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What we did (or are doing now)
We measured, for the first time, the mode coupling kernel of 
large-scale structure (LSS) from cosmological N-body simulations:

May help to understand or improve theoretical treatment of LSS

Mode coupling 
kernel

Comparing it with perturbation theory (PT), we found

✓ Discrepancy with PT prediction appears even at low-k, where PT 
works very well

✓ Kernel is generally UV-suppressed, in contrast with PT prediction



Large-scale structure (LSS)

Spatial inhomogeneity of mass distribution at 1~10^3 Mpc
dark matter + baryon (galaxies)

• Traditionally probed by galaxy redshift surveys

• Plays a crucial role to pin down the nature of gravity or dark 
energy through the measurement of

✓ baryon acoustic oscillation :

✓ redshift-space distortions :
DA(z),  H(z)

f(z)=dln D+(z)/dln a

cosmic expansion

growth of structure

imprinted on power spectrum and correlation function



Baryon acoustic oscillations
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FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also

14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate
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for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k

n

, equally spaced in 0 < k < 2hMpc

�1,
to the central wavenumbers of the observed bandpowers k

i

:
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The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.
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Figure 15. As Figure 15, but for the DR11 LOWZ correlation function
transformed as defined by Eq. 46 with a = 0.39 and b = 0.04. As before,
these error bars are nearly independent, with a worst case of 12 per cent
and an r.m.s. of 3.4 per cent in the off-diagonal elements of the reduced
covariance matrix.

Figure 16. The CMASS BAO feature in the measured reconstructed power
spectrum of each of the BOSS data releases, DR9, DR10, and DR11. The
data are displayed with points and error-bars and the best-fit model is dis-
played with the curves. Both are divided by the best-fit smooth model. We
note that a finer binning was used in the DR9 analysis.

noted that transformations based on the symmetric square root of
the Fisher matrix had surprisingly compact support for their power
spectrum analysis. When we formed this matrix for the DR11
CMASS correlation function, we found that the first and second
off-diagonal terms are nearly constant and that subsequent off-
diagonals are small. This suggests that a basis transform of the pen-
tadiagonal form

X(si) =
xi � a (xi�1

+ xi+1

)� b (xi�2

+ xi+2

)

1� 2a� 2b
(46)

will approach a diagonal form. Here, xi = s2i ⇠0(si) and si is the

Figure 17. The BAO feature in the measured power spectrum of the DR11
reconstructed CMASS (top) and LOWZ (bottom) data. The data are dis-
played with black circles and the best-fit model is displayed with the curve.
Both are divided by the best-fit smooth model.

bin center of measurement bin i. We introduce the 1 � 2a � 2b
factor so as to normalize X such that it returns X = x for constant
x. For the first two and last two bins, the terms beyond the end of
the range are omitted and the normalization adjusted accordingly.

We find that for DR11 CMASS after reconstruction, values
of a = 0.3 and b = 0.1 sharply reduce the covariances between
the bins. The reduced covariance matrices for ⇠(r) and X(r) are
shown in Figure 13. The bins near the edge of the range retain some
covariances, but the off-diagonal terms of the central 10⇥ 10 sub-
matrix of the reduced covariance matrix have a mean and r.m.s. of
0.008 ± 0.044, with a worst value of 0.11. For display purposes,
this is a good approximation to a diagonal covariance matrix, yet
the definition of X(s) is well localized and easy to state. For com-
parison, the reduced covariance matrix of s2⇠

0

has typical first off-
diagonals values of 0.8 and second off-diagonals values of 0.6.

We display this function in Figure 14. One must also trans-
form the theory to the new estimator: we show the best-fit BAO
models with and without broadband marginalization, as well as the
best-fit non-BAO model without broadband marginalization. The
presence of the BAO is clear, but now the error bars are representa-
tive. For example, the significance of the detection as measured by
the ��2 of the best-fit BAO model to the best-fit non-BAO model
is 69.5 using only the diagonal of the covariance matrix of X , as
opposed to 74 with the full covariance matrix. We do not use this
transformation when fitting models, but we offer it as a pedagogical
view.

The same result is shown for DR11 LOWZ post-
reconstruction in Figure 15. Here we use a = 0.39 and b = 0.04.
The level of the off-diagonal terms is similarly reduced, with an
r.m.s. of 3.4 per cent and a worst value of 12 per cent.

It is expected that the best values of a and b will depend on
the data set, since data with more shot noise will have covariance
matrices of the correlation function that are more diagonally dom-
inant. Similarly, the choice of a pentadiagonal form may depend
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Wiggle structure seen in the (angle-averaged) power spectrum



Redshift-space distortions
Anisotropies seen in the correlation function is caused 

by redshift-space distortion

BOSS anisotropic clustering 3

et al. (2012), who measured the RSD and AP simultaneously in
the BOSS CMASS DR9 sample, achieving a 15 per cent mea-
surement of growth, 2.8 per cent measurement of angular diame-
ter distance, and 4.6 per cent measurement of the expansion rate
at z = 0.57. Using these estimates Samushia et al. (2013) derived
strong constraints on modified theories of gravity (MG) and DE
model parameters. In this paper we perform a similar analysis on
the CMASS DR11 sample, which covers roughly three times the
volume of DR9.

