Spatially covariant gravity and unifying framework for scalar-tensor theories

Xian Gao (高显/顕/顯) Tokyo Institute of Technology

17 September 2014 Yukawa Institute for Theoretical Physics Kyoto University

Based on [1406.0822] and [1409.xxxx]

Inflation, dark energy and dark matter have been strong motivations for alternative gravity theories beyond Einstein's general relativity.

Modifying gravity?

Inflation, dark energy and dark matter have been strong motivations for alternative gravity theories beyond Einstein's general relativity.

Modifying GR requires at least (Lovelock's Theorem):

- extra degrees of freedom,
- extra dimensions,
- higher derivative terms,
- extension of (pseudo-)Riemannian geometry,
- non-locality.

Modifying gravity?

Inflation, dark energy and dark matter have been strong motivations for alternative gravity theories beyond Einstein's general relativity.

Modifying GR requires at least (Lovelock's Theorem):

- extra degrees of freedom, \rightarrow scalar-tensor theories
- extra dimensions,
- higher derivative terms,
- extension of (pseudo-)Riemannian geometry,
- non-locality.

Modifying gravity?

Inflation, dark energy and dark matter have been strong motivations for alternative gravity theories beyond Einstein's general relativity.

Modifying GR requires at least (Lovelock's Theorem):

- extra degrees of freedom, \rightarrow scalar-tensor theories
- extra dimensions,
- higher derivative terms,
- extension of (pseudo-)Riemannian geometry,
- non-locality.

 \rightarrow How to introduce these extra degrees of freedom?

The most straightforward way: to add gravity with extra field(s), covariantly.

The most straightforward way: to add gravity with extra field(s), covariantly.

GR:
$$\mathcal{L} = \sqrt{-g} \left[\frac{R}{2} + \Lambda \right]$$

The most straightforward way: to add gravity with extra field(s), covariantly.

k-essence:
$$\mathcal{L} = \sqrt{-g} \left[rac{R}{2} + K\left(\phi, X\right)
ight] \qquad X = -rac{1}{2} \left(
abla \phi
ight)^2$$

Over the years, *k*-essence was studied as the most general local theory for a single scalar field.

The most straightforward way: to add gravity with extra field(s), covariantly.

k-essence:
$$\mathcal{L} = \sqrt{-g} \left[\frac{R}{2} + K(\phi, X) \right]$$
 $X = -\frac{1}{2} (\nabla \phi)^2$

Over the years, *k*-essence was studied as the most general local theory for a single scalar field, which involves at most **first** derivatives of the field in the Lagrangian.

The most straightforward way: to add gravity with extra field(s), covariantly.

k-essence:
$$\mathcal{L} = \sqrt{-g} \left[rac{R}{2} + K\left(\phi, X\right)
ight] \qquad X = -rac{1}{2} \left(
abla \phi
ight)^2$$

Over the years, *k*-essence was studied as the most general local theory for a single scalar field, which involves at most **first** derivatives of the field in the Lagrangian.

Higher derivatives in the Lagrangian \rightarrow Extra mode(s)?

What is the most general single scalar-tensor theory:

• of which the Lagrangian involves second derivatives,

 $\mathcal{L}\left(\phi,\nabla\phi,\nabla\nabla\phi\right)$

What is the most general single scalar-tensor theory:

• of which the Lagrangian involves second derivatives,

 $\mathcal{L}\left(\phi,\nabla\phi,\nabla\nabla\phi\right)$

the equations of motion stay at the second order in derivatives
 → only one scalar degree of freedom beyond GR

What is the most general single scalar-tensor theory:

• of which the Lagrangian involves second derivatives,

 $\mathcal{L}\left(\phi,\nabla\phi,\nabla\nabla\phi\right)$

the equations of motion stay at the second order in derivatives
 → only one scalar degree of freedom beyond GR

[G. W. **Horndeski**, Int.J.Theor.Phys. 10, 363 (1974)] [C. Deffayet, **X. Gao**, D. Steer, and G. Zahariade, Phys.Rev.D84, 064039 (2011)]

What is the most general single scalar-tensor theory:

• of which the Lagrangian involves second derivatives,

 $\mathcal{L}\left(\phi,\nabla\phi,\nabla\nabla\phi\right)$

• the equations of motion stay at the second order in derivatives \rightarrow only one scalar degree of freedom beyond GR

