8 Sep. 2014 workshop on "Relativistic cosmology" @YITP

Non-linear mode-coupling of large-scale structure

in *non-relativistic* cosmology

Atsushi TARUYA (YITP)

In collaboration with

Takahiro NISHIMICHI、 Francis BERNARDEAU (Institut d'Astrophysique de Paris)

What we did (or are doing now)

We measured, for the first time, the mode coupling kernel of large-scale structure (LSS) from cosmological N-body simulations:

Mode coupling
kernel
$$\delta P^{nl}(k) = \int d\ln q \frac{K(k,q)}{K(k,q)} \delta P^{lin}(q)$$

Comparing it with perturbation theory (PT), we found

- ✓ Kernel is generally UV-suppressed, in contrast with PT prediction
- ✓ Discrepancy with PT prediction appears even at low-k, where PT works very well

May help to understand or improve theoretical treatment of LSS

Large-scale structure (LSS)

Spatial inhomogeneity of <u>mass distribution</u> at 1~10^3 Mpc dark matter + baryon (galaxies)

- Traditionally probed by galaxy redshift surveys
- Plays a crucial role to pin down the nature of gravity or dark energy through the measurement of

 ✓ baryon acoustic oscillation : cosmic expansion DA(z), H(z)
 ✓ redshift-space distortions : growth of structure f(z)=dln D+(z)/dln a

imprinted on power spectrum and correlation function

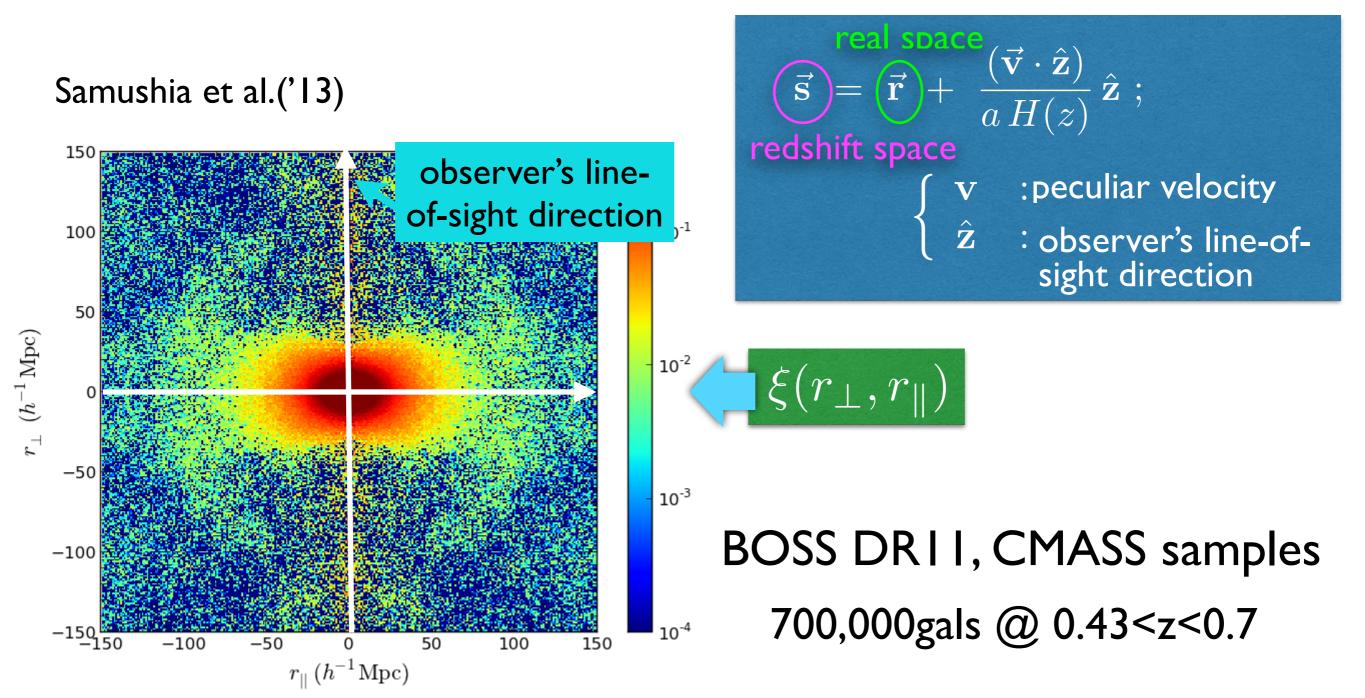
Baryon acoustic oscillations

Wiggle structure seen in the (angle-averaged) power spectrum

Anderson et al. ('13) Anderson et al. ('12) 1.05 bower spectrum BAO 1.05 1 0.95 105 Standard CMASS DR9 P(k) [(h⁻¹Mpc)^3] best-fit model $\chi^2 = 81.5 / 59$ S S M D M S M D DRI **BOSS DR9** 104 (SDSS-III) 0.95 k [h Mpc⁻¹] 0.01 0.05 0.25 0.1 0.15 0.2 0.3 k (h Mpc^{-1})

Redshift-space distortions

Anisotropies seen in the correlation function is caused by redshift-space distortion

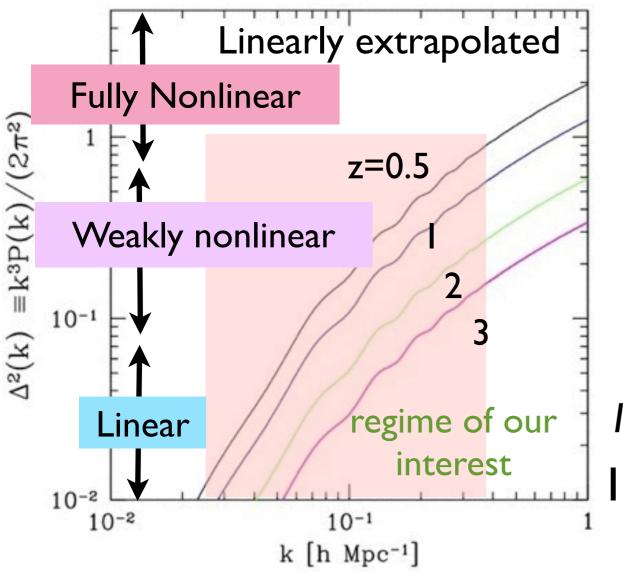


Role of perturbation theory

An accurate template of power spectrum/correlation function is needed for precision measurements

including nonlinear effects on

gravitational evolution/redshift-space distortions/galaxy biasing



Since what we want to measure basically lie at quasi-linear scales,

perturbation theory treatment can work very well (in principle)

