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Inflation
An epoch of inflation in good agreement with observations:
• Solves horizon, flatness and monopole problems 

?  Primordial tensor perturbations?
✓ perturbations close to Gaussian: f local

NL = 2.7± 5.8

Planck collaboration: CMB power spectra & likelihood
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter ⇤CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100✓MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.48 1090.43 ± 0.54
100✓⇤ . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04136 1.04147 ± 0.00062
zeq . . . . . . . . . . . 3402 3386 ± 69 3403 3391 ± 60
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• Predicts:
✓ CMB temperature fluctuations: �T

T
⇠ O(10�5)

10 Planck Collaboration: Constraints on inflation

HZ HZ + YP HZ + Ne↵ ⇤CDM
105⌦bh2 2296 ± 24 2296 ± 23 2285 ± 23 2205 ± 28
104⌦ch2 1088 ± 13 1158 ± 20 1298 ± 43 1199 ± 27
100 ✓MC 1.04292 ± 0.00054 1.04439 ± 0.00063 1.04052 ± 0.00067 1.04131 ± 0.00063
⌧ 0.125+0.016

�0.014 0.109+0.013
�0.014 0.105+0.014

�0.013 0.089+0.012
�0.014

ln
⇣

1010As

⌘

3.133+0.032
�0.028 3.137+0.027

�0.028 3.143+0.027
�0.026 3.089+0.024

�0.027
ns — — — 0.9603 ± 0.0073
Ne↵ — — 3.98 ± 0.19 —
YP — 0.3194 ± 0.013 — —
�2� ln(Lmax) 27.9 2.2 2.8 0

Table 3. Constraints on cosmological parameters and best fit �2� ln(L) with respect to the standard ⇤CDM model, using
Planck+WP data, testing the significance of the deviation from the HZ model.

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+tensor model from Planck combined with other data
sets. The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

CL for the WMAP 9-year data and is further excluded by CMB
data at smaller scales.

The model with a quadratic potential, n = 2 (Linde, 1983),
often considered the simplest example for inflation, now lies
outside the joint 95% CL for the Planck+WP+high-` data for
N⇤ . 60 e-folds, as shown in Fig. 1.

A linear potential with n = 1 (McAllister et al., 2010), mo-
tivated by axion monodromy, has ⌘V = 0 and lies within the

95% CL region. Inflation with n = 2/3 (Silverstein & Westphal,
2008), however, also motivated by axion monodromy, now lies
on the boundary of the joint 95% CL region. More permissive
entropy generation priors allowing N⇤ < 50 could reconcile this
model with the Planck data.

✓ 5σ deviation from scale invariance: ns = 0.9603± 0.0073

Images:  Planck
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FIG. 14. BICEP2 BB auto spectra and 95% upper limits
from several previous experiments [2, 40, 42, 43, 47, 49–51,
106]. The curves show the theory expectations for r = 0.2
and lensed-⇤CDM. The BICEP2 uncertainties include sample
variance on an r = 0.2 contribution.

on the tensor-to-scalar ratio and find r = 0.20+0.07
�0.05 with

r = 0 ruled out at a significance of 7.0�, with no fore-
ground subtraction. Multiple lines of evidence suggest
that the contribution of foregrounds (which will lower
the favored value of r) is subdominant: (i) direct pro-
jection of the available foreground models using typical
model assumptions, (ii) lack of strong cross-correlation of
those models against the observed sky pattern (Fig. 6),
(iii) the frequency spectral index of the signal as con-
strained using BICEP1 data at 100 GHz (Fig. 8), and
(iv) the power spectral form of the signal and its appar-
ent spatial isotropy (Figs. 3 and 10).

Subtracting the various dust models at their default
parameter values and re-deriving the r constraint still
results in high significance of detection. As discussed
above, one possibility that cannot be ruled out is a larger
than anticipated contribution from polarized dust. Given
the present evidence disfavoring this, these high values
of r are in apparent tension with previous indirect limits
based on temperature measurements and we have dis-
cussed some possible resolutions including modifications
of the initial scalar perturbation spectrum such as run-
ning. However, we emphasize that we do not claim to
know what the resolution is, if one is in fact necessary.