[G. W. **Horndeski**, Int.J.Theor.Phys. 10, 363 (1974)] [C. Deffayet, **X. Gao**, D. Steer, and G. Zahariade, Phys.Rev.D84, 064039 (2011)]

 $\mathcal{L}_2 = G_2\left(X,\phi\right), \qquad \qquad \textit{k-essence}$

What is the most general single scalar-tensor theory:

• of which the Lagrangian involves second derivatives,

 $\mathcal{L}\left(\phi,\nabla\phi,\nabla\nabla\phi\right)$

the equations of motion stay at the second order in derivatives
 → only one scalar degree of freedom beyond GR

[G. W. **Horndeski**, Int.J.Theor.Phys. 10, 363 (1974)] [C. Deffayet, **X. Gao**, D. Steer, and G. Zahariade, Phys.Rev.D84, 064039 (2011)]

 $\mathcal{L}_2 = G_2(X, \phi),$ $\mathcal{L}_3 = G_3(X, \phi) \Box \phi,$

k-essence

[Dvali, Gabadadze and Porrati, Phys.Lett.B485, 208(2000)]

What is the most general single scalar-tensor theory:

• of which the Lagrangian involves second derivatives,

 $\mathcal{L}\left(\phi,\nabla\phi,\nabla\nabla\phi\right)$

the equations of motion stay at the second order in derivatives
 → only one scalar degree of freedom beyond GR

[G. W. **Horndeski**, Int.J.Theor.Phys. 10, 363 (1974)] [C. Deffayet, **X. Gao**, D. Steer, and G. Zahariade, Phys.Rev.D84, 064039 (2011)]

$$\begin{split} \mathcal{L}_{2} &= G_{2}\left(X,\phi\right), & k\text{-essence} \\ \mathcal{L}_{3} &= G_{3}\left(X,\phi\right) \Box \phi, & \text{[Dvali, Gabadadze and Porrati, Phys.Lett.B485, 208(2000)]} \\ \mathcal{L}_{4} &= G_{4}\left(X,\phi\right) R + \frac{\partial G_{4}}{\partial X} \left[\left(\Box \phi\right)^{2} - \left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2} \right], \end{split}$$

What is the most general single scalar-tensor theory:

• of which the Lagrangian involves second derivatives,

 $\mathcal{L}\left(\phi,\nabla\phi,\nabla\nabla\phi\right)$

the equations of motion stay at the second order in derivatives
 → only one scalar degree of freedom beyond GR

[G. W. **Horndeski**, Int.J.Theor.Phys. 10, 363 (1974)] [C. Deffayet, **X. Gao**, D. Steer, and G. Zahariade, Phys.Rev.D84, 064039 (2011)]

$$\begin{split} \mathcal{L}_{2} &= G_{2}\left(X,\phi\right), & \text{k-essence} \\ \mathcal{L}_{3} &= G_{3}\left(X,\phi\right) \Box \phi, & \text{[Dvali, Gabadadze and Porrati, Phys.Lett.B485, 208(2000)]} \\ \mathcal{L}_{4} &= G_{4}\left(X,\phi\right) R + \frac{\partial G_{4}}{\partial X} \left[\left(\Box\phi\right)^{2} - \left(\nabla_{\mu}\nabla_{\nu}\phi\right)^{2} \right], \\ \mathcal{L}_{5} &= G_{5}\left(X,\phi\right) G^{\mu\nu} \nabla_{\mu} \nabla_{\nu} \phi \\ &- \frac{1}{6} \frac{\partial G_{5}}{\partial X} \left[\left(\Box\phi\right)^{3} - 3\Box\phi \left(\nabla_{\mu}\nabla_{\nu}\phi\right)^{2} + 2\left(\nabla_{\mu}\nabla_{\nu}\phi\right)^{3} \right]. \end{split}$$

Embedding Horndeski theory in a "more physical" scenario?

Embedding Horndeski theory in a "more physical" scenario? • $(\nabla \phi)^2 \Box \phi$ arises in the decoupling limit of DGP model

Embedding Horndeski theory in a "more physical" scenario?

- $(\nabla \phi)^2 \Box \phi$ arises in the decoupling limit of DGP model
- Further generalizations?