In the rest of my talk,

I will focus on nonlinear gravitational evolution of LSS

Perturbation theory of LSS

LSS = pressureless & irrotational fluid

(CDM+baryon)

Basic eqs.

$$\frac{\partial \delta}{\partial t} + \frac{1}{a} \vec{\nabla} \cdot \left[(1+\delta) \vec{v} \right] = 0$$
$$\frac{\partial \vec{v}}{\partial t} + \frac{\dot{a}}{a} \vec{v} + \frac{1}{a} (\vec{v} \cdot \vec{\nabla}) \vec{v} = -\frac{1}{a} \vec{\nabla} \Phi$$
$$\frac{1}{a^2} \nabla^2 \Phi = 4\pi G \,\overline{\rho}_{\rm m} \,\delta$$

Juszkiewicz ('81), Vishniac ('83), Goroff et al. ('86), Suto & Sasaki ('91), Makino, Sasaki & Suto ('92), ...

Single-stream approximation of collision less Boltzmann eq.

Bernardeau et al. Phys.Rep.367 ('02) I

Standard PT

Regarding linear fluctuation $|\delta_0| \ll 1$ as the small expansion parameter :

 $\delta = \delta^{(1)} + \delta^{(2)} + \delta^{(3)} + \cdots$

Power spectrum calculation

power spectrum

$$\delta(\boldsymbol{k};t)\delta(\boldsymbol{k}';t)\rangle = (2\pi)^3 \,\delta_{\mathrm{D}}(\boldsymbol{k}+\boldsymbol{k}') \,\underline{P(|\boldsymbol{k}|;t)}$$

 $P^{(mn)} \simeq \langle \delta^{(m)} \delta^{(n)}$

Average over initial fluctuation

For Gaussian initial condition for δ_0

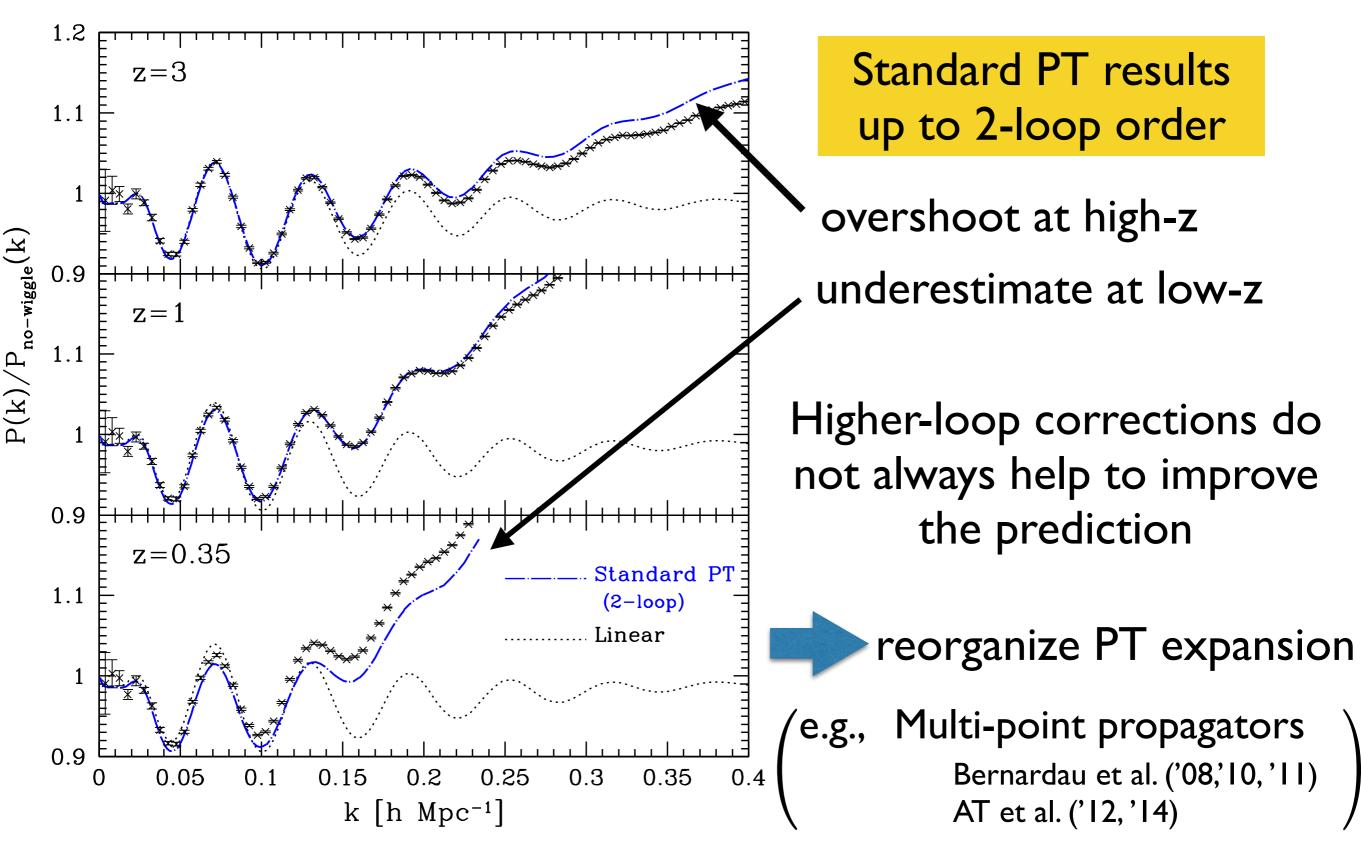
$$P(k) = P^{(11)}(k) + \left(P^{(22)}(k) + P^{(13)}(k)\right) + \left(P^{(33)}(k) + P^{(24)}(k) + P^{(15)}(k)\right) + \cdots$$
Linear (tree)
$$I-loop$$

$$P^{(22)}(k) = 2\int \frac{d^3q}{(2\pi)^3} \mathcal{F}^{(2)}(q, k-q) \mathcal{F}^{(2)}(q, k-q) P_0(q) P_0(|k-q|),$$