Figure 14 shows the BICEP2 results compared to pre-
vious upper limits. We have pushed into a new regime of
sensitivity, and the high-confidence detection of B-mode
polarization at degree angular scales brings us to an ex-
citing juncture. If the origin is in tensors, as favored by
the evidence presented above, it heralds a new era of B-
mode cosmology. However, if these B modes represent
evidence of a high-dust foreground, it reveals the scale of
the challenges that lie ahead.
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Note added

Since we submitted this paper new information on
polarized dust emission has become available from the
Planck experiment in a series of papers [107–110]. While
these confirm that the modal polarization fraction of dust
is ⇠ 4%, there is a long tail to fractions as high as 20%
(see Fig. 7 of [107]). There is also a trend to higher po-
larization fractions in regions of lower total dust emission
[see Fig. 18 of [107] noting that the BICEP2 field has a
column density of ⇠ (1�2)⇥1020 H cm�2]. We note that
these papers restrict their analysis to regions of the sky
where “systematic uncertainties are small, and where the
dust signal dominates total emission,” and that this ex-
cludes 21% of the sky that includes the BICEP2 region.
Thus while these papers do not o↵er definitive informa-
tion on the level of dust contamination in our field, they
do suggest that it may well be higher than any of the
models considered in Sec. IX.
In addition there has been extensive discussion of

our preprint in the cosmology community. Two
preprints [111, 112] look at polarized synchrotron emis-

BICEP2: primordial tensor modes?
• Tensor perturbations detected 

through B-mode signal?

r = 0.20+0.07
�0.05 (68% confidence)

r = 0.16+0.06
�0.05 (removing dust)

• In tension with Planck?  
r < 0.11 (95%CL)

Image:  BICEP2
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FIG. 2: Posteriors for r0.05 from both Planck (blue) and BI-
CEP2 (green). For BICEP2, in the top panel, we plot the
tabulated likelihood available from bicepkeck.org, obtained
assuming Planck best-fit values for the remaining cosmologi-
cal parameters; in the bottom panel, we shift the same distri-
bution by �0.04, to account approximatively for dust removal
assuming the plausible DDM2 model discussed by the collab-
oration. For Planck, we show the full posterior distribution
obtained with a Markov Chain Monte Carlo sampling of the
6 Standard Model parameters and r0.05, as well as the 14 nui-
sance parameters of Planck, assuming nt = ↵t = ↵s = 0.
The vertical lines encapsulate the 2� allowed regions for each
distribution.

the publicly released Python likelihood code, and ii) the
best-fit of the public code is actually r

0.002 = 0.2, and not

r

0.05 = 0.2 as found in the BICEP2 analysis. This di↵er-
ence in best-fit is due to two separate facts: a) di↵erent
methods are being used for computing the likelihood, the
public one using the Hamimeche & Lewis code, whereas
the private one uses the formula introduced in [3], para-
graph 9.3.1, and b) the public code uses information from
all nine bandpower bins, whereas the internal one makes
use of only the five first ones.

It should be noted that the di↵erence between the best-
fit values of the two likelihoods is well below 1�. So this
is not alarming in any way, but it leads nonetheless to
an overestimation of the tension with Planck when using

the public code.

In conclusion, the only data product matching exactly
the BICEP2 internal analysis is the tabulated likelihood,
obtained for a fixed cosmology with di↵erent values of
r

0.05, represented in green in the top panel of Fig. 2. This
corresponds to the advertised value of r

0.05 = 0.20+0.07
�0.05.

Reference [2] also discusses several dust models, retain-
ing DDM2 (Data Driven Model 2) as the most plausible
one. After removing the DDM2 contamination, the BI-
CEP2 collaboration obtains r

0.05 = 0.16+0.06
�0.05 (68% CL).

In the lower panel of Fig. 2 we present an approximative
r posterior after dust removal.

COMPARISON WITH PLANCK

Using Eqs. (1) and (2), one can convert r
0.05 from BI-

CEP2 to r

0.002 for comparison with Planck, or vice versa.
For instance, the r

0.05 = 0.2 curve in Fig. 1, which is the
best fit to the data (for nt = ↵t = ↵s = 0), is equivalent
to r

0.002 ' 0.177. However, this would still be an ‘apples
to oranges’ comparison, since the Planck analysis used a
tensor spectral index inferred from the single-field slow-
roll consistency condition nt = �r/8, while BICEP2 used
nt = 0. This means that the underlying tensor primor-
dial spectra was not of the same form, so it is in principle
meaningless to compare the two parameters: If one ex-
periment fits y = a

0

+ a

1

x to the data while the other
fits y = b

0

, we certainly should not compare a

0

and b

0

.