[de Rham & Tolley 1003.5917] [Hinterbichler, Trodden & Wesley 1008.1305]

$$\mathcal{L} = \sqrt{-g} \left(\Lambda + c_1 K + c_2 R + c_3 \mathcal{K}_{\text{GB}} \right) \qquad \qquad \mathcal{K}_{\text{GB}} = -\frac{2}{3} K_{\mu\nu}^3 + K K_{\mu\nu}^2 - \frac{1}{3} K^3 - 2G_{\mu\nu} K^{\mu\nu} \\ g_{\mu\nu} = \eta_{\mu\nu} - \frac{\partial_{\mu} \pi \partial_{\nu} \pi}{1 + (\partial \pi)^2}$$

Full set of Galileon Lagrangians (on Minkowski background)

Embedding Horndeski theory in a "more physical" scenario?

- $(\nabla \phi)^2 \Box \phi$ arises in the decoupling limit of DGP model
- Further generalizations?

[de Rham & Tolley 1003.5917] [Hinterbichler, Trodden & Wesley 1008.1305]

$$\mathcal{L} = \sqrt{-g} \left(\Lambda + c_1 K + c_2 R + c_3 \mathcal{K}_{\text{GB}} \right) \qquad \qquad \mathcal{K}_{\text{GB}} = -\frac{2}{3} K_{\mu\nu}^3 + K K_{\mu\nu}^2 - \frac{1}{3} K^3 - 2G_{\mu\nu} K^{\mu\nu} \\ g_{\mu\nu} = \eta_{\mu\nu} - \frac{\partial_{\mu} \pi \partial_{\nu} \pi}{1 + (\partial \pi)^2}$$

Full set of Galileon Lagrangians (on Minkowski background)

• Decoupling limit of massive gravity, massive vector theory [Tasinato's talk]

Embedding Horndeski theory in a "more physical" scenario?

- $(\nabla \phi)^2 \Box \phi$ arises in the decoupling limit of DGP model
- Further generalizations?

[de Rham & Tolley 1003.5917] [Hinterbichler, Trodden & Wesley 1008.1305]

$$\mathcal{L} = \sqrt{-g} \left(\Lambda + c_1 K + c_2 R + c_3 \mathcal{K}_{\text{GB}} \right) \qquad \qquad \mathcal{K}_{\text{GB}} = -\frac{2}{3} K_{\mu\nu}^3 + K K_{\mu\nu}^2 - \frac{1}{3} K^3 - 2G_{\mu\nu} K^{\mu\nu}$$
$$g_{\mu\nu} = \eta_{\mu\nu} - \frac{\partial_{\mu} \pi \partial_{\nu} \pi}{1 + (\partial \pi)^2}$$

Full set of Galileon Lagrangians (on Minkowski background)

• Decoupling limit of massive gravity, massive vector theory [Tasinato's talk]

Additional degree(s) of freedom may arise when symmetries are reduced.

- Massive gravity: 2t+2v+1s
- Massive vector: 2v+1s [Tasinato's talk]
- Scalar-tensor theory: 2t+1s?

Cosmological background breaks the full symmetries of GR, by choosing a preferred time direction or spatial sclices, on which

$$\phi(t, \vec{x}) = \phi_0(t), \qquad \delta\phi(t, \vec{x}) \equiv 0$$

Cosmological background breaks the full symmetries of GR, by choosing a preferred time direction or spatial sclices, on which

$$\phi(t, \vec{x}) = \phi_0(t), \qquad \delta\phi(t, \vec{x}) \equiv 0$$

Instead of perturbatively expanding a "covariant" theory, we may start directly from Lagrangians with broken time diffs (but unbroken spatial diffs), describing **2 tensor + 1 scalar** dofs around an FRW background.

Cosmological background breaks the full symmetries of GR, by choosing a preferred time direction or spatial sclices, on which

$$\phi(t, \vec{x}) = \phi_0(t), \qquad \delta\phi(t, \vec{x}) \equiv 0$$

Instead of perturbatively expanding a "covariant" theory, we may start directly from Lagrangians with broken time diffs (but unbroken spatial diffs), describing **2 tensor + 1 scalar** dofs around an FRW background.

The basic ingredients are just perturbative ADM variables:

$\delta N,$	$\delta K_{\mu u}$
lapse function	extrinsic curvature

Cosmological background breaks the full symmetries of GR, by choosing a preferred time direction or spatial sclices, on which

$$\phi(t, \vec{x}) = \phi_0(t), \qquad \delta\phi(t, \vec{x}) \equiv 0$$

Instead of perturbatively expanding a "covariant" theory, we may start directly from Lagrangians with broken time diffs (but unbroken spatial diffs), describing **2 tensor + 1 scalar** dofs around an FRW background.

