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Definition of the models



a) f(R) models

Add a function of the Ricci scalar, f(R), to the Einstein-Hilbert action: S = /d4ib‘ V= [ LR+ f(R)) + L
n+1
F(R) = —2A — fR,C? R]% n=1, |fg,|<107° Solar System constraints
n n
. . . o 167G a?
= Modified Poisson equation: VU = 3 @ op — F(SR

2 a’ df R”Jrl

Constraint equation: V4 fr = 3[5}2 — 81Gdp) fr=m = IR S0

Large scales => V — 0 = > we recover GR (in the weak field regime)

Nonlinear equation for J0R(Jp)  butitis self-averaging:

dsS oM ‘ ibuti -
/ Ysr== | ©m.Véfr) + 87rg— 0 no cumulative contribution from small-scale

sV V—o0 nonlinearities: we recover the large-scale Hubble flow.



b) Scalar field models

|) Dilaton models

M3 1
Scalar-tensor theories S = /d4$ V=g [THR - 5(Ve)* = V( ] d*x /=G Lo (Ym, Guu)
Juv = A g,ul/
Jordan-frame metric Einstein-frame metric
= Modified Poisson equation (5th force): U =WUy+ Wy
V20U N = 47Ga*dp Uy = 62(A — A) (A
Klein-Gord : < vy %A
ein-Gordon eq.: 3V P i pdgp

Small-scale nonlinearities are again self-averaging (e.g., periodic solutions).



2) K-mouflage models

S = /d4x V= [ P1R+£ o ] —I—/d4x V=G L (W8 G,)
Coupling matter -- scalar field through the Jordan metric conformal rescaling:

Dilaton models, .. (chameleon screening): L,=—(00)*/2—V(p)

Focus on nonstandard kinetic term: L,(p)=M*K (x) with x=

We recover a cosmological-constant behavior at late times in cases where:

x—0: K(x)~—-1+x+.. M* = pp

or if the first derivative of the kinetic function has a zero on the positive axis:

X« >0: K'(x«) =0, K(x:) <DO.

CoM4

gw/ — AQ((P) 9uv

0 0,0



Perturbative approach



|) Use the quasi-static approximation, which applies to small scales dominated by spatial gradients

» Obtain a non-linear equation that relates the new field to the matter density
F(OR,5p) =0 F(p,6p) =0

This allows one to eventually go back to the standard LCDM formalism
(i.e., we can eliminate the new degree of freedom).

2) Solve this equation through a perturbative expansion over the nonlinear density fluctuation

SR(k) = Z/dkl...dkn Sp(ky + ... + k) by ki, .. ky) 0p(k:)...0p(ky)
n=1

6p(k) =) /dkl...dkn Sp(ki + ... + k) hn(ky, ... k) 0p(k1)...0p(ky,)
n=1

3) Obtain the expression of the full “gravitational” potential (Newton+5th force)

U(k)=) /dkl...dkn op(ki + ... + k) Hy(ky, ..., k) 6p(k1)...0p(ky,)
n=1



a) f(R) models

¥  Constraint equation:

Yt Modified Poisson equation:

b) Scalar field models

|) Dilaton models

Klein-Gordon eq.:

Bop | Baop

Y& Modified Poisson equation (5th force):

2
Y2 o= +
(a2 ) 7T 2Mp  2MEY

2 — CL2 . _ Iy2n—2 dnfR D
Vv 5fR — §[5R—87Tg5p] n>1: kp(a)=H W(R)
v2 ) > 3H2—2n n .
<1 - a2m2> o= M—; " z_:z Y 0R)
167G a’
V20U = 3 a’6p — EéR '=> \IJ((S,O)
L dVA
C2 ) dV dA n=>1: ﬂn(a) = Mp dpm (90)
a? dp dp 9
n>2: kyla)= M, [d”V(_)+_d”A(
= n o c2 d(pn ¥ ’Odgpn
- Kn+1 ﬁn-l—lép (5@)71
g +HZ::2 (Mgll " c2M;;1+1> n!
U="Uy+ Ty Uy =c*(A—-A)
B o%e) C2ﬁn 5 . \Ij 5
\IIA_ZM{;IM( ) 'l: ( IO)

>}



2) K-mouflage models

{:{ ctk/a>1: %VQ\I/N = 47Tgf_15p
1 0 300 1 N dA 1 / Aﬁl
A ¢ $§<G7K>—§V'(V¢K)—%P — ?V-(V(SQOK):M—PI&O
ctk/a > 1 neglect time derivatives of the field fluctuations (while the background evolves with time

and does not follow a quasi-static approximation).