This paper is organised as follows. In section 2 we describe
the data used in the analysis. Section 3 explains how the two-
dimensional correlation function is estimated from the data. Sec-
tion 4 shows how we derive the estimates of the covariance ma-
trix for our measurements. In section 5 we describe the theoretical
model used to fit the data. Section 6 presents and discusses our
main results – the estimates of growth rate, distance-redshift rela-
tionship and the expansion rate from the measurements. Section 7
uses these estimates to constrain parameters in the ⇤CDM model
assuming General Relativity (⇤CDM-GR) and possible deviations
from this standard model. We conclude and discuss our results in
section 8.

Our measurements require the adoption of a cosmological
model in order to convert angles and redshifts into comoving dis-
tances. As in Anderson et al. (2013) we adopt a spatially-flat
⇤CDM cosmology with ⌦m = 0.274 and h = 0.7 for this purpose.
For ease of comparison across analyses, we follow Anderson et al.
(2013) and also report our distance constraints relative to a model
with ⌦m = 0.274, h = 0.7, and ⌦bh2 = 0.0224, for which the BAO
scale rd = 149.31 Mpc.

2 THE DATA

The SDSS-III project (Eisenstein et al. 2011) uses a dedicated 2.5-
m Sloan telescope (Gunn et al. 2013) to perform spectroscopic
follow-up of targets selected from images made using a now-retired
drift-scanning mosaic CCD camera (Gunn et al. 2006) that imaged
the sky in five photometric bands (Fukugita et al. 1996) to a limit-
ing magnitude of r ' 22.5. The BOSS (Dawson et al. 2013) is the
part of SDSS-III that will measure spectra for 1.5 million galaxies
and 160.000 quasars over a quarter of the sky.

We use the DR11 CMASS sample of galaxies (Anderson et al.
2013; Smee et al. 2013; Bolton et al. 2012). This lies in the redshift
range of 0.43 < z < 0.70 and consists of 690826 galaxies covering
8498 square degrees (effective volume of 6.0 Gpc3).

Figure 1 shows the redshift distribution of galaxies in our
sample. The number density is of order of 10�4 peaking at n̄ '
4 ⇥ 10�4h3 Mpc�3.

3 THE MEASUREMENTS

We measure the correlation function of galaxies in the CMASS
sample defined as the ensemble average of the product of over-
densities in the galaxy field separated by a certain distance r

⇠(r) ⌘ h�g(r0)�g(r0 + r)i. (4)

The overdensity as a function of r is given by

�g(r) =
ng(r) � n̄g(r)

n̄g(r)
, (5)

where n̄g(r) is expected average density of galaxies at a position r
and ng(r) is an observed number density.

Figure 1. The number density of CMASS DR11 galaxies in redshift bins
of �z = 0.01 in northern and southern Galactic hemispheres, computed
assuming our fiducial cosmology.

Figure 2. The two-dimensional correlation function of DR11 sample mea-
sured in bins of 1h�1 ⇥ 1h�1 Mpc2. We use first two Legendre multipoles of
the correlation function in our study rather than the two-dimensional corre-
lation function displayed here.

We estimate the correlation function using the Landy-Szalay
minimum-variance estimator (Landy & Szalay 1993)

⇠̂(�ri) =
DD(�ri) � 2DR(�ri) + RR(�ri)

RR(�ri)
, (6)

where DD(�ri) is the weighted number of galaxy pairs whose sep-
aration falls within the �ri bin, RR(�ri) is number of similar pairs
in the random catalogue and DR(�ri) is the number of cross-pairs
between the galaxies and the objects in the random catalogue.

Figure 2 shows the two-dimensional correlation function of
DR11 sample measured in bins of 1h�1⇥1h�1 Mpc2. Both the “BAO
ridge” (a ring of local maxima at approximately 100h�1 Mpc) and
the RSD signal (LOS “squashing” of the correlation function) are
detectable by eye.

The random catalogue is constructed by populating the vol-
ume covered by galaxies with random points with zero correlation.
We use a random catalogue that has 50 times the density of galaxies

c� 0000 RAS, MNRAS 000, 1–15
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Role of perturbation theory
An accurate template of power spectrum/correlation 

function is needed for precision measurements

Since what we want to measure 
basically lie at quasi-linear scales,

perturbation theory treatment can 
work very well (in principle)

Linearly extrapolated
Fully Nonlinear

z=0.5

1
2

3

regime of our 
interest

Weakly nonlinear

Linear

 gravitational evolution/redshift-space distortions/galaxy biasing
including nonlinear effects on

I will focus on nonlinear gravitational 
evolution of LSS

In the rest of my talk, 



Perturbation theory of LSS
LSS ＝pressureless & irrotational fluid

Basic eqs.