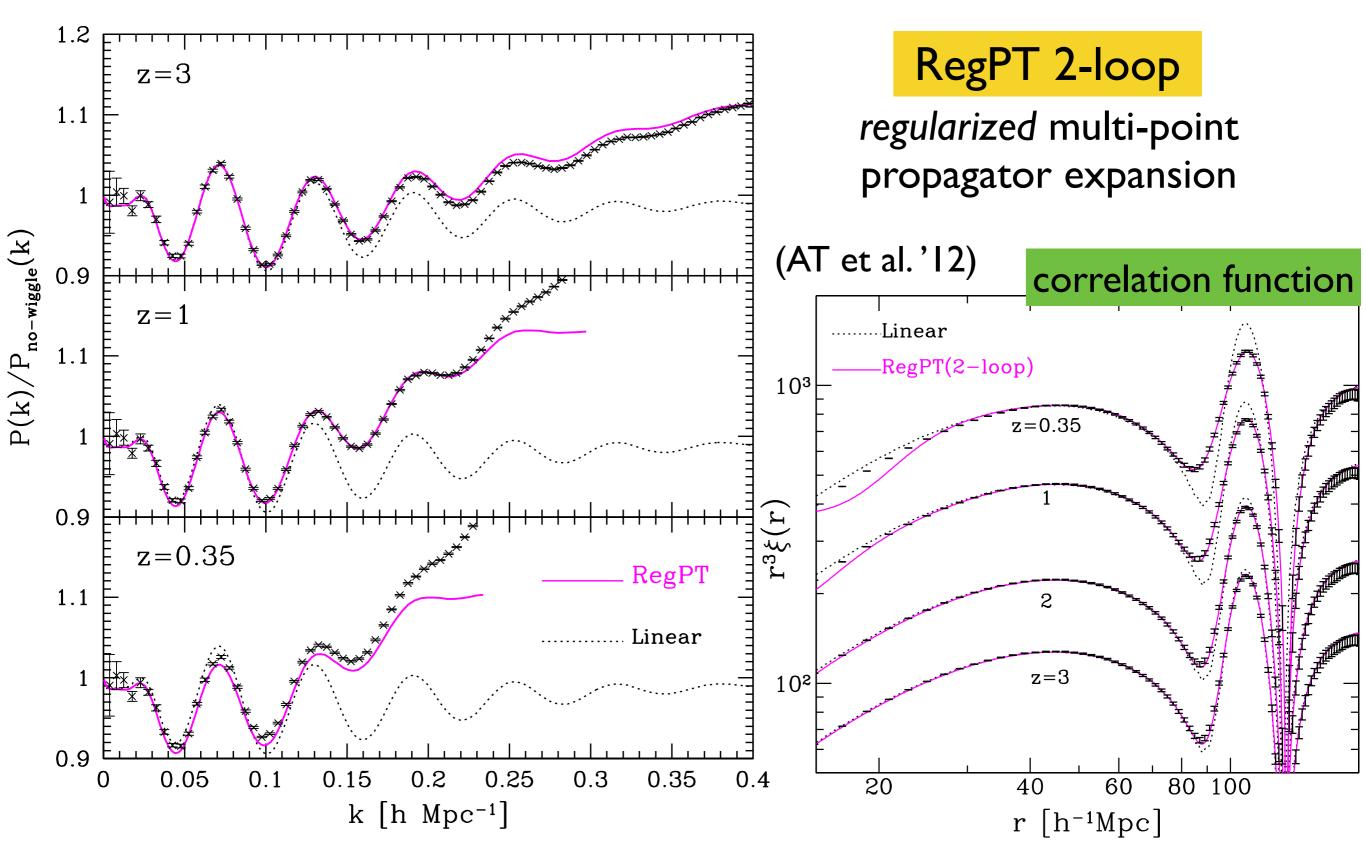
$$P^{(24)}(k) = 24\int \frac{d^3p d^3q}{(2\pi)^6} \mathcal{F}^{(4)}(p, q, -q, k-p) \mathcal{F}^{(2)}(p, k-p) P_0(p) P_0(q) P_0(|k-p|),$$
linear power spectrum