We derived the posterior probability for r

0.05 assum-
ing a flat ⇤CDM+r model and the Planck+WP dataset.
In any Bayesian parameter extraction, the posterior de-
pends on the choice of prior. Here, we choose to re-
strict ourselves to physical models by imposing a prior
r

0.05 � 0 (a di↵erent choice is advocated in the recent
analysis of [4]). After running the class and Monte

Python codes, we obtained r

0.05 < 0.135 at 95% CL,
which is not in significant tension with the BICEP2 re-
sult, as shown in Fig. 2. Even before subtracting the
dust model, the two posteriors overlap at the 9% CL
(corresponding to 1.7�). After removing dust contami-
nation (under the DDM2 assumption), the compatibility
increases2 to the level of 17%, corresponding to a 1.3�
overlap.

With such an overlap between the two likelihoods,
we can conclude (even without calculating Bayesian ev-
idence ratios) that there is no compelling reason at the
moment to invoke extra ingredients in the cosmological
model, in order to alleviate a would-be tension between

2 Here the compatibility is quantified by searching for the confi-
dence level of each likelihood above which there is an overlap.
Another statistical test of the compatibility between two such
likelihoods is presented in [4].

• Not so bad:
Planck:
BICEP2:

k⇤ = 0.002Mpc�1 nt = �r/8

k⇤ = 0.05Mpc�1 nt = 0

For              Planck+WMAP give:k⇤ = 0.05Mpc�1 nt = 0

r0.05 < 0.135 (95%CL)

Image:  Audren et al. 2014 (Audren et al. 2014)



Anomalies
Still much uncertainty - what is the exact nature of inflation?  
Could anomalies represent important clues?

Planck collaboration: CMB power spectra & likelihood

Table 9. Results of the Hausman test applied to the temperature
power spectrum for 2  `  32.

Data set sobs1 P(s1 < sobs1 )
[%]

Commander . . . . . -0.647 0.73
NILC . . . . . . . . . -0.649 0.73
SEVEM . . . . . . . . -0.804 0.50
SMICA . . . . . . . . -0.589 1.33
WMAP9 ILC . . . . -0.234 7.18

Planck temperature power spectrum appears to be in some ten-
sion with the best-fit Planck ⇤CDM model, which for Planck is
almost exclusively determined by the small-scale spectrum. In
this section we assess the significance and impact of this tension
between low and high `s using three di↵erent statistical tests.

We start by applying a modified Hausman test (Polenta et al.
2005; Planck Collaboration II 2013) to the low-` spec-
tra derived from the four foreground-cleaned Planck maps
(Planck Collaboration XII 2013) and the 9-year WMAP ILC
map, using multipoles up to `max = 32. This test uses the statistic
s1 = supr B(`max, r), where

B(`max, r) =
1p
`max

int(`maxr)X

`=2

H`, r 2 [0, 1] (29)

H` =
Ĉ` �C`p

Var Ĉ`
, (30)

and Ĉ` and C` denote the observed and model power spec-
tra, respectively. Intuitively, this statistic measures the relat-
ive bias between the observed spectrum and model, meas-
ured in units of standard deviations, while taking into account
the so-called “look-elsewhere e↵ect” by maximizing s1 over
multipole ranges. We use realistic Planck ‘FFP6’ simulations
(Planck Collaboration I 2013) to derive the empirical distribu-
tion of s1 under the null hypothesis. Figure 38 compares the res-
ults obtained from the data with the simulation distribution, and
Table 9 lists significances. As measured by this statistic, we see
that a negative bias is found in the low-` Planck power spectrum
relative to the ⇤CDM model at the 99% confidence level.

For the WMAP ILC map the significance of the negative bias
nominally decreases to 93%. This is consistent with the find-
ings in Sect. 8.3, where it was shown that the WMAP temperat-
ure power spectrum is 2.5–3 % higher than the Planck spectrum
at low `’s. However, as discussed in Planck Collaboration XI
(2013), a similar amplitude di↵erence between the two exper-
iments is also seen at smaller scales. Since the current test com-
pares the observed WMAP data with the best-fit Planck ⇤CDM
model, the present test is not optimal for assessing internal con-
sistency between low and high `s within the WMAP data.

