Reviving Open Inflation

Jonathan White (YITP)

Relativistic Cosmology, 1-day workshop 16th Sept. 2014 Yukawa Institute for Theoretical Physics

Based on arXiv: 1407.5816 in collaboration with Y-I. Zhang and M. Sasaki

Inflation

An epoch of inflation in good agreement with observations:

- Solves horizon, flatness and monopole problems
- Predicts:
 - ✓ CMB temperature fluctuations:
 - **✓** 5σ deviation from scale invariance:
 - ✓ perturbations close to **Gaussian**:

$$\begin{split} \frac{\delta T}{T} &\sim \mathcal{O}(10^{-5}) \\ n_s &= 0.9603 \pm 0.0073 \\ f_{NL}^{\rm local} &= 2.7 \pm 5.8 \end{split}$$

? Primordial tensor perturbations?

BICEP2: primordial tensor modes?

• **Tensor perturbations detected** through B-mode signal?

 $r = 0.20^{+0.07}_{-0.05} \quad (68\% \text{ confidence})$ $r = 0.16^{+0.06}_{-0.05} \quad (\text{removing dust})$

- In tension with Planck? $r < 0.11 \, (95\% \, CL)$

• Not so bad: (Audren et al. 2014)

Planck: $k_* = 0.002 \,\mathrm{Mpc}^{-1} n_t = -r/8$ BICEP2: $k_* = 0.05 \,\mathrm{Mpc}^{-1} n_t = 0$

For $n_t = 0$ Planck+WMAP give:

 $r_{0.05} < 0.135 \, (95\% \, CL)$

Anomalies

Still much uncertainty - what is the exact nature of inflation? Could anomalies represent important clues?

• e.g. 5-10% power deficit on large scales $(l \le 40)$ statistical significance 2.5—3 σ

$$C_l(A, n) = AC_l^{\text{fid}} \left(\frac{l}{l_0}\right)^r$$
$$l_0 = \frac{(2 + l_{\text{max}})}{2}$$

Other anomalies include:

- Hemispheric/Dipole Asymmetry also evidence for open inflation? Kanno et al. 2013
- Cold spot

Images: Planck

r increases anomaly significance

- Planck + WMAP suggest power deficit on large scales,
 even with r = 0
- Non-zero tensor modes as suggested by BICEP2 would contribute to C_l^{TT} on large scales $l \lesssim 100$
- If signal contains contribution from *r*: the **scalar contribution must be even more suppressed**

Alleviating the tension

• A non-standard tensor spectrum?

Planck gives r at $l \approx 30$, whilst BICEP2 at $l \approx 60$

- \Rightarrow Large, positive n_t preferred, but inflation predicts $n_t \leq 0$
- Suppression of the scalar spectrum:
 - Non-zero running: $\alpha_s = dn_s/d\ln k$ \Rightarrow Require $|\alpha_s| \sim \mathcal{O}(10^{-2})$, but inflation gives $|\alpha_s| \sim \mathcal{O}(\epsilon^2)$
 - Anti-correlated isocurvature modes:

 $C_l^{TT}|_{SW} \propto \mathcal{P}_{\zeta} + 4\mathcal{P}_{\zeta S} + 4\mathcal{P}_S$ negative contribution

• A **fast-roll phase** at the beginning of inflation:

enhanced $\dot{\phi}$ leads to suppression

Occurs in Open Inflation, but also have additional effects from tunnelling

Evidence for non-power-law spectrum

• Even before detection of r a cut-off spectrum was favoured

$$\mathcal{P}_{\zeta} = A_s \left(\frac{k}{k_*}\right)^{n_s - 1} \left[1 - \exp\left\{-\left(\frac{k}{k_c}\right)^{\lambda_c}\right\}\right]$$

Model	$-2\Delta \ln \mathcal{L}_{max}$	$\ln B_{0X}$	Parameter	Best fit value
Cutoff	-2.9	0.3	$\frac{\ln \left(k_{\rm c}/{\rm Mpc}^{-1}\right)}{\lambda_{\rm c}}$	-8.493 0.474