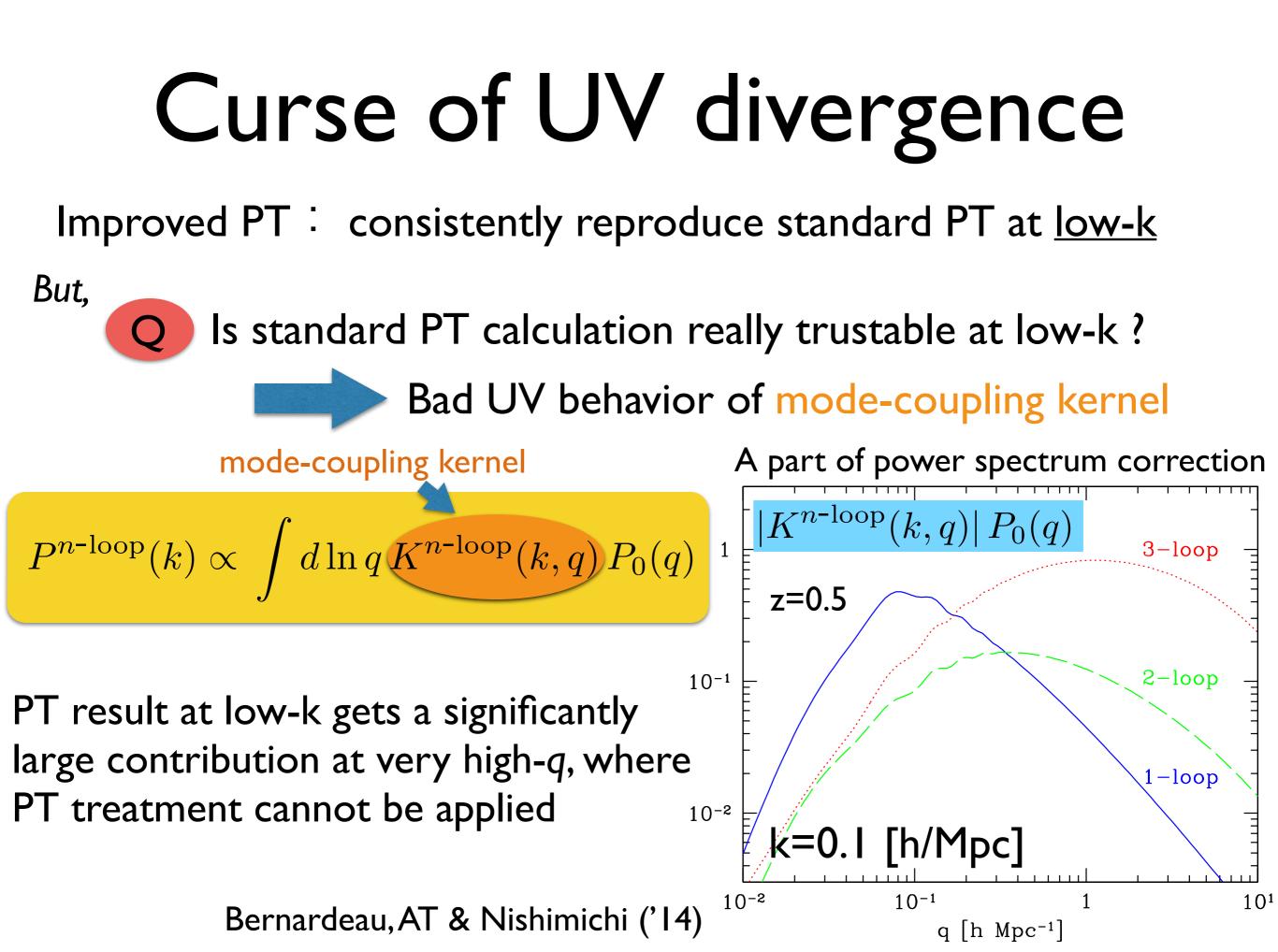
 $\mathcal{F}^{(n)}$: kernel of n-th order PT solution (non-linear mode coupling)