Next, to obtain a quantitative measure of the relative power
discrepancy between low and high `s, we fit the two-parameter
amplitude–tilt power spectrum model (see Sect. 8.1.2) to the
Planck data using the low-` likelihood restricted to various mul-
tipole ranges defined by 2  `  `max, where `max is allowed to
vary. Thus, this measures the amplitude of the low-` spectrum
relative to the best-fit Planck ⇤CDM spectrum, which is driven
by the smaller angular scales. Figure 39 shows the resulting con-
straints on the power spectrum amplitude, q, as a function of
`max, after marginalizing over the tilt, n. For comparison, we also
show similar constraints derived using the low-`WMAP temper-
ature likelihood up to ` = 30. The best-fit amplitude is q ⇠ 0.9
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Figure 38. Results of the Hausman test applied to the temperat-
ure power spectrum for 2  `  32. The black histogram shows
the expected distribution, estimated with simulations, of the s1
test statistic. The vertical bars represent Planck CMB maps and
the 9-year WMAP ILC map. Note that the statistic is indistin-
guishable for the NILC and Commander maps.
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Figure 39. Power spectrum amplitude, q, relative to the best-fit
Planck model as a function of `max, as measured by the low-`
Planck and WMAP temperature likelihoods, respectively. Error
bars indicate 68 and 95% confidence regions.

for `max = 20–35, di↵erent from unity at a statistical signific-
ance of 2–2.5� by this measure. The WMAP spectrum shows
a consistent behaviour, up to the same overall scaling factor of
2.5–3% between Planck and WMAP discussed above. We have
verified that these results are insensitive to the (well-known) low
quadrupole moment by excluding C2 from the analysis; the large
cosmic variance of this particular mode results in a low overall
statistical weight in the fit.

Finally, we assess the impact of the low-` power deficit on
the ⇤CDM model estimated using the Planck likelihood11 (aug-
mented with the WMAP polarisation likelihood). We fit a low-`
rescaling amplitude, Alow for ` < `low jointly with the ⇤CDM
parameters, i.e., C` = AlowC⇤CDM

` for ` < `low and C` = C⇤CDM
`

11 We have verified that the following results are insensitive to
whether Plik or CamSpec are used for the high-` likelihood.

34

• e.g. 5-10% power deficit on 
large scales (l  40)
statistical significance 2.5—3σ 

Cl(A, n) = ACfid
l

✓
l

l0

◆n

l
0

=
(2 + l

max

)

2

Images:  Planck

Other anomalies include:
• Hemispheric/Dipole Asymmetry  

• Cold spot

also evidence for open inflation?
Kanno et al. 2013



r increases anomaly significance 
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Figure 2. ⇤CDM predictions for CTT
` at low `, for r = 0, 0.05, 0.1, 0.15, 0.2, and 0.25. The

data are from Planck [28], and the theory curves are computed using CLASS with the Planck

best-fit values for the parameters of ⇤CDM.

collaboration, who found a significance for the suppression of order 2 � 2.5 � [28].

Importantly, we find that the contribution of the primordial tensor modes enhances

the significance considerably.4 Even though the techniques we have used here are

crude, we expect that more accurate methods will not shift the significances by very

much, and therefore we consider our methods su�cient to illustrate the point.

4In doing this analysis, we have used the cosmological parameters reported by the Planck collab-
oration [29]. In principle we should allow them to vary to counter the surprisingly large value of r,
but this will not be of much help since changing them significantly would disrupt the beautiful fit at
higher `. Recently however Spergel, Flauger, and Hlozek have re-analyzed the data using a di↵erent
cleaning strategy for the maps, and found interesting parameter shifts [30] which go in the direction of
returning the parameters to their WMAP9 values [31]. This would end up decreasing our significance
values somewhat, since after all the increased tension at low ` reported by Planck was mostly a con-
sequence of the parameter shifts from WMAP9. We are in no position to take a side in this debate,
but we hope it will be resolved in the upcoming Planck data release.