（CDM＋baryon） Juszkiewicz (’81), Vishniac (’83), 	


Goroff et al. (’86), Suto & Sasaki (’91), 
Makino, Sasaki & Suto (’92), ...

Single-stream approximation of 
collision less Boltzmann eq.

� = �(1) + �(2) + �(3) + · · ·

Standard PT

Regarding linear fluctuation |�0|� 1
as the small expansion parameter：

Bernardeau et al. Phys.Rep.367 (’02) 1



Power spectrum calculation
��(k; t)�(k�; t)� = (2�)3 �D(k + k�) P (|k|; t)power 

spectrum Average over initial fluctuation

P (k) = P (11)(k) +
�
P (22)(k) + P (13)(k)

�
+

�
P (33)(k) + P (24)(k) + P (15)(k)

�
+ · · ·

Linear (tree) 1-loop 2-loop

For Gaussian initial condition for �0 P (mn) � ��(m)�(n)�

Here, the matrix !ðnÞ
ab is given by

!ðnÞ
ab ¼ 1

ð2nþ 3Þðn% 1Þ
2nþ 1 2

3 2n

! "
: (A4)

Note that the kernel FðnÞ
a given above is not yet symmetric

under the permutations of arguments k1; & & & ; kn, and it
should be symmetrized

F ðnÞ
a ¼ 1

n!

X

permutations

FðnÞ
a ðk1; & & & ; knÞ: (A5)

Using the perturbative solutions, the power spectrum
defined by (3.1) is expanded as

Pabðk;"Þ ¼ e2"Pð11Þ
ab ðkÞ þ e4"fPð22Þ

ab ðkÞ þ Pð13Þ
ab ðkÞg

þ e6"fPð33Þ
ab ðkÞ þ Pð24Þ

ab ðkÞ þ Pð15Þ
ab ðkÞgþ & & & :

(A6)

Here, the quantity PðmnÞ implies the ensemble average
obtained from the m-th and n-th order perturbative solu-
tions. In the above expression, the first term at the right-
hand side is the linear power spectrum, while the second
and third terms proportional to the growth factors e4" and
e6" are, respectively, the so-called one-loop and two-loop
corrections. The explicit expressions for these corrections
become (e.g., [46,84])

Pð11Þ
ab ðkÞ ¼ uaubP0ðkÞ; (A7)

Pð22Þ
ab ðkÞ ¼ 2

Z d3q

ð2#Þ3 F
ð2Þ
a ðq; k% qÞF ð2Þ

b ðq; k% qÞ

' P0ðqÞP0ðjk% qjÞ; (A8)

Pð13Þ
ab ðkÞ ¼ 3P0ðkÞ

Z d3q

ð2#Þ3 fF
ð3Þ
a ðk; q;%qÞ

þF ð3Þ
b ðk; q;%qÞgP0ðqÞ; (A9)

Pð33Þ
ab ðkÞ ¼ 9P0ðkÞ

Z d3pd3q

ð2#Þ6 F ð3Þ
a ðk;p;%pÞF ð3Þ

b ðk; q;%qÞ

' P0ðpÞP0ðqÞ þ 6
Z d3pd3q

ð2#Þ6

'F ð3Þ
a ðp; q; k% p% qÞF ð3Þ

b ðp; q; k% p% qÞ
' P0ðpÞP0ðqÞP0ðjk% p% qjÞ; (A10)

Pð24Þ
ab ðkÞ ¼ 12

Z d3pd3q

ð2#Þ6 fF ð2Þ
a ðp; k% pÞ

'F ð4Þ
b ðp; q;%q; k% pÞ

þF ð4Þ
a ðp; q;%q; k% pÞF ð2Þ

b ðp; k% pÞg
' P0ðpÞP0ðqÞP0ðjk% pjÞ; (A11)

Pð15Þ
ab ðkÞ ¼ 15P0ðkÞ

Z d3pd3q

ð2#Þ6 fF ð5Þ
a ðp; q; k;%p;%qÞ

þF ð5Þ
b ðp; q; k;%p;%qÞgP0ðpÞP0ðqÞ;

(A12)

where P0 is the initial power spectrum of the density field
$0 defined by Eq. (2.7), and we set ua ¼ ð1; 1Þ.
Note that the expression for one-loop power spectra can

be further reduced to the one-dimensional and two-
dimensional integral for Pð13Þ and Pð22Þ, respectively,
(e.g., [83,85–87]). In the results presented in Sec. IVB1,
we used the method of Gaussian quadratures for numerical
integration of one-loop power spectra. On the other hand,
for the two-loop power spectra, the integration cannot be
simplified except for the first term in Pð33Þ, and we need to
directly evaluate the six-dimensional integration. We
adopted the Monte Carlo integration to the two-loop power
spectra. The integration kernels for each term are generated
numerically using the recursion relation (A4) and the
condition (A5).