Standard PT vs simulations

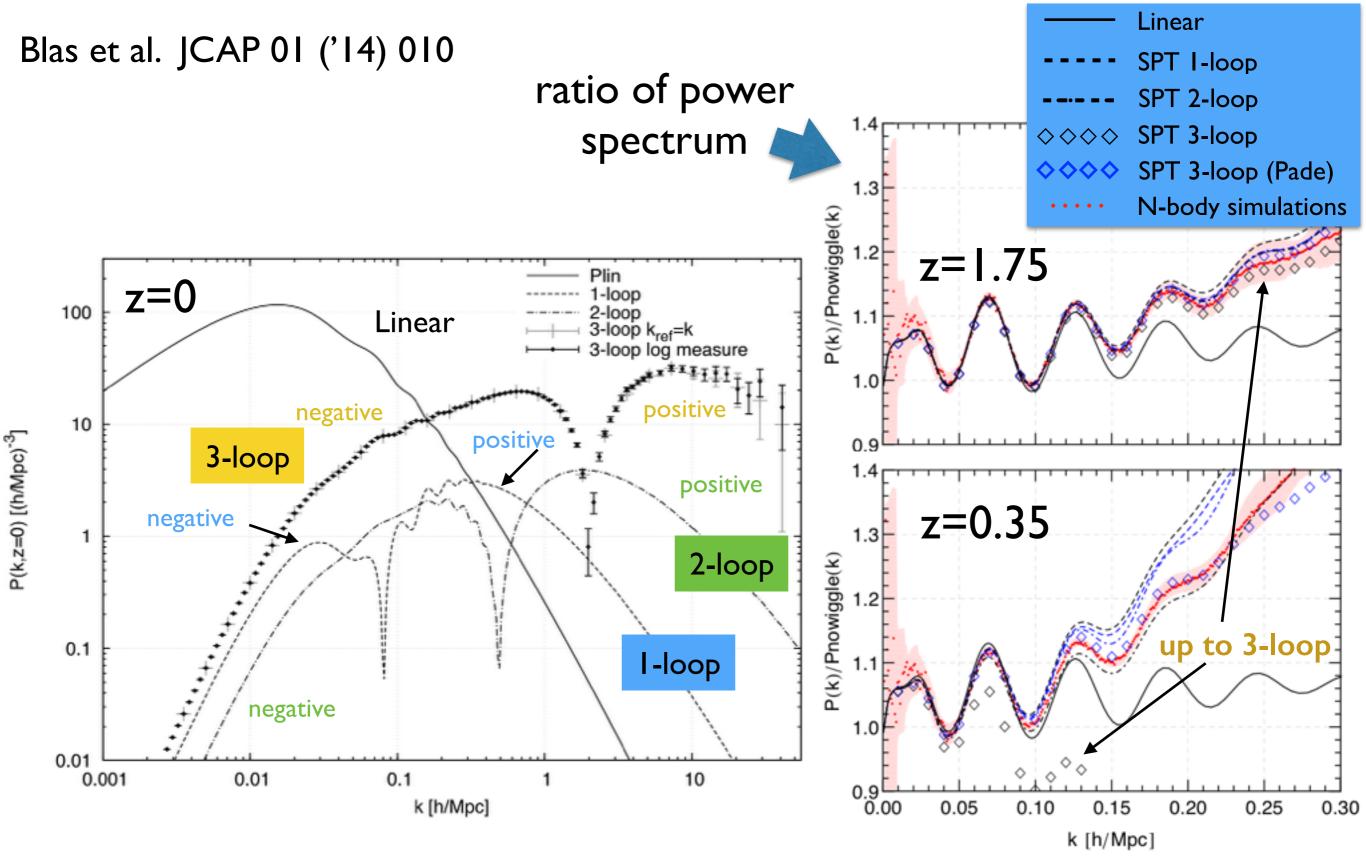


Resummed PT vs simulations





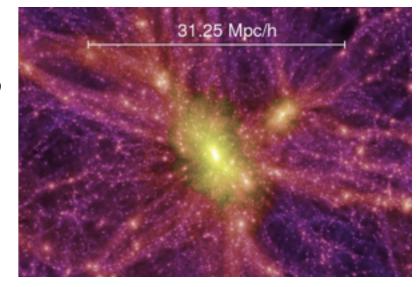
Standard PT up to 3-loop order



Need an effective theory ?

Due to the UV divergence,

- Break down of PT calculation even at $k \rightarrow 0$?
- Need to reconsider PT formulation ?



Fluid treatment needs to be regularized or reformulated, taking account of small-scale physics (halo formation or virialization)

Effective field theory of large-scale structure (EFTofLSS)

Baumann et al. ('12), Carrasco, Herzberg & Senatore ('12), Carrasco et al. ('13ab), Porto, Senatore & Zaldarriaga ('14), ...

Phenomenologically introduce viscousity & anisotropic stress to characterize deviations from pressureless & irrotational fluid ...these are calibrated only with N-body simulation

Quantitatively, how much the UV contribution can affect the power spectrum at low-k ?

We numerically measure the *mode-coupling kernel* from N-body simulations, and compare it with PT calculation

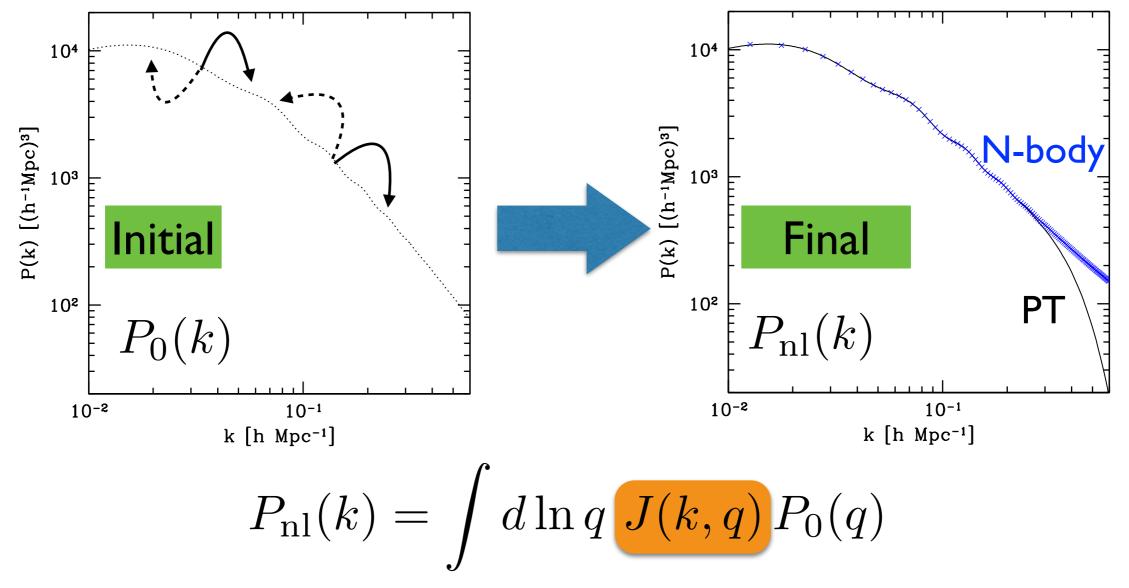
But,

the mode-coupling kernel I mentioned so far is somewhat ambiguous, and needs to be properly defined

We shall start defining mode-coupling kernel, which is suited to measure N-body simulation, and can be computed with PT

Mode-coupling kernel

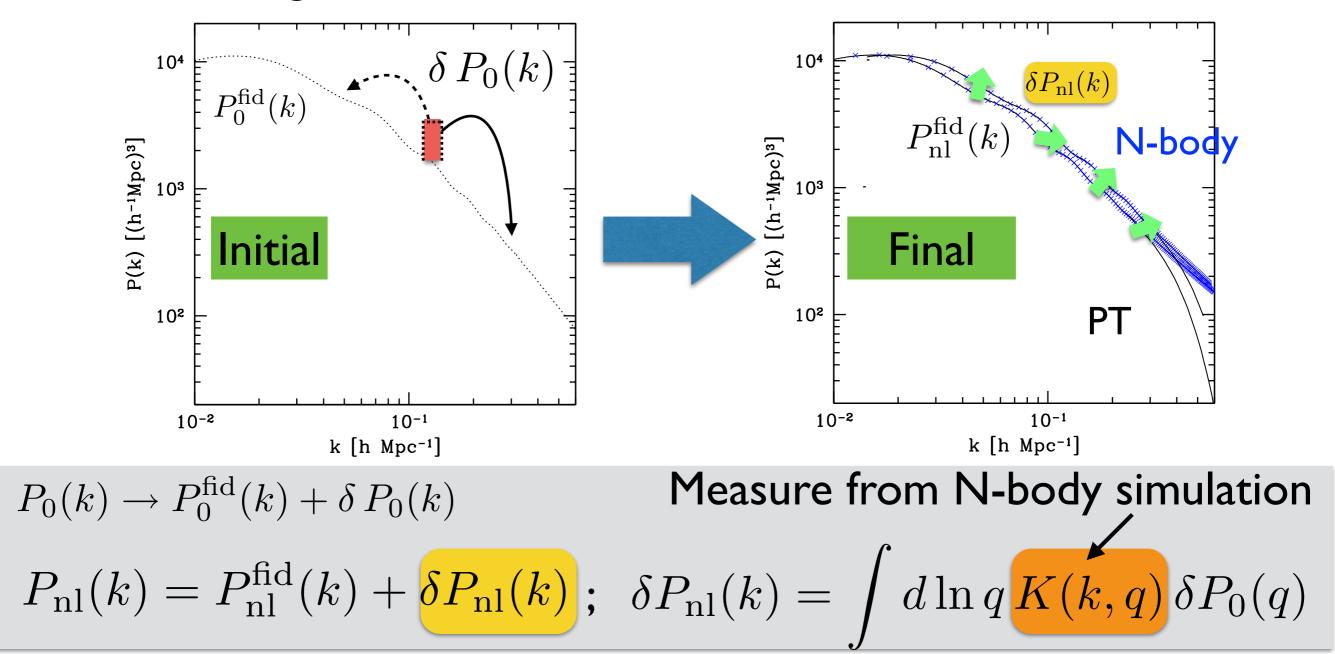
How the power of each Fourier mode in initial power spectrum is mapped into each mode of final power spectrum through the nonlinear gravitational evolution ?