– 5 –

r = 0, 0.05, 0.1, 0.15, 0.2, 0.25

• Planck + WMAP suggest power deficit on large scales,  
   even with r = 0

• If signal contains contribution from r:  
    the scalar contribution must be even more suppressed

• Non-zero tensor modes — as suggested by BICEP2 — 
would contribute to         on large scales l . 100

Image:  Bousso et al. 2014



Alleviating the tension
• A non-standard tensor spectrum?

Planck gives r at            , whilst BICEP2 at 

• Suppression of the scalar spectrum:

l ⇡ 30 l ⇡ 60
Large, positive        preferred, but inflation predicts  )

• Anti-correlated isocurvature modes:

CTT
l

��
SW

/ P⇣ + 4P⇣S + 4PS
negative contribution

• Non-zero running: ↵s = dns/d ln k
Require                          , but inflation gives  )

• A fast-roll phase at the beginning of inflation:

)
enhanced       leads to suppression

P⇣ / H4

�̇2

����
k=aH

�̇

Occurs in Open Inflation, but also have 
additional effects from tunnelling



Evidence for non-power-law spectrum
• Even before detection of r a cut-off spectrum was favoured 28 Planck Collaboration: Constraints on inflation

exception of highly tuned very low frequency oscillations that
can change the acoustic peak structure). We thus restrict our-
selves to varying only the parameters describing the features and
keep all remaining cosmological and nuisance parameters fixed
to their ⇤CDM best fit values.20

8.3. Results

For all three models we find that including these additional fea-
tures improves the quality of the fit with respect to a pure power
law spectrum. For the Planck+WP data, we show the best fit pri-
mordial curvature power spectra and temperature angular power
spectrum residuals in Fig. 18, and report the best fit parameter
values in Table 11. Since in all three cases the likelihood func-
tions do not tend to zero in all directions of the respective param-
eter spaces, the Bayesian quantities (i.e., posterior distributions
and Bayes factors) depend strongly on the choice of prior. For
this reason, we also quote two prior-independent quantities, the
effective �2 (i.e., �2� lnLmax = 2 lnLmax � 2 lnL⇤CDM

max ) and the
profile �2� lnLmax as a function of selected model parameters
plotted alongside the marginalized posteriors in Fig. 19, which
illustrates the unconventional shape of the likelihood functions.

For the wiggles model, oscillations around the first acous-
tic peak and in the 700 < ` < 900 range improve the fit to the
data, whereas for the best fit step inflation model the spectrum
between the Sachs-Wolfe plateau and the first acoustic peak is
fit better. Quantitatively, the cutoff model improves the fit only
modestly, with ��2

e↵ ⇡ 3, but both the wiggles and step inflation
models lead to a larger improvement, with ��2

e↵ ⇡ 10, at the
cost of three new parameters. Already for pre-Planck data, im-
provements of ��2

e↵ ⇡ 10 have been reported in related analyses
(e.g., Peiris et al. 2003; Martin & Ringeval 2004; Elgarøy et al.
2003; Covi et al. 2006; Meerburg et al. 2012; Benetti et al. 2013;
Peiris et al. 2013). Note that in the step inflation model, the best
fit does not coincide with the maximum of the marginalized pos-
terior probability, indicating that some degree of fine tuning is
necessary to reach the maximum of the likelihood. The maxi-
mum of the marginalized posterior at ln

�

⌘f/Mpc
� ⇡ 7.2 actually

reproduces the feature at ` ⇡ 20�40 found previously in WMAP
data (Peiris et al., 2003). The secondary peak at ln

�

⌘f/Mpc
� ⇡ 4

corresponds to a feature at multipoles ` ⇡ 1800, where the anal-
ysis of Sect. 7 found a feature. However the model does not
account for this feature well, yielding an improvement of only
��2

e↵ ⇡ 3.
Whether or not these findings can be considered statistically

significant or arise simply from overfitting noisy data is not a
trivial question (see, for instance, the discussion in Bennett et al.
(2011)). From a frequentist statistics point of view, an answer
would require the rather involved procedure of repeating the
analysis on a large set of simulations. In designing the test statis-
tic, special care would need to be taken in making sure to take
into account the look elsewhere effect (i.e., the fact that a partic-
ular observed anomaly may be very unlikely, whereas the prob-
ability of observing some anomaly may be much larger). From a
Bayesian statistics point of view, it is the Bayesian evidence that
can tell us how probable the extended models are, compared to
the baseline power law primordial power spectrum.