APPENDIX B: COMPARISON TO OTHER WORKS

In this Appendix, we collect several recent works that
attempt to improve the prediction of power spectrum and/
or two-point correlation function, and discuss their quali-
tative differences. A quantitative aspect of various analytic
methods has been recently investigated in Ref. [46]. Here,
we specifically comment on the approaches proposed by
Refs. [34,35,39,42], which are very close to our treatment.
Crocce and Scoccimarro [34]: First let us mention the

work by Ref. [34]. Although the treatment presented in the
paper are often quoted as RPT, strictly speaking, this is just
the approximate treatment, which differs from the renor-
malized PT [32]. As we mentioned in Sec. III A, renormal-
ized PT is the exact nonperturbative formulation without
any approximations, and the power spectrum given by
Eq. (3.4) is expressed as the infinite series of irreducible
loop diagrams constructed from the nonlinear propagator,
full vertex, and nonlinear power spectrum. To make the
analysis tractable, they adopted the following approxima-
tions: (i) the renormalized vertex is well described by the
(linear) vertex function; (ii) the nonlinear power spectra

that enter into the calculation of PðMCÞ
ab are all replaced with

the linear-order ones. In our language, this corresponds to
the first-order Born approximation. Then, using the ap-
proximate solution for propagator in Ref. [33], they ex-
plicitly calculated the power spectrum including the
corrections up to the two-loop order. The diagrams that
they actually computed are shown in Fig. 13.
Compared to our analytical treatment with the Born

approximation, there are two main differences. One is the
higher-order corrections that appear in the diagrams (see
Fig. 3). Another important difference is the asymptotic
behaviors in the nonlinear propagator. At k ! 1, the

TARUYA et al. PHYSICAL REVIEW D 80, 123503 (2009)
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$0 defined by Eq. (2.7), and we set ua ¼ ð1; 1Þ.
Note that the expression for one-loop power spectra can

be further reduced to the one-dimensional and two-
dimensional integral for Pð13Þ and Pð22Þ, respectively,
(e.g., [83,85–87]). In the results presented in Sec. IVB1,
we used the method of Gaussian quadratures for numerical
integration of one-loop power spectra. On the other hand,
for the two-loop power spectra, the integration cannot be
simplified except for the first term in Pð33Þ, and we need to
directly evaluate the six-dimensional integration. We
adopted the Monte Carlo integration to the two-loop power
spectra. The integration kernels for each term are generated
numerically using the recursion relation (A4) and the
condition (A5).
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attempt to improve the prediction of power spectrum and/
or two-point correlation function, and discuss their quali-
tative differences. A quantitative aspect of various analytic
methods has been recently investigated in Ref. [46]. Here,
we specifically comment on the approaches proposed by
Refs. [34,35,39,42], which are very close to our treatment.
Crocce and Scoccimarro [34]: First let us mention the

work by Ref. [34]. Although the treatment presented in the
paper are often quoted as RPT, strictly speaking, this is just
the approximate treatment, which differs from the renor-
malized PT [32]. As we mentioned in Sec. III A, renormal-
ized PT is the exact nonperturbative formulation without
any approximations, and the power spectrum given by
Eq. (3.4) is expressed as the infinite series of irreducible
loop diagrams constructed from the nonlinear propagator,
full vertex, and nonlinear power spectrum. To make the
analysis tractable, they adopted the following approxima-
tions: (i) the renormalized vertex is well described by the
(linear) vertex function; (ii) the nonlinear power spectra

that enter into the calculation of PðMCÞ
ab are all replaced with

the linear-order ones. In our language, this corresponds to
the first-order Born approximation. Then, using the ap-
proximate solution for propagator in Ref. [33], they ex-
plicitly calculated the power spectrum including the
corrections up to the two-loop order. The diagrams that
they actually computed are shown in Fig. 13.
Compared to our analytical treatment with the Born

approximation, there are two main differences. One is the
higher-order corrections that appear in the diagrams (see
Fig. 3). Another important difference is the asymptotic
behaviors in the nonlinear propagator. At k ! 1, the
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where P0 is the initial power spectrum of the density field
$0 defined by Eq. (2.7), and we set ua ¼ ð1; 1Þ.
Note that the expression for one-loop power spectra can