4) Write the equations of motion (in the single-stream approximation), with the " "new gravitational potential”

00

Continuity eq.: 5+ V- [(1+8)v]=0

Ov (v -V)v+Hv=-VVU

Euler eq.: - T

5th force

This can be written in a more concise form as:

2-component vector: ¢ = ( ~(V-v)/a )

Linear part:  O(z,2’) = ép(n’'—n) ép(k'—k)

Equal-time kernels:

time coordinate:

(K-mouflage models)

In A
8—v+(V-V)V+ H+dn v=-VV¥
or dr

4 \

friction 5th force

1 = In(a) r = (k,n,1)

1_3weff Qeff

0 4L T e e

2

/



5) Linear theory

2
f(R) and dilaton models: O°D | 1— 3wl 0D 3 _
Y f(R) S Ty = S [l + ek)ID = 0

scale-dependence of the linear modes

*D [ 1-=3wd'Q! dD 3
% K-mouflage models: ar t 5 e ) g F¢m(l+e)D =0

Ny

Scale-independent modified linear growing mode

2 21.2
S f(R): e(k,n) = i scalar field models: e(k,n) = 267k
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FIG. 1: Linear growing mode D (k, ¢) normalized to the scale
factor a(t) for four (n,mo) models. In each case we show
the results for wavenumbers k = 1hMpc ™" (lower curve) and
k = 5hMpc™" (upper curve), as a function of a(t). These two
scales are in the non-linear regime and have only been chosen
to exemplify the type of effects obtained in modified gravity.

Linear growing mode as
a function of time

FIG. 2: Linear decaying mode D_ (k, t) normalized to a(t) />
for four (n,mo) models. In each case we show the results
for wavenumbers k = 1hMpc™* (upper curve) and 5hAMpc™*
(lower curve), as a function of a(t). These two scales are in
the non-linear regime and have only been chosen to exemplify
the type of effects obtained in modified gravity.

Linear decaying mode as
a function of time

FIG. 5: Linear growth rate f(k,z) = 0lnDy/dIlna for
wavenumber k = 1hMpc™ !, for four (n,mo) models.

Linear growth rate as
a function of time



6) One-loop power spectrum

As in the LCDM case, we can write the solution of the equation of motion as a perturbative expansion
over powers of the linear growing mode:

P(z) =Y ™ (x), with ™ o (¢r)"
n=1
- white circles: linear solution
Diagrams: - black dots: vertices

N ‘<<i - lines with an arrow: retarded propagator
v o2 "

™~

new cubic vertex
This gives in turns the density 2-pt correlation function, or the density power spectrum:
P(k) :Ptree<k)+Plloop(k)+--- Ptree :PL Plloop:P22+P31—|—P3‘li

Ptree =

Diagrams:
P, =38 +¢©H P, =6 —> new diagram

In K-mouflage models, because there is no IR cutoff, the one-loop contribution to P(k) gives a (small)

renormalization of the linear power spectrum: 2 2 4
31 c2t?2 ki

< Pr(k)



Relative deviations from LCDM for the power spectrum P(k)

a) f(R) models

f(R), up to one-loop

— “no-chameleon” simulations A\ (linear modification of gravity: €)

“with-chameleon” simulations []  (nonlinear modification
. . S
of gravity: €, V4, i)

(P-PAcom)/Pacom

linear power spectrum

* one-loop without chameleon

one-loop with chameleon

FIG. 3: Relative deviation from A-CDM of the power spec-
trum in f(R) theories, at redshift z = 0, for n = 1 and
fro = —107*,-107°, and —107%. In each case, the trian-
gles and the squares are the results of the “no-chameleon” and
“with-chameleon” simulations from [25], respectively. We plot
the relative deviation of the linear power (solid line), of the
one-loop power without “chameleon” effect (73,11 =73.1,11 =
0) (dashed line), and with lowest-order “chameleon” effect
("}’5;171 # 0, ’)/5;17171 = 0) (dotted line).