20 An a posteriori maximization of the likelihood in a narrow parame-
ter range around the best fit feature model parameters, including a varia-
tion of all remaining cosmological and nuisance parameters, shows that
the change in the best fit �2

e↵ is merely O(1) and hence does not affect
our conclusions.
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For the models and the choice of prior probabilities consid-
ered here, the Bayesian evidence in fact favours, albeit weakly,
the simple power law spectrum over the more complex models.
The reason is that the Bayesian evidence punishes a lack of pre-
dictivity in these models. Most of the parameter space volume
is not compatible with the data. A good match to observations
is obtained within only a small subregion. Nonetheless, the ob-
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Model �2� lnLmax ln B0X Parameter Best fit value

Wiggles �9.0 1.5
↵w 0.0294
! 28.90
' 0.075 · 2⇡

Step inflation �11.7 0.3
Af 0.102
ln
�

⌘f/Mpc
�

8.214
ln xd 4.47

Cutoff �2.9 0.3 ln
⇣

kc/Mpc�1
⌘

�8.493
�c 0.474

Table 11. Improvement in fit and logarithm of the Bayes factor
B0X with respect to power law ⇤CDM and best fit parameter
values for the wiggles, step inflation, and cutoff models. The
larger ln B0X , the greater the preference for a featureless power
law spectrum.

served features remain interesting since if they are real, they will
also leave traces in other observabless, most notably, in the E-
mode polarization spectrum, where the signatures of features in
the primordial spectrum are actually less washed out than in the
temperature spectrum (Mortonson et al., 2009). The forthcom-
ing Planck polarization data will prove very useful in this regard.
Additionally, since strong deviations from power law behaviour
typically indicate nonlinear physics, these models generically
also predict a non-Gaussian signal potentially observable in the
bispectrum (Planck Collaboration XXIV, 2013). However, the
best fit wiggles and step inflation models have oscillations with
a frequency too high to be accessible to bispectrum analysis at
present.

9. Combined analysis with Planck fNL constraints
for single field inflation

In the previous sections we have analysed inflationary models
with a canonical kinetic term. This led to the tensor-to-scalar
consistency condition requiring nt = �r/8. It is interesting to
consider more general classes of inflationary models charac-
terized by a non-standard kinetic term (Garriga & Mukhanov,
1999) or more general higher-derivative operators (Kobayashi
et al., 2010). An interesting subclass of these models are those
in which the Lagrangian is a general function of the scalar in-
flaton field and its first derivative: L = P(�, X), where X =
�gµ⌫@µ�@⌫�/2. A more general extension is provided by the so-
called effective field theory of inflation (Cheung et al., 2008),
which has a richer phenomenology.

We restrict our analysis to the first class of models (Garriga
& Mukhanov, 1999; Chen et al., 2007), which includes k-
inflation models (Armendáriz-Picón et al., 1999; Garriga &
Mukhanov, 1999), and Dirac-Born-Infield (DBI) models intro-
duced in the context of brane inflation (Silverstein & Tong, 2004;
Alishahiha et al., 2004). In this class of models inflation can
take place with a steep potential or can be driven by the ki-
netic term. One of the main features of inflationary models with
a non-standard kinetic term is that the inflaton fluctuations can
propagate at a sound speed cs < 1. As shown in previous anal-
yses (e.g., Peiris et al., 2007; Powell et al., 2009; Lorenz et al.,
2008; Agarwal & Bean, 2009) there are strong degeneracies be-
tween the parameters determining the observable power spec-
tra. Constraints on primordial non-Gaussianity can help break
this degeneracy, and we show how Planck’s combined measure-
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Fig. 19. Marginalized posterior probability (red) and profile
�2� lnLmax (black) for selected parameters of the wiggles (top),
step inflation (middle), and cutoff model (bottom).

ment of the power spectrum and the nonlinearity parameter fNL
(Planck Collaboration XXIV, 2013) improves constraints on this
class of models.