The basic ingredients are just perturbative ADM variables:

$$\delta N, \qquad \delta K_{\mu\nu}$$
lapse function extrinsic curvature
$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} R + \Lambda \left(t \right) + f_1 \left(t \right) \delta N + f_2 \left(t \right) \delta N^2 + \cdots \right.$$

$$\left. + g_1 \left(t \right) \delta K^{\mu}_{\mu} + g_2 \left(t \right) \left(\delta K^{\mu}_{\mu} \right)^2 + g_3 \left(t \right) \delta K_{\mu\nu} \delta K^{\mu\nu} + \cdots \right]$$

[Cheung, Creminelli, Fitzpatrick, Kaplan, and Senatore, JHEP 0803, 014 (2008)]

Hořava gravity

GR in the ADM formalism:

$$S^{(\text{GR})} = \frac{1}{2} \int d^4 x N \sqrt{h} \left(K_{ij} K^{ij} - K^2 + {}^{(3)}R \right)$$

 \rightarrow respect full spacetime diffeomorphism $t \rightarrow \tilde{t}(t, x^i), \quad x^i \rightarrow \tilde{x}^i(t, x^i)$

Hořava gravity

Hořava gravity:

$$S^{(\text{Horava})} = \frac{1}{2} \int d^4 x N \sqrt{h} \left(K_{ij} K^{ij} - \lambda K^2 + \mathcal{V} \left[h_{ij}, {}^{(3)} R_{ij}, D_i \right] \right)$$

[P. Horava, Phys.Rev. D79, 084008 (2009)]

 \rightarrow time-dependent spatial diffeomorphism \rightarrow space-independent time reparametrization

$$t \to \tilde{t}(t), \qquad x^i \to \tilde{x}^i(t, x^i)$$

Hořava gravity

Hořava gravity:

$$S^{(\text{Horava})} = \frac{1}{2} \int d^4 x N \sqrt{h} \left(K_{ij} K^{ij} - \lambda K^2 + \mathcal{V} \left[h_{ij}, {}^{(3)} R_{ij}, D_i \right] \right)$$

[P. Horava, Phys.Rev. D79, 084008 (2009)]

 \rightarrow time-dependent spatial diffeomorphism \rightarrow space-independent time reparametrization

$$t \to \tilde{t}(t), \qquad x^i \to \tilde{x}^i(t, x^i)$$

Healthy extensions:

$$S^{\text{(Healthy Ext.)}} = \frac{1}{2} \int d^4x N \sqrt{h} \left(c_1 a_i a^i + c_2 \left(a_i a^i \right)^2 + c_3 R_{ij} a^i a^j + \cdots \right)$$
$$a_i = \partial_i \ln N$$

[Blas, Pujolas & Sibiryakov, JHEP 0910, 029 (2009)]

 \rightarrow N enters the Hamiltonian "nonlinearly"!

Fixing the unitary (uniform scalar field) gauge: $\phi(t, \vec{x}) \equiv \phi_0(t) \equiv t$ $\nabla_\mu \phi = -\frac{1}{N} \delta^0_\mu$

 $\nabla_{\mu}\nabla_{\nu}\phi = -\delta^{0}_{\mu}\delta^{0}_{\nu}\frac{1}{N^{2}}\left(\partial_{t}\ln N - N^{i}\nabla_{i}\ln N\right) + \frac{2}{N}\delta^{0}_{(\mu}\delta^{i}_{\nu)}\partial_{i}\ln N - \frac{1}{N}\delta^{i}_{\mu}\delta^{j}_{\nu}K_{ij}$

Fixing the unitary (uniform scalar field) gauge:
$$\phi(t, \vec{x}) \equiv \phi_0(t) \equiv t$$

 $\nabla_\mu \phi = -\frac{1}{N} \delta^0_\mu$
 $\nabla_\mu \nabla_\nu \phi = -\delta^0_\mu \delta^0_\nu \frac{1}{N^2} \left(\partial_t \ln N - N^i \nabla_i \ln N \right) + \frac{2}{N} \delta^0_{(\mu} \delta^i_{\nu)} \partial_i \ln N - \frac{1}{N} \delta^i_\mu \delta^j_\nu K_{ij}$