S
4+ Including the quadratic vertex”2:1,1 gives the first sign of the chameleon effect.

4+ The cubic vertex makes no significant change.

4+ Going to |-loop does not increase much the range of scales.



(P-PAcom)Pacom

b) Scalar field models

0.14 |
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linear power spectrum
dilaton A, up to one-loop

_ .- one-loop without screening, only €

. . . S
one-loop with screening, quadratic vertex 72.1,1

one-loop with screening, quadratic & cubic vertices
S S
Y2:1.1 & Y2:1.1,1
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4+ Including the quadratic vertex gives the first sign of the screening effect.
4+ This can “over-correct” the deviation from LCDM and give a power spectrum that is smaller

than the LCDM one. (The linear term speeds up the collapse, but the quadratic term slows down
and would halt the collapse before reaching high densities.)

4+ The cubic vertex corrects for the “over-screening”.

={> gradual convergence of higher orders on perturbative scales

4+ Going to |-loop does increases somewhat the range of scales.



bad convergence
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4+ For some models, going up to the cubic vertex can degrade the analytical predictions !

» bad convergence of higher orders

4+ This corresponds to models where the coupling functions are singular.

A
~

B(a) = fo [1 _ (%)3] (@) = mo [1 B (%)3]7” A=025 m=05

a



c) K-mouflage models

AP(K) / P(Kk)

Scale-independent relative deviation in the linear regime.
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relative deviation from LCDM for the linear (dashed line)
and |-loop (solid line) power spectra



Spherical collapse



To go beyond |-loop standard perturbation theory, we wish to combine the perturbative expansion
with a halo model.

take into account the impact of modified gravity on the halo mass function

» study how the spherical collapse is modified

5th force: 7= AT AT (for f(R) and dilaton models)
or or
i i r(t) 3M \'? )
normalized radius y(t):  y(t) = D3 with ¢ = (47Tp0> , yt=0)=1 S(<r)y=y3 -1

0? 1 — 3wge O Qo —3Q,,y OV
32/ n Wiide OY 4 (y_3 . 1) _ _y A
on 2 on 2 8tGpr Or

e N

in GR, each shell evolve the 5th force depends on the profile
independently before
shell crossing I=:> all shells are coupled

Simplifying approximation: use an ansatz for the density profile, parameterized by the density contrast of the mass-shell
of interest:

typical profile of rare events _
(neglecting nonlinear distortions) o Vm




a) f(R) models

Normalized fluctuation of the Ricci scalar: OR =87Gp a(x)
eq. of motion for the shell M: d;?;éw + - 32dee dgy + Q7m (y;f’ —1)ym = _Q+yM /OxM d;;2 (0 — )
constraint eq. for the new field: % + %ZZ - Qmo(l(T;fLQZSnga—?’ (23)2 = a’mg <Qm0a;;fjijs%; 4QAO>n+2 (o — 6)
4+ Large scales: weak-field (linear) regime, % —0, a—94 » GR
4+ High density: strong-field (nonlinear) regime, 0 — 00, a—9 » GR

=:> chameleon mechanism due to the nonlinearity.



Because of the 5th force, the linear density threshold to reach a given nonlinear density contrast (200) is smaller

than for LCDM.

1.65 [~ ,
16 L ACDM

: - e |
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ol 104
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o (M)

f(R), z=0
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M[h'M,]

FIG. 6: Linear density threshold 1 (M), associated with a

nonlinear chameleon mechanism

weak-field (linear) approximation

Chameleon effect is greater for large masses,
where nonlinearities can overcome spatial

nonlinear density contrast § = 200, for f(R) theories at z = 0. gradients'
The dotted lines (w.f.) correspond to the weak-field limit
(108) and the solid lines (n.l.) to the fully nonlinear constraint
(106).
4+ The linear density threshold becomes mass-dependent: o, (M)

4+ The deviation from LCDM diminishes at high mass.

