ± denotes the choice of branch of background solutions for the Hubble
parameter in eq. (22). Using the results of Section II, M± can be expressed as

M2
± =

⎛

⎜

⎝
1 +

24 (1 + γ)

(γ − 1)3
(

λ±
√

λ2 − 24(3γ−1)
(γ−1)3

)2

⎞

⎟

⎠
M2

∗ . (30)

In order to have a consistent set-up, we impose M2
± > 0. Hence, if γ ̸= −1 the effective Planck scale

depends on the value of the cosmological constant, since it explicitly depends on λ, the parameter
that controls Λcc (see eq (17)). Let us point out that the quantity M2

± of eq (30) can be interpreted
as parameterizing the self-coupling scale of gravitational interactions. On the other hand, if vector
fields directly couple with standard matter, they can also have a role in determining the effective
coupling of gravity with any additional matter content.

B. Vector perturbations

Also vector fluctuations are not difficult to deal with. By splitting the metric shift vector
Ni = NT

i + ∂iψ, with NT
i the transverse components and ψ the longitudinal part, the momentum

constraint imposes NT
i = 0. Interestingly, a straightforward calculation shows that the mass of the

transverse vector fluctuations ÂT
i exactly vanishes around the background cosmological configura-

tions we are considering: at quadratic order, the Lagrangian density for the vector fluctuations ÂT
i

only contains the standard kinetic terms:

L(quad)
vec = −

1

4
FµνF

µν . (31)

Hence, we are dealing with a transverse vector fluctuations with healthy kinetic terms and zero
mass (although the transverse polarizations acquire interactions with the longitudinal component
at third order in perturbations). If we interpret the vector we are dealing with as the photon,
this implies that the usual constraints on the photon mass do not directly apply in the present
context, since the vector is massless. It would be interesting to study in detail the phenomenological
consequences of the higher order interactions associated with Lagrangians Lcov

(1) and Lcov
(2) , that can

lead to screening mechanisms analogous to the gravitational Vainshtein mechanism. This will be
the subject of a future work.

C. Scalar perturbations

The analysis of scalar vector fluctuations is also straightforward. The Hamiltonian and mo-
mentum constraint equations, using also the gauge freedom left at zero momentum, provide
the following conditions (recall that ψ is the longitudinal scalar part of the shift perturbations

Linearized fluctuations around de Sitter

• Tensor Fluctuations

The non-minimal coupling of the vector to gravity induces a renormalization of
the Planck mass

• Vector Fluctuations

• Scalar Fluctuations
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The non-minimal coupling of the vector to gravity induces a renormalization of
the Planck mass

This imposes a lower bound on �cc

• Vector Fluctuations

Good news: The photon mass vanishes around de Sitter solutions!!

• Scalar Fluctuations

No dynamics: longitudinal photon dof is non-dynamical around de Sitter

Is it a problem?

Possibly. To check what happens coupling vector to standard matter
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∗

)

. (29)

In the previous formula, the ± denotes the choice of branch of background solutions for the Hubble
parameter in eq. (22). Using the results of Section II, M± can be expressed as

M2
± =

⎛

⎜

⎝
1 +

24 (1 + γ)

(γ − 1)3
(

λ±
√

λ2 − 24(3γ−1)
(γ−1)3

)2

⎞

⎟

⎠
M2

∗ . (30)

In order to have a consistent set-up, we impose M2
± > 0. Hence, if γ ̸= −1 the effective Planck scale

depends on the value of the cosmological constant, since it explicitly depends on λ, the parameter
that controls Λcc (see eq (17)). Let us point out that the quantity M2

± of eq (30) can be interpreted
as parameterizing the self-coupling scale of gravitational interactions. On the other hand, if vector
fields directly couple with standard matter, they can also have a role in determining the effective
coupling of gravity with any additional matter content.

B. Vector perturbations

Also vector fluctuations are not difficult to deal with. By splitting the metric shift vector
Ni = NT

i + ∂iψ, with NT
i the transverse components and ψ the longitudinal part, the momentum

constraint imposes NT
i = 0. Interestingly, a straightforward calculation shows that the mass of the

transverse vector fluctuations ÂT
i exactly vanishes around the background cosmological configura-

tions we are considering: at quadratic order, the Lagrangian density for the vector fluctuations ÂT
i

only contains the standard kinetic terms:

L(quad)
vec = −

1

4
FµνF

µν . (31)

Hence, we are dealing with a transverse vector fluctuations with healthy kinetic terms and zero
mass (although the transverse polarizations acquire interactions with the longitudinal component
at third order in perturbations). If we interpret the vector we are dealing with as the photon,
this implies that the usual constraints on the photon mass do not directly apply in the present
context, since the vector is massless. It would be interesting to study in detail the phenomenological
consequences of the higher order interactions associated with Lagrangians Lcov

(1) and Lcov
(2) , that can

lead to screening mechanisms analogous to the gravitational Vainshtein mechanism. This will be
the subject of a future work.