Evidence increased after BICEP2

Model	$\Delta \log Z_{\rm Broad}$	$\Delta \log Z_{\text{Informative}}$	$2\Delta \log \mathcal{L}_{\max}$
No Knots			_
1 Knot	1.6	3.1	6.2
Model	$\Delta \log Z_{\rm Broad}$	$\Delta \log Z_{\text{Informative}}$	$2\Delta \log \mathcal{L}_{\max}$
$\frac{\text{Model}}{\Lambda \text{CDM} + r}$	$\Delta \log Z_{\rm Broad}$	$\Delta \log Z_{\text{Informative}}$	$2\Delta \log \mathcal{L}_{\max}$

broken spectrum preferred i.e. only large scales affected

Open Inflation: a good candidate

- String theory predicts a landscape of vacua
- Our universe may have emerged after false-vacuum decay

- Two key features: 1. Universe after tunnelling is open
 2. Steep potential near barrier
- ⇒ If slow-roll phase short enough, e.g. N ~ 60, expect to see signatures of spatial curvature and steep potential?

Coleman de Luccia instanton

• False vacuum decay determined using **instanton method**:

Transition rate:
$$\frac{\Gamma}{V} \simeq A e^{-B/\hbar}$$
 $B = S_E(\phi) - S_E(\phi_{FV})$
 $S_E(\phi) = \text{Euclidean action}$

• O(4) symmetry is assumed to minimise $S_E(\phi)$ (has been proven in absence of gravity) Coleman et al. '78

$$ds_{E}^{2} = d\xi^{2} + a_{E}^{2}(\xi)(d\chi_{E}^{2} + \sin^{2}\chi_{E}d\Omega_{2}^{2}) \qquad \phi = \phi(\xi)$$

• Minimising the action gives Euclidean equations of motion:

$$H_E^2 = \frac{1}{3} \left(\frac{\dot{\phi}^2}{2} - V \right) + \frac{1}{a_E^2} \qquad \ddot{\phi} + 3H_E \dot{\phi} - V_\phi = 0$$

 \Rightarrow interpret as dynamics in potential -V

Coleman de Luccia instanton

Analytically continue to Lorentzian signature:

$$ds^{2} = -dt^{2} + a^{2}(t)(d\chi^{2} + \sinh^{2}\chi d\Omega^{2})$$

$$H^{2} = \frac{1}{3} \left(\frac{\dot{\phi}^{2}}{2} + V \right) + \frac{1}{a^{2}} \qquad \qquad \ddot{\phi} + 3H\dot{\phi} + V_{\phi} = 0$$

These equations describe our open universe after tunnelling

Initial conditions:

$$a = 0 = \dot{\phi}, \ \phi = \phi_N, \ \dot{a} = 1$$

Dynamics after bubble nucleation

- Given initial conditions expect three stages:
 - **1. Curvature domination:** $H = \frac{1}{a}, a = t, \dot{\phi} = -\frac{V_{\phi}t}{4}$ Large Hubble friction \Rightarrow field slowly rolling
 - 2. Fast-roll phase after transition to potential domination due to steepness of potential near tunnelling barrier
 - 3. Slow-roll inflation
- Observational constraints:
- A Spatial curvature of universe $\ln\left(\frac{p_{H_0}}{p_{\rm K}}\right) = \ln\left(\frac{1}{\sqrt{\Omega}_{\rm K}}\right) \gtrsim \ln(10)$
- B Scale of onset of suppression e.g. Abazajian et al.:

$$p_{\rm knot}/p_{H_0}\simeq 20$$

Additional suppression

- In open inflation: fast-rolling not the only source of suppression
- Additional suppression reflects memory of the tunnelling phase

Spectra given as:
$$\mathcal{P}_{\mathcal{R}} = \frac{p^3}{2\pi^2} |\mathcal{R}_c^p|^2$$
 $\mathcal{P}_T = \frac{p^3}{2\pi^2} |Up|^2$
where: $U_p'' + 2\mathcal{H}U_p' + (p^2 + 1)U_p = 0$ non-standard $\mathcal{R}_c^{p''} + 2\mathcal{A}(\eta, p)\mathcal{R}_c^{p'} + \mathcal{B}(\eta, p)\mathcal{R}_c^p = 0$

Use fitting functions based on analytic results of Garriga et al.