4 The nonlinear chameleon effect decreases the deviation from LCDM.

It is more efficient for large masses.



1+3(x) and 1+a(x)

100

10

Nonlinear relaxation of the field @() in high-density environments.

X [h'1 Mpc]

exact result €

weak-field approx. €~ ~

100

-
-

10

-

1+0(x)yand 1+a(x)

f(R), z=0




b) Scalar field models

“Normalized” scalar field:

eq. of motion for the shell M:

a(z) = alp(z)]
d®ypr 1 — 3wQ4e dyar N Q_m ( 3 1) B —90,,a32yr O
dn? 2 dn o \m M m2atxy  Or

) o 2da dln 3, dlnm, 4 do\ 2 mgéo/l a’
Klein-Gordon €q.. @ ;% + dor — 2 do - a] <%> ~ T3, [1 +0— 5]
d
4+ Large scales: weak-field (linear) regime, ——0, a— a(l+6)"Y/3 === GR
T

4+ High density: strong-field (nonlinear) regime, 0 — 0o, o — ad~
. 32
dilaton models: @ 0
M2
symmetron models:  — Qg

—

screening mechanism due to the nonlinearity.

1/3

= GR



o (M)

Because of the 5th force, the linear density threshold to reach a given nonlinear density contrast (200) is smaller
than for LCDM.

symmetron models

dilaton models

1.65 . . A —

6l ACDM 16 | ACDM

N T B : 155 |

S Al e nonlinear

1.5 pro T —> Screening —_ 15 ¢
145 | Ao . p=

1.4 | .-""""'~-._- 14 [
1.35 ¢ "= weak-field approx. € == - . L

jg 2 e Wi | PP -135 i W i

B IS dilaton A, 2=0 N symmetronA z=0
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4+ Again, nonlinearities (screening) decrease the deviation from GR.

4+ The rate of convergence to GR at high mass depends on the model (very efficient for symmetron,
very nonlinear models).

4+ Contrary to f(R) models, at low mass we do not converge to weak-field prediction but to GR.



1+3(x) and a(x)/a

Nonlinear relaxation of the field &(x) in high-density environments.

I I allaton A3 Z=(I) Frmmmoommmmmmm e Symmetron A3’ Z=0

100 ¢

100 ¢

d a(x)/a

| _.--» weak-field approx. «..__
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+0(X

\1

3 exact result 0.1
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c) K-mouflage models

a+a dt

: L : , . dlnA, i@ adlnA
Trajectories in physical coordinates: I+ —

) r=—-V,.(Uny+1InA)

the motions of different mass shells are decoupled, as in LCDM
(before shell-crossing)

Scale-independence  m=m>

linear density contrast threshold: ©

Depending on the sign of K’, structure formation proceeds faster or slower than in LCDM.

Departure from LCDM grows faster at low z for models where K’ — 0



Matter power spectrum



Use a halo model: P(k) = Piu(k) + Pou (k)

g

halo mass function
halo density profile

a) f(R) models

[P(k)-P xcom(K)/P acpm(k)

0.1 1
k [h Mpc'1]

FIG. 13: Relative deviation from A-CDM of the power spec-
trum in f(R) theories, at redshift z = 0, for n = 1 and
fro = —10"*,—107°, and —107°%. In each case, the trian-
gles and the squares are the results of the “no-chameleon”
and “with-chameleon” simulations from [25], respectively. We
plot the relative deviation of the nonlinear power power spec-
trum without chameleon effect (w.f., dotted lines) and with
chameleon effect (n.l., solid lines).

N

perturbation theory
Lagrangian-space interpetation
adhesion-like regularization

Relative deviation from LCDM for P(k)

- - = “no-chameleon” simulations A\ (linear modification of gravity: € )

\ “with-chameleon” simulations []  (nonlinear modification

. S
of gravity: €, 7., . i)

4+ Reasonably good agreement between simulations and
analytical predictions, from linear to mildly nonlinear scales.