C. Scalar perturbations

The analysis of scalar vector fluctuations is also straightforward. The Hamiltonian and mo-
mentum constraint equations, using also the gauge freedom left at zero momentum, provide
the following conditions (recall that ψ is the longitudinal scalar part of the shift perturbations
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for a vector field A

µ

, the simplest of which is a dimension-4 operator weighted by a dimensionless
coupling (call it �):

L
A

= �m

2

A

A

µ

A

µ � �A

µ

A

µ

@

⇢

A

⇢

. (1)

In addition, one can consider a handful of higher-dimensional operators with a similar structure
as the above. These operators break the Abelian gauge invariance, but are nevertheless consistent
since the A

0

-component of the gauge field is a constraint: its equation of motion does not contain
time derivatives acting on the field. So (1) does not induce ghost degrees of freedom: see [7, 8]
for more details. These systems are interesting for their cosmological applications and, as we will
see, they are related with Galileons, since the dynamics of Goldstone bosons associated with the
breaking of symmetry is described by Galilean interactions, at least in an appropriate decoupling
limit.

Interactions as the one in eq. (1) can arise by a process of spontaneous breaking of gauge
symmetry via a Higgs mechanism. Let us consider a gauge invariant action for a complex scalar
Higgs field with higher order derivative couplings,

L
tot

= �(D
µ

�)(Dµ

�)⇤ � 1

4
F

µ⌫

F

µ⌫

� V (�)

+ L
(8)

+ L
(12)

+ L
(16)

. (2)

The first line contains the usual kinetic terms for scalar and vector (F
µ⌫

= @

µ

A

⌫

� @

⌫

A

µ

) and
the Higgs potential. The second line contains new dimension 8, 12, 16 gauge invariant operators,
that we think suppressed by a mass scale ⇤, and describe the Higgs derivative self-interactions
associated with the pattern of spontaneous symmetry breaking that we are interested in.

The covariant derivative acting on the Higgs field contains the gauge field A

µ

, and is defined as

D
µ

= @

µ

� igA

µ

, (3)

with g a coupling constant. The Higgs potential has the traditional ‘Mexican hat’ form

V (�) = �µ

2

��

⇤ +
�

2
(��⇤)2 , (4)

and has a minimum at

h�i ⌘ v =

✓
µ

2

�

◆
1/2

. (5)

We demand that Lagrangian L
tot

is invariant under a U(1) gauge symmetry, acting on the scalar
and on the vector as

� ! � e

i ⇠

, (6)

A

µ

! A

µ

+
1

g

@

µ

⇠ , (7)

for an arbitrary function ⇠. Under a U(1) transformation, the covariant derivative transforms as

D
µ

� ! e

i ⇠ D
µ

� , (8)

D
µ

D
µ

� ! e

i ⇠ D
µ

D
⌫

� . (9)
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• Consistent set-up breaking gauge symmetry with derivative vector interac-
tions

. In appropriate decoupling limit, Goldstone boson has Galileon self-
interactions

. The symmetry can be spontaneously broken by Higgs mechanism

Simple embedding of Galileons in particle physics motivated scenario

• Interesting phenomenology

. Screening mechanism

. Consistent vector model for dark energy?

(see e.g. [Goon et al])
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5

that shows that they are symmetric on their two indexes. It is straightforward to plug these
expressions into eqs (13) to derive explicit forms for the Lagrangians L

(8), (10), (12)

, also using the
following identity involving contractions of "-tensors:

"

↵1...↵j↵j+1...↵4 "
↵1...↵j�j+1...�4 = � (4� j)! �

[�j+1
↵j+1 . . . �

�4]
↵4

. (23)

where [. . . ] denotes index antisymmetrization. For example, let us focus on the lower dimensional
interaction contained in L

(8)

. Denoting with L, P , Q the trace of the tensors, we find

L
(8)

=
↵

(8)
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This expression is manifestly gauge invariant, and describes the interactions between the norm
' of the Higgs field and the gauge-invariant combination of vector and would-be Goldstone bosons.
Analogous expressions can be straightforwardly obtained for L

(12)

, L
(16)

: the resulting formulae
are however cumbersome so we will not write them explicitly. We instead pass to discuss some
phenomenological aspects of the Higgs interactions associated with L

(8)

.