Horndeski in the ADM form:

[Gleyzes, Langlois, Piazza & Vernizzi, arXiv:1304.4840]

$$\begin{split} \mathcal{L}^{\text{Horndeski}} &\simeq \mathbf{G}_{2} + \frac{1}{N^{2}} \frac{\partial \mathbf{F}_{3}}{\partial \phi} \\ &+ \left[\mathbf{G}_{4} - \frac{1}{2N^{2}} \frac{\partial \left(\mathbf{G}_{5} - \mathbf{F}_{5}\right)}{\partial \phi} \right]^{(3)} \mathbf{R} \\ &+ \left[\left(\frac{\partial \mathbf{F}_{3}}{\partial N} - 2 \frac{1}{N} \frac{\partial \mathbf{G}_{4}}{\partial \phi} \right) h_{ij} - \frac{1}{N} \mathbf{F}_{5}^{(3)} \mathbf{G}_{ij} \right] \mathbf{K}^{ij} \\ &- \left(\frac{\partial \left(N \mathbf{G}_{4}\right)}{\partial N} + \frac{1}{2N^{2}} \frac{\partial \mathbf{G}_{5}}{\partial \phi} \right) \left(\mathbf{K}^{2} - \mathbf{K}_{ij} \mathbf{K}^{ij} \right) \\ &- \frac{1}{6} \frac{\partial \mathbf{G}_{5}}{\partial N} \quad \left(\mathbf{K}^{3} - 3K \mathbf{K}_{ij} \mathbf{K}^{ij} + 2K_{j}^{i} \mathbf{K}_{k}^{j} \mathbf{K}_{k}^{k} \right) \end{split}$$

Fixing the unitary (uniform scalar field) gauge:
$$\phi(t, \vec{x}) \equiv \phi_0(t) \equiv t$$

 $\nabla_\mu \phi = -\frac{1}{N} \delta^0_\mu$
 $\nabla_\mu \nabla_\nu \phi = -\delta^0_\mu \delta^0_\nu \frac{1}{N^2} \left(\partial_t \ln N - N^i \nabla_i \ln N \right) + \frac{2}{N} \delta^0_{(\mu} \delta^i_{\nu)} \partial_i \ln N - \frac{1}{N} \delta^i_\mu \delta^j_\nu K_{ij}$

Horndeski in the ADM form:

4

$$\mathcal{L}^{\text{Horndeski}} \simeq \frac{G_2 + \frac{1}{N^2} \frac{\partial F_3}{\partial \phi}}{H + \left[G_4 - \frac{1}{2N^2} \frac{\partial (G_5 - F_5)}{\partial \phi} \right]^{(3)} R} + \left[\left(\frac{\partial F_3}{\partial N} - 2 \frac{1}{N} \frac{\partial G_4}{\partial \phi} \right) h_{ij} - \frac{1}{N} F_5^{(3)} G_{ij} \right] K^{ij} - \left(\frac{\partial (NG_4)}{\partial N} + \frac{1}{2N^2} \frac{\partial G_5}{\partial \phi} \right) \left(K^2 - K_{ij} K^{ij} \right) - \frac{1}{6} \frac{\partial G_5}{\partial N} \left(K^3 - 3K K_{ij} K^{ij} + 2K_j^i K_k^j K_k^k \right)$$

Fixing the unitary (uniform scalar field) gauge: $\phi(t, \vec{x}) \equiv \phi_0(t) \equiv t$ $\nabla_\mu \phi = -\frac{1}{N} \delta^0_\mu$ $\nabla_\mu \nabla_\nu \phi = -\delta^0_\mu \delta^0_\nu \frac{1}{N^2} \left(\partial_t \ln N - N^i \nabla_i \ln N \right) + \frac{2}{N} \delta^0_{(\mu} \delta^i_{\nu)} \partial_i \ln N - \frac{1}{N} \delta^i_\mu \delta^j_\nu K_{ij}$

GLPV model (deformed Horndeski):