In models with a non-standard kinetic term the sound speed
of the inflaton is given by c2

s = P,X/(P,X + 2XP,XX) (Garriga
& Mukhanov, 1999), so that in the canonical models, where
P(�, X) = V(�) � X, one finds cs = 1, while in general a non-
trivial cs < 1 corresponds to deviations from this standard case.
Therefore, in these models, new parameters, such as the sound
speed and its running, appear in the expressions for the inflation-
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B0X with respect to power law ⇤CDM and best fit parameter
values for the wiggles, step inflation, and cutoff models. The
larger ln B0X , the greater the preference for a featureless power
law spectrum.

served features remain interesting since if they are real, they will
also leave traces in other observabless, most notably, in the E-
mode polarization spectrum, where the signatures of features in
the primordial spectrum are actually less washed out than in the
temperature spectrum (Mortonson et al., 2009). The forthcom-
ing Planck polarization data will prove very useful in this regard.
Additionally, since strong deviations from power law behaviour
typically indicate nonlinear physics, these models generically
also predict a non-Gaussian signal potentially observable in the
bispectrum (Planck Collaboration XXIV, 2013). However, the
best fit wiggles and step inflation models have oscillations with
a frequency too high to be accessible to bispectrum analysis at
present.

9. Combined analysis with Planck fNL constraints
for single field inflation

In the previous sections we have analysed inflationary models
with a canonical kinetic term. This led to the tensor-to-scalar
consistency condition requiring nt = �r/8. It is interesting to
consider more general classes of inflationary models charac-
terized by a non-standard kinetic term (Garriga & Mukhanov,
1999) or more general higher-derivative operators (Kobayashi
et al., 2010). An interesting subclass of these models are those
in which the Lagrangian is a general function of the scalar in-
flaton field and its first derivative: L = P(�, X), where X =
�gµ⌫@µ�@⌫�/2. A more general extension is provided by the so-
called effective field theory of inflation (Cheung et al., 2008),
which has a richer phenomenology.

We restrict our analysis to the first class of models (Garriga
& Mukhanov, 1999; Chen et al., 2007), which includes k-
inflation models (Armendáriz-Picón et al., 1999; Garriga &
Mukhanov, 1999), and Dirac-Born-Infield (DBI) models intro-
duced in the context of brane inflation (Silverstein & Tong, 2004;
Alishahiha et al., 2004). In this class of models inflation can
take place with a steep potential or can be driven by the ki-
netic term. One of the main features of inflationary models with
a non-standard kinetic term is that the inflaton fluctuations can
propagate at a sound speed cs < 1. As shown in previous anal-
yses (e.g., Peiris et al., 2007; Powell et al., 2009; Lorenz et al.,
2008; Agarwal & Bean, 2009) there are strong degeneracies be-
tween the parameters determining the observable power spec-
tra. Constraints on primordial non-Gaussianity can help break
this degeneracy, and we show how Planck’s combined measure-
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Fig. 19. Marginalized posterior probability (red) and profile
�2� lnLmax (black) for selected parameters of the wiggles (top),
step inflation (middle), and cutoff model (bottom).

ment of the power spectrum and the nonlinearity parameter fNL
(Planck Collaboration XXIV, 2013) improves constraints on this
class of models.

In models with a non-standard kinetic term the sound speed
of the inflaton is given by c2

s = P,X/(P,X + 2XP,XX) (Garriga
& Mukhanov, 1999), so that in the canonical models, where
P(�, X) = V(�) � X, one finds cs = 1, while in general a non-
trivial cs < 1 corresponds to deviations from this standard case.
Therefore, in these models, new parameters, such as the sound
speed and its running, appear in the expressions for the inflation-
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< 10�2 Mpc�1. We report the evidences for both priors, although this makes little
di↵erence to the conclusions.
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Open Inflation: a good candidate
• String theory predicts a landscape of vacua

• Two key features:          1. Universe after tunnelling is open
2. Steep potential near barrier

If slow-roll phase short enough, e.g. N ~ 60, expect to see 
signatures of spatial curvature and steep potential? 