4+ As compared with parameterizations (PPF), the convergence to GR
on small scales is not put by hand. It is due to the chameleon
mechanism.



b) Scalar field models Relative deviation from LCDM for P(k)
_. ho screening,only €

0.2 : . ) )
< dilaton A, 220 | k : screening, one-l9op WI.th S &
= quadratic & cubic vertices 77 T
a 0.15 ¢
<
Q
=z oy . screening, one-loop with
= |\  AS g L - . s
I 7 S - LT quadratic vertex 72:1.1
o~ 005 |
x
a,
0 1 1
0.1 1
k [h Mpc™ ']
4+ The impact of the nonlinear screening mechanism is greater than for the f(R) models.
4+ Reasonably good agreement with simulations.
4+ Underestimate at high k, could be due to the neglect of halo profile modifications.
= symmetron A, z=0 < symmetron B, z=0
% 0.2 g
Q O
< <
@ o015t o
3 =
3 01 =
Q O
o <
~ 0.05 o
< 3
o T
. o

k [h Mpc '] k [hMpc™]
Bad convergence, but we can guess beforehand
the problematic cases Good convergence, reasonable agreement.



c) Origin of the deviation from LCDM
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FIG. 16: Relative deviation from A-CDM of the power spectrum in f(R), dilaton, and symmetron models, at redshift z = 0.
For each model, we show the contribution from the modification to the two-halo term, APon /(Pon + Pin) (curves with a peak
around k ~ 0.2hMpc™!), and the contribution from the modification to the one-halo term, APy /(Pen + Pin) (curves with a

peak around k ~ 2hMpc ™' or which keep growing at high k). We only consider the results with the full chameleon or screening
effects.

+ At low k, impact from the 2-halo term (perturbation theory).

4+ At high k, impact from the |-halo term (spherical collapse).

4+ Need to go beyond linear theory, and even beyond the perturbative regime.



d) K-mouflage models

AP(K) / P(K)
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relative deviation from LCDM of P(k), at z=0, [, 2.

At low k we recover the linear and |-loop results.

The deviations are amplified on mildly nonlinear scales:

The deviations decrease at high k:

03 r

0.2t

0.1 ¢

-0.1

z=2

0.1

- later stages of the dynamics

1 10
k [h Mpc™']

- large-mass tail of the halo mass function

low-mass tail and inner halo regions

The sign of the deviation depends on the sign of K’

The relative deviations are significantly greater (~10) than for background quantities such as H(z).
One can keep a background very close to LCDM while obtaining 10% deviations for matter

clustering.

The deviations from LCDM decrease rather slowly at higher z



Conclusion

+ “Modified-gravity” models introduce a new degree of freedom (new field).

4+ Using the quasi-static approximation, we can go back to the standard framework,
defined by the matter density and velocity fields, with a modified “gravitational” potential.

4+ “Standard” perturbation theory can be generalized in a direct manner.

The main differences are: :
- new complex time and scale dependences.

- new nonlinear vertices (the egs. of motion are no longer quadratic),
which are the first signs of nonlinear screening mechanisms.

4+ The spherical collapse is more complex, because of the coupling between different shells.
Nevertheless, this can be simplified using approximate density profiles.

4+ Explicit account of nonlinear chameleon or screening mechanisms that ensure convergence to GR
in high-density environments.

4+ By combining perturbation theory and halo model (spherical collapse), one can obtain reasonably good predictions
up to mildly nonlinear scales, for models that are not too singular.

4+ Singular models lead to bad convergence of perturbative expansions and low accuracy
of analytical predictions. Fortunately, these cases can be detected before hand.

4+ To handle difficult cases, or to go beyond the quasi-static approximation, one may need
to explicitly keep track of the new scalar field in the perturbative approach ?



Problems:

- beyond the quasi-static approximation

- cases where the perturbative expansion over the scalar field is not well behaved

- halo profiles (mass-concentration relation)

- taking into account neutrinos/baryons

- bias



Thank you