be further reduced to the one-dimensional and two-
dimensional integral for Pð13Þ and Pð22Þ, respectively,
(e.g., [83,85–87]). In the results presented in Sec. IVB1,
we used the method of Gaussian quadratures for numerical
integration of one-loop power spectra. On the other hand,
for the two-loop power spectra, the integration cannot be
simplified except for the first term in Pð33Þ, and we need to
directly evaluate the six-dimensional integration. We
adopted the Monte Carlo integration to the two-loop power
spectra. The integration kernels for each term are generated
numerically using the recursion relation (A4) and the
condition (A5).
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the approximate treatment, which differs from the renor-
malized PT [32]. As we mentioned in Sec. III A, renormal-
ized PT is the exact nonperturbative formulation without
any approximations, and the power spectrum given by
Eq. (3.4) is expressed as the infinite series of irreducible
loop diagrams constructed from the nonlinear propagator,
full vertex, and nonlinear power spectrum. To make the
analysis tractable, they adopted the following approxima-
tions: (i) the renormalized vertex is well described by the
(linear) vertex function; (ii) the nonlinear power spectra

that enter into the calculation of PðMCÞ
ab are all replaced with

the linear-order ones. In our language, this corresponds to
the first-order Born approximation. Then, using the ap-
proximate solution for propagator in Ref. [33], they ex-
plicitly calculated the power spectrum including the
corrections up to the two-loop order. The diagrams that
they actually computed are shown in Fig. 13.
Compared to our analytical treatment with the Born

approximation, there are two main differences. One is the
higher-order corrections that appear in the diagrams (see
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where P0 is the initial power spectrum of the density field
$0 defined by Eq. (2.7), and we set ua ¼ ð1; 1Þ.
Note that the expression for one-loop power spectra can

be further reduced to the one-dimensional and two-
dimensional integral for Pð13Þ and Pð22Þ, respectively,
(e.g., [83,85–87]). In the results presented in Sec. IVB1,
we used the method of Gaussian quadratures for numerical
integration of one-loop power spectra. On the other hand,
for the two-loop power spectra, the integration cannot be
simplified except for the first term in Pð33Þ, and we need to
directly evaluate the six-dimensional integration. We
adopted the Monte Carlo integration to the two-loop power
spectra. The integration kernels for each term are generated
numerically using the recursion relation (A4) and the
condition (A5).

APPENDIX B: COMPARISON TO OTHER WORKS

In this Appendix, we collect several recent works that
attempt to improve the prediction of power spectrum and/
or two-point correlation function, and discuss their quali-
tative differences. A quantitative aspect of various analytic
methods has been recently investigated in Ref. [46]. Here,
we specifically comment on the approaches proposed by
Refs. [34,35,39,42], which are very close to our treatment.
Crocce and Scoccimarro [34]: First let us mention the

work by Ref. [34]. Although the treatment presented in the
paper are often quoted as RPT, strictly speaking, this is just
the approximate treatment, which differs from the renor-
malized PT [32]. As we mentioned in Sec. III A, renormal-
ized PT is the exact nonperturbative formulation without
any approximations, and the power spectrum given by
Eq. (3.4) is expressed as the infinite series of irreducible
loop diagrams constructed from the nonlinear propagator,
full vertex, and nonlinear power spectrum. To make the
analysis tractable, they adopted the following approxima-
tions: (i) the renormalized vertex is well described by the
(linear) vertex function; (ii) the nonlinear power spectra

that enter into the calculation of PðMCÞ
ab are all replaced with

the linear-order ones. In our language, this corresponds to
the first-order Born approximation. Then, using the ap-
proximate solution for propagator in Ref. [33], they ex-
plicitly calculated the power spectrum including the
corrections up to the two-loop order. The diagrams that
they actually computed are shown in Fig. 13.
Compared to our analytical treatment with the Born

approximation, there are two main differences. One is the
higher-order corrections that appear in the diagrams (see
Fig. 3). Another important difference is the asymptotic
behaviors in the nonlinear propagator. At k ! 1, the
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where P0 is the initial power spectrum of the density field
$0 defined by Eq. (2.7), and we set ua ¼ ð1; 1Þ.
Note that the expression for one-loop power spectra can

be further reduced to the one-dimensional and two-
dimensional integral for Pð13Þ and Pð22Þ, respectively,
(e.g., [83,85–87]). In the results presented in Sec. IVB1,
we used the method of Gaussian quadratures for numerical
integration of one-loop power spectra. On the other hand,
for the two-loop power spectra, the integration cannot be
simplified except for the first term in Pð33Þ, and we need to
directly evaluate the six-dimensional integration. We
adopted the Monte Carlo integration to the two-loop power
spectra. The integration kernels for each term are generated
numerically using the recursion relation (A4) and the
condition (A5).
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work by Ref. [34]. Although the treatment presented in the
paper are often quoted as RPT, strictly speaking, this is just
the approximate treatment, which differs from the renor-
malized PT [32]. As we mentioned in Sec. III A, renormal-
ized PT is the exact nonperturbative formulation without
any approximations, and the power spectrum given by
Eq. (3.4) is expressed as the infinite series of irreducible
loop diagrams constructed from the nonlinear propagator,
full vertex, and nonlinear power spectrum. To make the
analysis tractable, they adopted the following approxima-
tions: (i) the renormalized vertex is well described by the
(linear) vertex function; (ii) the nonlinear power spectra