$$\mathcal{P}_{\mathcal{R}} = \left(\frac{H^2}{2\pi\dot{\phi}}\right)_{t=t_{\mathcal{R},p}}^2 \frac{\cosh(\pi p) + \cos(\delta_p)}{\sinh(\pi p)} \frac{p^2}{c_1^2 + p^2},$$
$$\mathcal{P}_T = 4\left(\frac{H}{2\pi}\right)_{t=t_{T,p}}^2 \frac{\cosh(\pi p) - 1}{\sinh(\pi p)} \frac{p^2}{c_2^2 + p^2}$$

- p-dependent suppression factor
- modified horizon crossing condition

Additional suppression

$$\mathcal{P}_{\mathcal{R}} = \left(\frac{H^2}{2\pi\dot{\phi}}\right)_{t=t_{\mathcal{R},p}}^2 \frac{\cosh(\pi p) + \cos(\delta_p)}{\sinh(\pi p)} \frac{p^2}{c_1^2 + p^2},$$
$$\mathcal{P}_T = 4\left(\frac{H}{2\pi}\right)_{t=t_{T,p}}^2 \frac{\cosh(\pi p) - 1}{\sinh(\pi p)} \frac{p^2}{c_2^2 + p^2}$$

- \mathcal{R}^{p}_{c} modified h.c. condition: $p^{2} + 4 = a^{2}H^{2}\left(1 + \frac{\ddot{\phi}}{\dot{\phi}H}\right)^{2} \left(1 + 2\frac{\ddot{\phi}}{\dot{\phi}H}\right)^{2}$ \Rightarrow large wavelength modes freeze later \Rightarrow their amplitudes are thus suppressed
- *p*-dependent suppression factor:

Bubble wall effects: $\delta_p \left\{ \begin{array}{l} p \gg 1 \rightarrow \text{ irrelevant} \\ p \ll 1 : \delta_p - \pi \propto p \rightarrow \text{ take } \delta_p = \pi \end{array} \right.$ $\Rightarrow \qquad \left(\frac{\cosh(\pi p) - 1}{\sinh(\pi p)} \frac{p^2}{c_{1,2}^2 + p^2} \right. \left\{ \begin{array}{l} p \gg 1 \rightarrow 1 \\ p \ll 1 \rightarrow \pi p^3 / (2c_{1,2}^2) \end{array} \right. \right\}$

Examples:

• Consider two toy models from Linde et al. '99.

M2 "sharper" - expect suppression to be more localised

Background evolution: Model 1

Plot 1: Hubble evolution

From L to R, vertical lines =

- Potential—Curvature equality
- Horizon exit of scale p_{H_0} as determined **assuming** $\Omega_{\mathbf{K}} = \mathbf{0.01}$
- Horizon exit of scale $p_{l=100}$

Plot 2: Hubble components

- Kinetic term always subdominant, but enhanced at beginning of potential domination
- Kinetic—Curvature equality coincides with p_{H_0} exit in M1

Power spectra: Model 1

Recall fitting formulae:

$$\mathcal{P}_{\mathcal{R}} = \left(\frac{H^2}{2\pi\dot{\phi}}\right)_{t=t_{\mathcal{R},p}}^2 \frac{\cosh(\pi p) + \cos(\delta_p)}{\sinh(\pi p)} \frac{p^2}{c_1^2 + p^2},$$
$$\mathcal{P}_T = 4\left(\frac{H}{2\pi}\right)_{t=t_{T,p}}^2 \frac{\cosh(\pi p) - 1}{\sinh(\pi p)} \frac{p^2}{c_2^2 + p^2}$$

we use $c_1 = 4$ and $c_2 = 1$

assuming $\Omega_K = 0.01$, $p_{H_0} = 10$

- *p*-dep. supp. factor important
- ⇒ fast-roll not only source of suppression
- fast-roll doesn't affect tensors
- qualitatively similar for M2

Suppression in Models 1 & 2

Conclusions

- Planck and WMAP hint at a **deficit in CMB power on large scales**
- This tension is worsened if the results of BICEP2 are confirmed
- **Open Inflation** models offer a **viable explanation** for the deficit
- The **source of suppression** in Open Inflation is **two-fold**:
 - 1. **Fast-rolling** of the inflaton after tunnelling
 - 2. Additional effects due to the tunnelling
- Have studied **two toy models** that are **qualitatively viable**
- A more quantitative analysis required