)

• Our universe may have emerged after false-vacuum decay
V (�)

tunnelling

fast-roll
slow-roll

�FV�N�S

�
0



Coleman de Luccia instanton
• False vacuum decay determined using instanton method:

�

V
' Ae�B/~ B = SE(�)� SE(�FV )

SE(�) = Euclidean action

• Minimising the action gives Euclidean equations of motion: 

H2
E =

1

3

 
�̇2

2
� V

!
+

1

a2E
�̈+ 3HE�̇� V� = 0

) interpret as dynamics in potential -V 

Transition rate:

•          symmetry is assumed to minimise         
    (has been proven in absence of gravity)

ds2E = d⇠2 + a2E(⇠)(d�
2
E + sin2 �Ed⌦

2
2) � = �(⇠)

Coleman et al. ‘78



Coleman de Luccia instanton
�FV�N

�V (�)

Bounce solution:
• BC          :⇠ = 0

• BC                   :⇠ = ⇠F � 0

aE = 0 = �̇
� = �N , ȧE = 1

� = �FV , ȧE = �1
aE = 0 = �̇

Analytically continue to Lorentzian signature: 
ds2 = �dt2 + a2(t)(d�2 + sinh2 �d⌦2)

�̈+ 3H�̇+ V� = 0H2 =
1

3

 
�̇2

2
+ V

!
+

1

a2

These equations describe our open universe after tunnelling

Initial conditions: a = 0 = �̇, � = �N , ȧ = 1

• Require                  in tunnelling region 



Dynamics after bubble nucleation

ln(a)
ln(aS)ln(a⇤)

ln(1/H⇤)

ln(1/HS)

ln(1/H)

ln(a/pK)

ln(a/pH0)

ln(a/psup)

fast-roll slow-rollcurvature  
domination

• Given initial conditions expect three stages: 

1. Curvature domination: H =
1

a
, a = t, �̇ = �V�t

4
Large Hubble friction ) field slowly rolling

2. Fast-roll phase after transition to potential domination due 
to steepness of potential near tunnelling barrier

3. Slow-roll inflation 

• Observational constraints:
A

B Scale of onset of suppression 
e.g. Abazajian et al.:

p
knot

/pH0 ' 20

ln
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= ln

✓
1p
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& ln(10)

Spatial curvature of universe



Additional suppression
• In open inflation:  
             fast-rolling not the only source of suppression
• Additional suppression reflects memory of the tunnelling phase

PR =
p3

2⇡2
|Rp

c |2 PT =
p3

2⇡2
|Up|2

U 00
p + 2HU 0

p + (p2 + 1)Up = 0

Rp00
c + 2A(⌘, p)Rp0

c +B(⌘, p)Rp
c = 0

Spectra given as: 

where:

• Use fitting functions based on analytic results of Garriga et al.

• p-dependent 
suppression factor

• modified horizon 
crossing condition

non-standard



Additional suppression

•       modified h.c. condition:
) large wavelength modes freeze later

their amplitudes are thus suppressed)

• p-dependent suppression factor:

)

Bubble wall effects:



Examples:  
• Consider two toy models from Linde et al. ’99. 

Model 1:

Model 2:
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• M2 “sharper” - expect suppression to be more localised

pot. dom. pot. dom.
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Background evolution: Model 1
Plot 1: Hubble evolution
From L to R, vertical lines = 
• Potential—Curvature equality
• Horizon exit of scale         as 

determined assuming

• Horizon exit of scale        
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Plot 2: Hubble components
• Kinetic term always 

subdominant, but 
enhanced at beginning of 
potential domination

• Kinetic—Curvature equality 
coincides with         exit in M1



Power spectra: Model 1

Recall fitting formulae:

we use 

• fast-roll doesn’t affect tensors

• p-dep. supp. factor important

fast-roll not only "
source of suppression

)

assuming                   , 

• qualitatively similar for M2

Tensor Analytic

Linde et al. numerics

Naive hor. crossing

No sup. fact.

Scalar Analytic
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Suppression in Models 1 & 2
Transition from blue- to red-tilt at 
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M1

Model 1:
• Curvature—potential equality 
    occurs at N = 66
) ~ 10 e-foldings of fast-roll

• Even for unobservable 
curvature  

    get suppression for 

PR(p)/PR(pred)Plot:                            ,"

• Can satisfy constraints on "
          and give suppression
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M2

Model 2:

• ~ 6 e-foldings of fast-roll
) suppression on smaller 

range of scales

⌦K



Conclusions
• Planck and WMAP hint at a deficit in CMB power on large scales

• This tension is worsened if the results of BICEP2 are confirmed

1. Fast-rolling of the inflaton after tunnelling 

• Open Inflation models offer a viable explanation for the deficit

2.  Additional effects due to the tunnelling

• The source of suppression in Open Inflation is two-fold:

• Have studied two toy models that are qualitatively viable

• A more quantitative analysis required