As we explained, our main motivation is to generate, by a phenomenon of spontaneous symmetry
breaking, the vector self-interactions of eq. (1) and their generalizations discussed in [7, 8]. Those
interactions contain derivatives of A

µ

: in order to produce them, it is su�cient to focus on the
interactions weighted by the �

(8)

coe�cients in eqs (25). The pieces in (25) weighted by ↵

(8)

lead
to other interactions between gauge fields and first derivatives of the scalar '; these are of less
interest in the present context, so we will ignore them by setting ↵

(8)

= 0.
The phenomenon of spontaneous symmetry breaking is associated with the Higgs developing a

vacuum expectation value v as in eq. (5), and acquiring a non-trivial dynamics when fluctuating
around the minumum of its potential. In order to study the dynamics of Higgs fluctuations, it is
convenient to expand the norm of the Higgs around the minimum v of the potential, and write

' =

✓
v +

hp
2

◆
(26)

that allows to canonically normalize the Higgs fluctuations h. By applying this expansion, the
initial Lagrangian L

tot

– including the �

(8)

contribution to the L
(8)

of eq. (25) – results
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Â

µ

@

⇢

Â
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that shows that they are symmetric on their two indexes. It is straightforward to plug these
expressions into eqs (13) to derive explicit forms for the Lagrangians L

(8), (10), (12)

, also using the
following identity involving contractions of "-tensors:
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where [. . . ] denotes index antisymmetrization. For example, let us focus on the lower dimensional
interaction contained in L

(8)

. Denoting with L, P , Q the trace of the tensors, we find
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This expression is manifestly gauge invariant, and describes the interactions between the norm
' of the Higgs field and the gauge-invariant combination of vector and would-be Goldstone bosons.
Analogous expressions can be straightforwardly obtained for L

(12)

, L
(16)

: the resulting formulae
are however cumbersome so we will not write them explicitly. We instead pass to discuss some
phenomenological aspects of the Higgs interactions associated with L

(8)

.

As we explained, our main motivation is to generate, by a phenomenon of spontaneous symmetry
breaking, the vector self-interactions of eq. (1) and their generalizations discussed in [7, 8]. Those
interactions contain derivatives of A

µ

: in order to produce them, it is su�cient to focus on the
interactions weighted by the �

(8)

coe�cients in eqs (25). The pieces in (25) weighted by ↵

(8)

lead
to other interactions between gauge fields and first derivatives of the scalar '; these are of less
interest in the present context, so we will ignore them by setting ↵

(8)

= 0.
The phenomenon of spontaneous symmetry breaking is associated with the Higgs developing a

vacuum expectation value v as in eq. (5), and acquiring a non-trivial dynamics when fluctuating
around the minumum of its potential. In order to study the dynamics of Higgs fluctuations, it is
convenient to expand the norm of the Higgs around the minimum v of the potential, and write

' =

✓
v +

hp
2

◆
(26)

that allows to canonically normalize the Higgs fluctuations h. By applying this expansion, the
initial Lagrangian L

tot

– including the �

(8)

contribution to the L
(8)

of eq. (25) – results
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• Break gauge symmetry: the longitudinal vector polarization gets dynamical
and acquires Galileon interactions in a decoupling limit.

Metti figura

• Don’t introduce ghosts: the time-component A0 remains non-dynamical

Nice feature:
The full theory is relatively easy to study – also beyond decoupling limit!

Go beyond Galileon invariance

Screening with vectors

Vector dark energy

Possibly, due to strong coupling

To do: Check what happens coupling to other fields

Higgs mechanism

Vector naturally couple to scalar when implementing a Higgs mechanism.

Spontaneous breaking of gauge symmetry

Good news: A Higgs mechanism can be found in this scenario

Derivative self-interactions for the Higgs boson

Expanding covariant derivatives we get couplings with vectors

Decompose Higgs in vev plus fluctuation

The resulting Lagrangian is

Typically theories with hard symmetry breaking encounter issues:

. Lack of unitarity

. Di�cult to quantize

Spontaneous symmetry breaking leads to better behaved set-ups
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