that enter into the calculation of PðMCÞ
ab are all replaced with

the linear-order ones. In our language, this corresponds to
the first-order Born approximation. Then, using the ap-
proximate solution for propagator in Ref. [33], they ex-
plicitly calculated the power spectrum including the
corrections up to the two-loop order. The diagrams that
they actually computed are shown in Fig. 13.
Compared to our analytical treatment with the Born

approximation, there are two main differences. One is the
higher-order corrections that appear in the diagrams (see
Fig. 3). Another important difference is the asymptotic
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cube of the separation. The REGPT results agree with
N-body simulations almost perfectly over the plotted
scales. As it is known, the impact of nonlinear clustering
on the baryon acoustic peak is significant: the peak position
becomes slightly shifted to a smaller scale, and the
structure of the peak tends to be smeared as the redshift
decreases (e.g., Refs. [24,25,49,50]). The REGPT calcula-
tion can describe not only the behavior around the baryon
acoustic peak but also the small-scale behavior of the
correlation function. Note that similar results are also
obtained from other improved PT treatments such as
closure and LRT. Although the REGPT predictions eventu-
ally deviate from simulations at small scales—the result
at z ¼ 0:35 indeed manifests the discrepancy below
r" 30h#1 Mpc—the actual range of agreement between
REGPT and N-body results is even wider than what is
naively expected from the power spectrum results. In
fact, it has been recently advocated by several authors
that with several improved PT treatments, the one-loop
calculation is sufficient to accurately describe the two-
point correlation function (e.g., Refs. [22,48,51]). We
have checked that the REGPT treatment at one-loop order
can give a satisfactory result close to the two-loop result,
and the prediction including the two-loop corrections only
slightly improves the agreement with N-body simulations
at small scales. This is good news for practical purposes in
the sense that we do not necessarily have to evaluate the
multidimensional integrals for the accurate prediction of
two-point correlation function in the weakly nonlinear
regime. Nevertheless, in this work, we keep the two-loop
contributions in the computed contributions. The computa-
tional costs of the two-loop order will be addressed in the
following with the development of a method for acceler-
ated PT calculation at two-loop order.

V. REGPT-FAST: ACCELERATED POWER
SPECTRUM CALCULATION

In this section, we present a method that allows accel-
erated calculations of the required diagrams of the two-
loop order REGPT prescription. In principle, the power
spectra calculations in the context of REGPT require multi-
dimensional integrations that cannot be done beforehand as
they fully depend on the linear power spectra. It is however
possible to obtain the required quantities much more
rapidly provided we know the answer for a close enough
model.
The key point in this approach is to utilize the fact that

the nonlinear REGPT power spectrum is a well-defined
functional form of the linear power spectrum. Each of
the diagrams that has to be computed is of quadratic, cubic,
etc. order with respect to the linear power spectrum with a
kernel that, although complicated, can be explicitly given.
It is then easy to Taylor-expand each of these terms with
respect to the linear power spectrum. In principle one then
just needs to prepare, in advance, a set of the REGPT results
for some fiducial cosmological models, and then take the
difference between fiducial and target initial power spectra
for which we want to calculate the nonlinear power spec-
trum. These differences involve only one-dimensional in-
tegrals at the first order in the Taylor expansion.
In the following, we present the detail of the implemen-

tation of this approach illustrating it with the one-loop
calculation case.

A. Power spectrum reconstruction from fiducial model

While our final goal is to present the fast PT calculation
at two-loop order, in order to get insights into the imple-
mentation of this calculation, we consider the power

FIG. 10 (color online). Comparison of two-point correlation function between N-body and REGPT results at z ¼ 3, 2, 1, and 0.35
(from bottom to top). In each panel, magenta solid, and black dotted lines represent the prediction from REGPT and linear theory
calculations, respectively. Left panel focuses on the behavior around baryon acoustic peak in linear scales, while right panel shows the
overall behavior in a wide range of separation in logarithmic scales. Note that in right panel, the resulting correlation function is
multiplied by the cube of the separation for illustrative purpose.
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large contribution at very high-q, where 
PT treatment cannot be applied

RegGp−loop
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Note that the kernel functions depend themselves a priori
on the initial power spectrum: K1−loop

aþ ðk; qÞ is a tree-order
object,K2-loop

aþ ðk; qÞ a one-loop order object (and therefore a
linear function of P0ðqÞ), etc. These functions give, for
each order, the impact of a linear mode q on the amplitude
of the late-time mode k we are interested in. In particular it
tells how the small-scale modes affect the large-scale
modes under consideration. In the following we will focus
our interest in understanding the high-q behavior of the ker-
nel functions Kðk; qÞ.
In Fig. 11 we show the shape of the kernel functions at

one, two-loop and three-loop order for k ¼ 0.1 h=Mpc.
The dashed line corresponds to the one-loop expression.
As can be seen it is rather peaked at q ≈ k and we have