this is hard to measure

Mode-coupling kernel

How the small disturbance added in initial power spectrum can contribute to each Fourier mode in final power spectrum through the non-linear gravitational evolution ?



Measurement of kernel

Definition in terms of functional derivative :

$$K(k,q) = q \, \frac{\delta P_{\rm nl}(k)}{\delta P_0(q)}$$

Estimator for mode-coupling kernel (discretized):

$$\widehat{K}(k_i, q_j) P_0(q_j) \equiv \frac{P_{\mathrm{nl}}^+(k_i) - P_{\mathrm{nl}}^-(k_i)}{\Delta \ln P_0 \Delta \ln q} ; \quad \frac{\Delta \ln q}{= \ln q_{j+1} - \ln q_j}$$

 $P_{nl}^{\pm}(k)$: Final output of non-linear power spectrum, for which a small perturbation $P_{0,j}^{\pm}(k)$ is added in initial power spectrum, $P_0(k)$

$$\ln \left[\frac{P_{0,j}^{\pm}(q)}{\ln P_0(q)} \right] = \begin{cases} \pm \frac{1}{2} \Delta \ln P_0 & ; \quad q_j \le q < q_{j+1} \\ 0 & ; \quad \text{otherwise} \end{cases}$$

Measurement of kernel

- initial power spectrum $P_0(k)$: ΛCDM by wmap5
- initial perturbation ($\Delta \ln P_0$) : 1% of $P_0(k)$
- divide k=0.006~0.12 [h/Mpc] into logarithmic15 (or 13)-bins :

initial k-bin : $q_1 = 0.006 h \,\mathrm{Mpc}^{-1} \,(\mathrm{or} \, q_1 = 0.012 \, h \,\mathrm{Mpc}^{-1})$

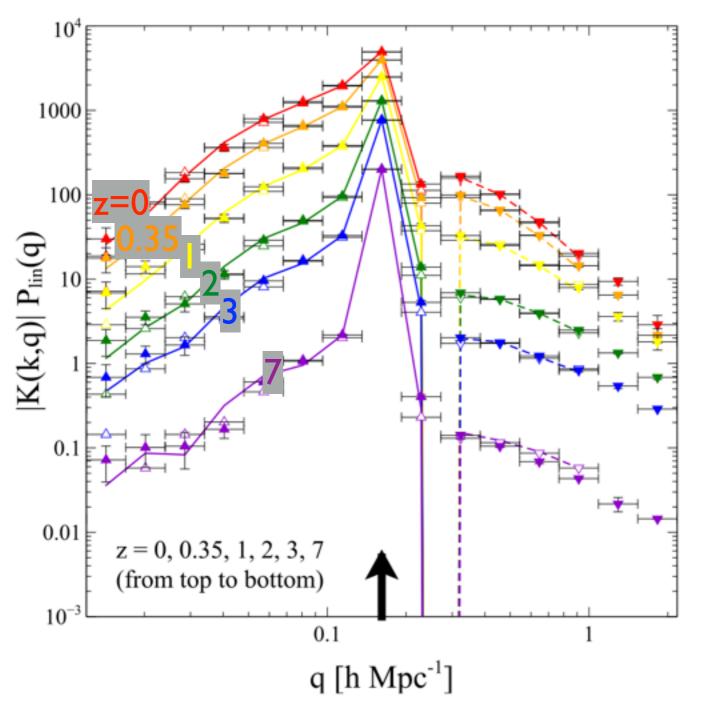
width of k-bin : $\Delta \ln q = \ln(\sqrt{2})$

TABLE I: Simulation parameters. Box sizes are in unit of h^{-1} Mpc.

_	name	\mathbf{box}	particles	start- z	bins	runs	total	
Run many simulations	L9-N9	512	512^{3}	31	15	4	120	١
	L9-N8	512	256^{3}	15	13	4	104	
T.Nishimishi	L10-N9	1024	512^{3}	31	15	1	30	/

Measured results of kernel

mode-coupling kernel measured at k=0.162 [h/Mpc]