K1-loop
1þ ðk; qÞP0ðqÞ ¼

464π
315

q3P0ðqÞ for q ≪ k (79)

K1-loop
1þ ðk; qÞP0ðqÞ ¼

176π
315

k2qPðqÞ for q ≫ k (80)

At two-loop order, the behaviors are qualitatively different.
The function peaks rather for q ¼ 0.5 h=Mpc, irrespective
of the value for k (when k < 0.5 h=Mpc). We note that

K2-loop
1þ ðk; qÞP0ðqÞ ∼ k2q2P0ðqÞ for q ≫ k (81)

so that the convergence is obtained for a spectral index
smaller than −2. This corresponds to the result mentioned
in the beginning of Sec. III D. These trends are amplified
for the three-loop results shown with a dot-dashed line for
which an even lower power law index is required for con-
vergence. In general the convergence properties of the mul-
tiloop kernel are determined by the properties of the
functions FnðqiÞ and GnðqiÞ and how they behave when
one of their argument is, in norm, much larger than the
sum of the wave modes. As mentioned in [36] it is to
be noted that the Galilean invariance of the motion equation
implies that

Fnðq1;…;qnÞ ∼
j
P

jqjj2

q2i
when qi ≫

####
X

j

qj

####; (82)

whenever one of the qi is much larger than the sum. This
can be seen at an elementary level on the properties of
the vertex function αðk1;k2Þ and βðk1;k2Þ: they both van-
ish when the sum of the argument goes to 0. The property
(82) has direct consequences on the properties of the loop
corrections. As a result, the p-loop correction takes indeed
the form

FIG. 10 (color online). Regular parts of the density propagator
RegGp−loop

1þ ðkÞ at one-, two-, and three-loop order with, respec-
tively, solid, dashed, and dotted lines. The calculations are done
for z ¼ 0.5. Note that each of this contribution scales with the
redshift like DþðzÞ2p where p is the number of loops. The light
yellow regions show the parameter space where the induced cor-
rections to the power spectrum are less than 1 percent.

FIG. 11 (color online). The shape of the kernel functions
P0ðqÞK1-loopðk; qÞ (blue solid line), P0ðqÞK2-loopðk; qÞ (green
dashed line) for k ¼ 0.1 h=Mpc and P0ðqÞK3-loopðk; qÞ (red dot-
ted line) as a function of q for z ¼ 0.5.
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z=0.5

|Kn-loop(k, q)| P0(q)

k=0.1 [h/Mpc]

Pn-loop(k) �
�

d ln q Kn-loop(k, q) P0(q)

A part of power spectrum correctionmode-coupling kernel

But,
Q



Standard PT up to 3-loop order
Blas et al.  JCAP 01 (’14) 010
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Need an effective theory ?

• Break down of PT calculation even at k→0 ?

• Need to reconsider PT formulation ?

Fluid treatment needs to be regularized or reformulated, taking 
account of small-scale physics (halo formation or virialization)

Phenomenologically introduce viscousity & anisotropic stress to 
characterize deviations from pressureless & irrotational fluid

Baumann et al. (’12), Carrasco, 
Herzberg & Senatore (’12), 
Carrasco et al. (‘13ab), Porto, 
Senatore & Zaldarriaga (’14), …

Effective field theory of 
large-scale structure 

(EFTofLSS)

Due to the UV divergence,

…these are calibrated only with N-body simulation



Question
Quantitatively, how much the UV contribution 

can affect the power spectrum at low-k ?

We numerically measure the mode-coupling kernel from 
N-body simulations, and compare it with PT calculation

But, 

We shall start defining mode-coupling kernel, which is suited 
to measure N-body simulation, and can be computed with PT

the mode-coupling kernel I mentioned so far is somewhat 
ambiguous, and needs to be properly defined



Mode-coupling kernel
How the power of each Fourier mode in initial power spectrum is 
mapped into each mode of final power spectrum through the non-
linear gravitational evolution ?

Initial Final

N-body

PT

Pnl(k) =
�

d ln q J(k, q) P0(q)

P0(k) Pnl(k)

this is hard to measure 



Mode-coupling kernel

Pnl(k) = P fid
nl (k) + �Pnl(k)

P0(k)� P fid
0 (k) + � P0(k)

�Pnl(k) =
�

d ln q K(k, q) �P0(q);

Measure from N-body simulation

Initial Final

P0(k)� P fid
0 (k) + � P0(k)

P fid
nl (k) N-body

PT

P fid
0 (k)

�Pnl(k)

How the small disturbance added in initial power spectrum can  
contribute to each Fourier mode in final power spectrum through 
the non-linear gravitational evolution ?



Measurement of kernel

K(k, q) = q
�Pnl(k)
�P0(q)

Definition in terms of 
functional derivative :

Estimator for mode-coupling kernel (discretized):

ln

�
P±0,j(q)
lnP0(q)

�

�K(ki, qj) P0(qj) �
P+

nl (ki)� P�nl (ki)
� lnP0 � ln q

=
�
± 1

2� lnP0 ; qj � q < qj+1

0 ; otherwise

� ln q = ln qj+1 � ln qj

� ln q = ln qj+1 � ln qj
;

P±nl (k) :  Final output of non-linear power spectrum, for which a small 
perturbation             is added in initial power spectrum, P±0,j(k) P0(k)



Measurement of kernel

• initial perturbation (  　  　)：1% of� lnP0

• divide k=0.006~0.12 [h/Mpc] into logarithmic15 (or 13)-bins：

• initial power spectrum　　  ： ΛCDM by wmap5 P0(k)

q1 = 0.006 h Mpc�1 (or q1 = 0.012 h Mpc�1)

� ln q = ln(
�

2)

initial k-bin：
width of k-bin：

Run many simulations…

T.Nishimishi

P0(k)



Measured results of kernel

z=0

7

3
2

10.35

mode-coupling kernel measured at k=0.162 [h/Mpc]

: positive

: negative

or

or

K(k, q) = q
�Pnl(k)
�P0(q)



PT result of kernel
Note—. delta-function 
contribution removed

For a proper comparison with 
N-body results,  we take a  

weighted average in each k-bin

Taking also account of the 
delta-function contribution

k=0.2 [h/Mpc]

Positive Negative



PT vs N-body simulation

Histogram：	


Standard PT 1-loop

++++++ + +

-

- - - - - -

q>k ：discrepancy is manifest

(independent of z)

（particularly large at low-z）

q<k ： reproduce simulation well

UV contribution is suppressed
That is,

Normalized 
kernel

3

FIG. 1: Kernel function measured from simulations. We plot |K(k, q)|Plin(q) as a function of initial wavenumber q for three
fixed values of final wavenumber k indicated by the vertical arrow in each of the panels. Filled (open) symbols show the
measurement from L9-N9 (L10-N9), while lines depict L9-N8. Positive values are shown by upper triangle or solid line, while
lower triangles and dashed line show negative contribution.

FIG. 2: One-loop standard perturbation theory vs. N -body simulations. We plot the absolute value of T (k, q) ≡
K(k, q)/P lin(k), which is redshift-independent at one-loop level. Filled (open) histograms show positive (negative) values
based on the one-loop perturbation theory. We plot the simulation measurements L9-N9 (symbols) at various redshifts as
indicated in the figure legend. We omit the other low-resolution simulations for clarity. Note that we subtract the linear con-
tribution both from model and simulations to focus on nonlinear part. Note also that the sign of the kernel from simulations,
which we do not show here explicitly, is consistent with the analytical calculation.

FIG. 3: Two-loop standard perturbation theory vs. N -body simulations. We plot the same quantity as in Fig. 2.

Lines：Standard PT 2-loop

k=0.162 [h/Mpc]



Characterizing UV suppression

Ke�(k, q) =
�
K1-loop(k, q) + K1-loop(k, q)

� 1
1 + (q/q0)2

Ke�(k, q) =
�
K1-loop(k, q) + K1-loop(k, q)

� 1
1 + (q/q0)2

UV suppression is seen at various k & q

Standard PT kernelK1-loop, K1-loop

q0(z) = 0.3/D2
+(z) [h Mpc�1]

Fitting formula

ratio of measured kernel 
to PT prediction



Role of UV suppression

�Pnl(k) =
�

d ln q K(k, q) �P0(q)

Taking account of the UV suppression,  how well 
standard PT prediction can be improved ?

Here, we consider P0(k)� P fid
0 (k) + � P0(k) as the difference between Planck and WMAP5

and compute the nonlinear power spectrum difference �Pnl(k) =
�

d ln q K(k, q) �P0(q)

w/o UV suppression w/ UV suppression

Standard PT
Linear

N-body N-body
It qualitatively 
explains N-body 
results, but not 
perfect…

preliminary
WMAP5−Planck

WMAP5



Summary & discussion

Physical origin

Implication

A connection with small-scale physics (formation 
and merging processes of dark matter halos)

Check the validity and limitation for EFTofLSS

A step toward an improved prescription of LSS

Measurement of mode-coupling kernel 
of large-scale structure (LSS) : 

• There appears UV suppression in N-body simulation at k<<q

K(k, q) = q
�Pnl(k)
�P0(q)

Unlike the standard PT results,

• Discrepancy can be seen even at low-k, where standard PT can 
reproduce the N-body result quite well