$$K(k,q) = q \frac{\delta P_{\rm nl}(k)}{\delta P_0(q)}$$

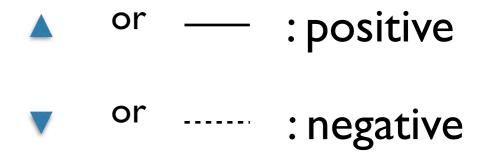
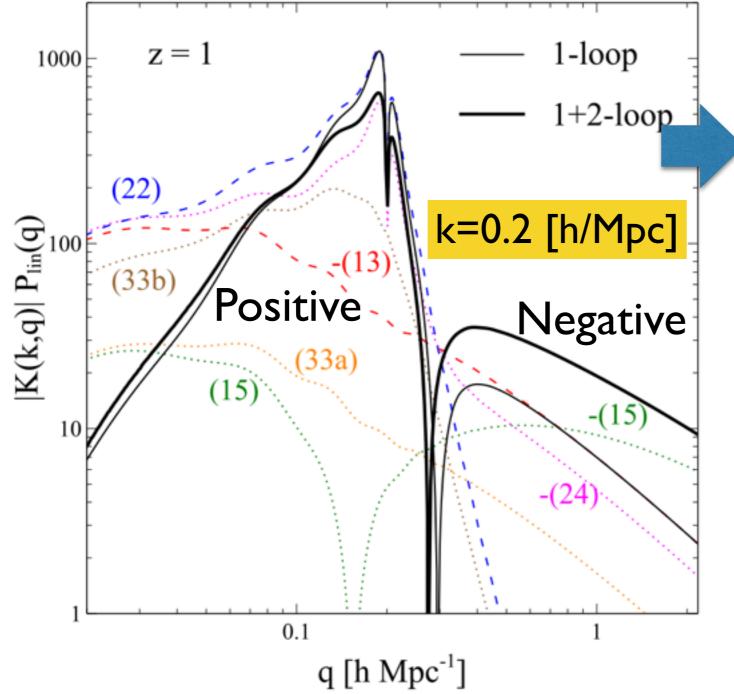


FIG. 1: Kernel function measured from simulations. We plot $|K(k,q)|P_{\text{lin}}(q)$ as a function of initial wavenumber q for a fixed value of final wavenumber k indicated by the vertical arrow in the panels. Filled (open) symbols show the measurement from L9-N9 (L10-N9), while lines depict L9-N8. Positive values are shown by upper triangle or solid line, while lower triangles and dashed line show negative contribution.

PT result of kernel

Note—. delta-function contribution removed



For a proper comparison with N-body results, we take a weighted average in each k-bin

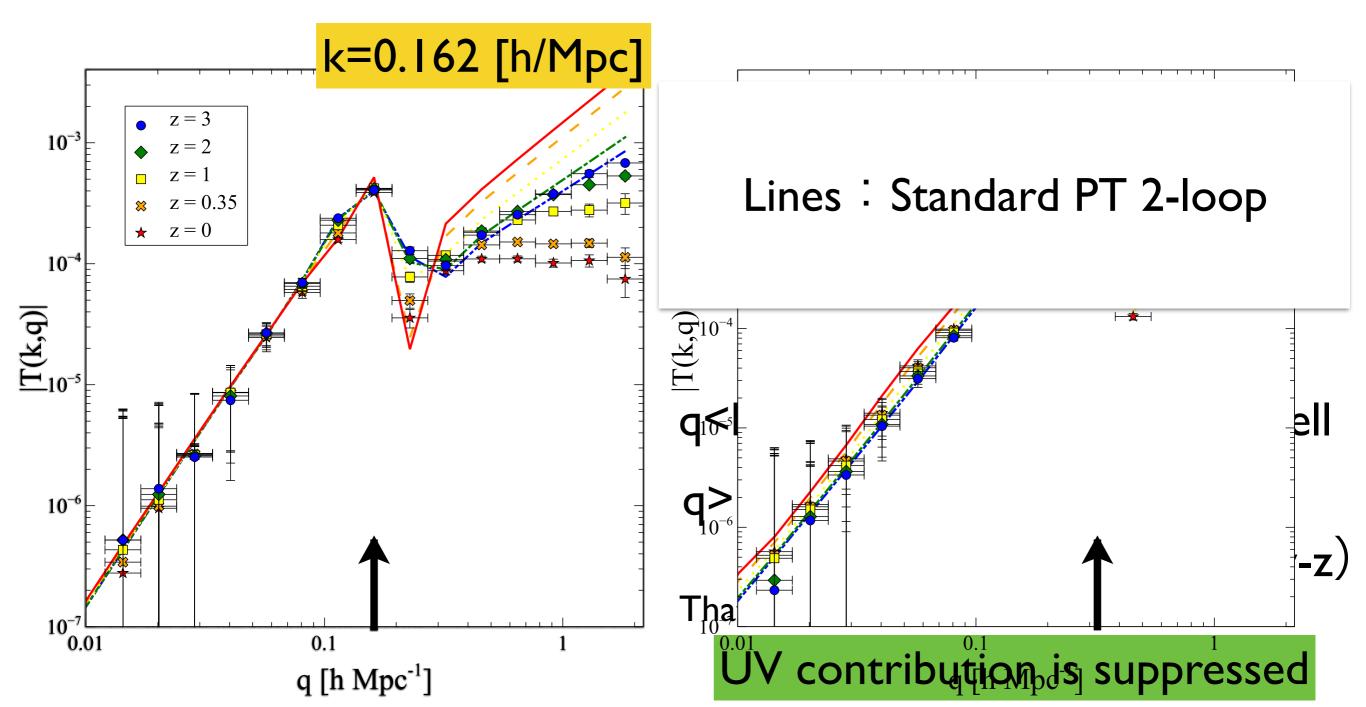
Taking also account of the delta-function contribution

FIG. 2: Kernel function as predicted by PT calculations up to one- (thin solid) and two-loop (thick solid) order computed for k = 0.2h/Mpc at z = 1. Dashed (dotted) lines show each of the one- (two-)loop contributions with the legend (ij)showing the perturbative order of the calculation. The legend has a negative sign when the kernel is negative. Note that we ignore terms proportional to the Dirac delta at k = q, which is meaningful only when we take a certain binning scheme.

PT vs N-body simulation

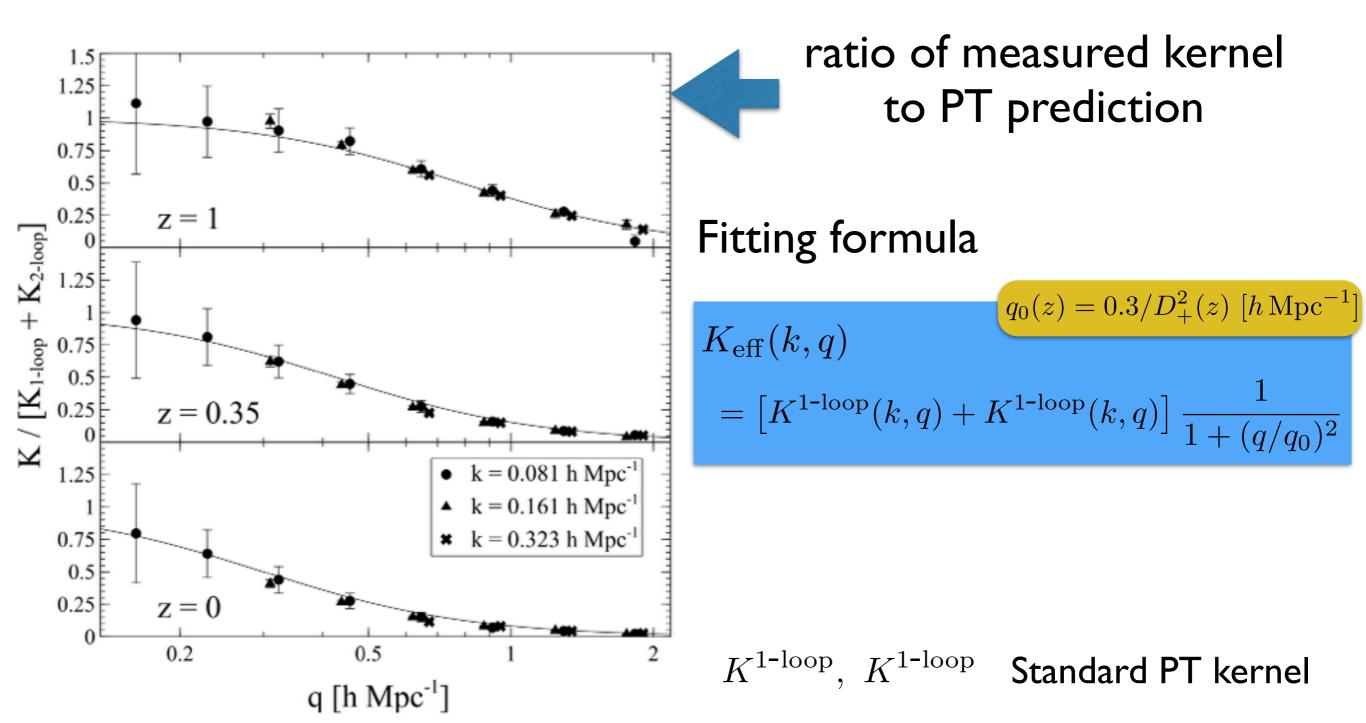
Normalized kernel

$$T(k,q) = K(k,q)/P^{\rm lin}(k)$$



Characterizing UV suppression

UV suppression is seen at various k & q

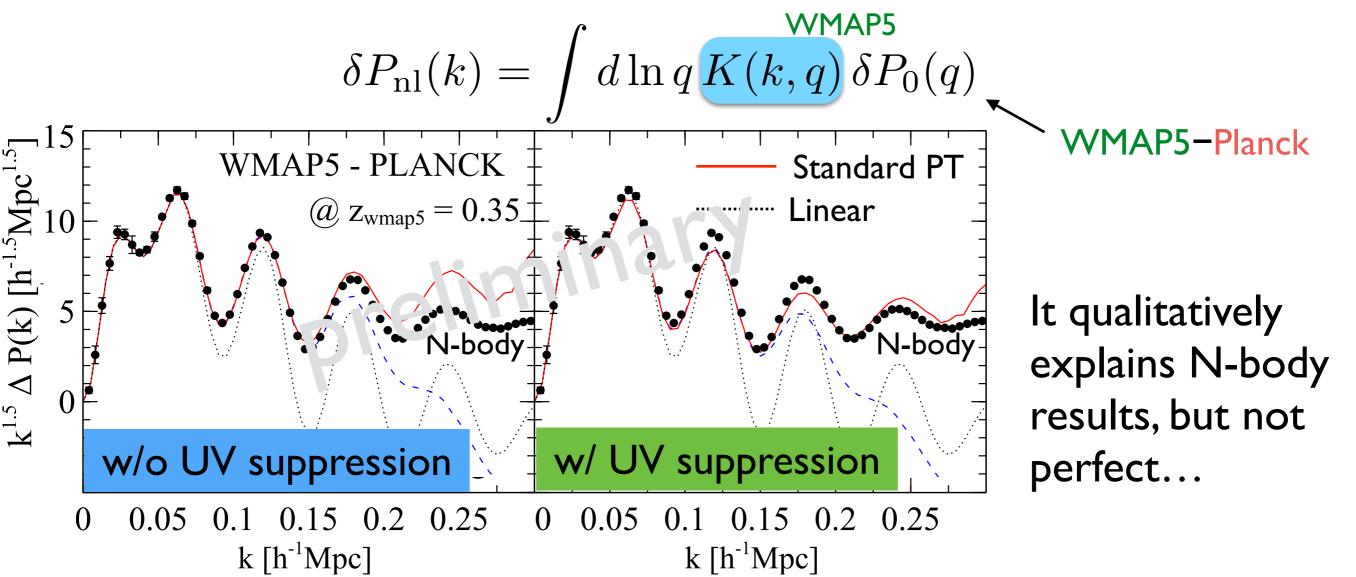


Role of UV suppression

Taking account of the UV suppression, how well standard PT prediction can be improved ?

Here, we consider $\delta P_0(k)$ as the difference between *Planck* and WMAP5

and compute the nonlinear power spectrum difference $\delta P_{nl}(k)$



Summary & discussion

Measurement of mode-coupling kernel of large-scale structure (LSS) : $K(k,q) = q \, \frac{\delta P_{\rm nl}(k)}{\delta P_0(q)}$

Unlike the standard PT results,

- There appears UV suppression in N-body simulation at k<<q
- Discrepancy can be seen even at low-k, where standard PT can reproduce the N-body result quite well

Physical origin
 A connection with small-scale physics (formation and merging processes of dark matter halos)
 Implication
 Check the validity and limitation for EFTofLSS
 A step toward an improved prescription of LSS