[Gleyzes, Langlois, Piazza & Vernizzi, arXiv:1404.6495]

$$\begin{split} \mathcal{L}^{\text{GLPV}} &= A_2 \left(t, N \right) \\ &+ \begin{bmatrix} B_4 \left(t, N \right) \end{bmatrix}^{(3)} R \\ &+ \begin{bmatrix} \left(A_3 \left(t, N \right) \right) h_{ij} + B_5 \left(t, N \right)^{(3)} G_{ij} \end{bmatrix} K^{ij} \\ &+ \left(A_4 \left(t, N \right) \right) \left(K^2 - K_{ij} K^{ij} \right) \\ &+ A_5 \left(t, N \right) \left(K^3 - 3K K_{ij} K^{ij} + 2K^i_j K^k_k K^k_i \right) \end{split}$$

Gauge recovering (Stückelberg trick)

Gauge recovering (Stückelberg trick)

Gauge recovering (Stückelberg trick)

Gauge recovering (Stückelberg trick)

A general class of Lagrangians that respects the spatial diffeomorphism:

$$\sqrt{-g}\mathcal{L} = N\sqrt{h}\left(\sum_{n=1}^{i_1j_1,\cdots,i_nj_n} K_{i_1j_1}\cdots K_{i_nj_n} + \mathcal{V}\right)$$

[**XG** 1406.0822]

where $\mathcal{V}, \mathcal{G}_{(n)}$'s are functions of

$$(t, N, {}^{(3)}h_{ij}, {}^{(3)}R_{ij}, \nabla_i)$$

A general class of Lagrangians that respects the spatial diffeomorphism:

A general class of Lagrangians that respects the spatial diffeomorphism:

$$\sqrt{-g}\mathcal{L} = N\sqrt{h}\left(\sum_{n=1}^{\infty} \mathcal{G}_{(n)}^{i_1j_1,\dots,i_nj_n} K_{i_1j_1} \cdots K_{i_nj_n} + \mathcal{V}\right)$$
where $\mathcal{V}, \mathcal{G}_{(n)}$'s are functions of
$$\left(t, N, {}^{(3)}h_{ij}, {}^{(3)}R_{ij}, \nabla_i\right)$$
[XG 1406.0822]

"Translating" to the covariant language (Stueckelberg trick)

$$t \to \phi(t, \vec{x}), \qquad \qquad n_{\mu} \to -\frac{\nabla_{\mu}\phi}{\sqrt{-(\nabla\phi)^2}}$$

All terms can be written covariantly in terms of ϕ and its derivatives.

A general class of Lagrangians that respects the spatial diffeomorphism:

$$\begin{split} \sqrt{-g}\mathcal{L} &= N\sqrt{h}\left(\sum_{n=1}^{i}\mathcal{G}_{(n)}^{i_{1}j_{1},\cdots,i_{n}j_{n}}K_{i_{1}j_{1}}\cdots K_{i_{n}j_{n}} + \mathcal{V}\right) \end{split} \label{eq:KG-1406.0822} \\ \text{where }\mathcal{V}, \, \mathcal{G}_{(n)}\text{'s} \ \text{ are functions of } \\ \left(t,N,\,^{(3)}h_{ij},\,^{(3)}R_{ij},\nabla_{i}\right) \end{split}$$

"Translating" to the covariant language (Stueckelberg trick)

$$t \to \phi(t, \vec{x}), \qquad n_{\mu} \to -\frac{\nabla_{\mu}\phi}{\sqrt{-(\nabla\phi)^2}}$$

All terms can be written covariantly in terms of ϕ and its derivatives.

 \rightarrow A more general class of scalar-tensor theory beyond the Horndeski theory, which propagates **2 tensor + 1 scalar** dofs, although the equations of motion are generally higher order.

Hamiltonian

A general class of Lagrangians that respects the spatial diffeomorphism:

$$\sqrt{-g}\mathcal{L} = N\sqrt{h}\left(\sum_{n=1}^{j_{1}j_{1},\cdots,i_{n}j_{n}}K_{i_{1}j_{1}}\cdots K_{i_{n}j_{n}}+\mathcal{V}\right)$$

Conjugate momenta:

$$\pi^{ij} \equiv \frac{\partial \left(N\sqrt{h}\mathcal{L}\right)}{\partial \dot{h}_{ij}} = \frac{\sqrt{h}}{2} \left(\mathcal{G}_{(1)}^{ij} + 2\mathcal{G}_{(2)}^{ij,kl}K_{kl} + 3\mathcal{G}_{(3)}^{ij,k_1l_1,k_2l_2}K_{k_1l_1}K_{k_2l_2}\cdots\right)$$

 $K_{ij} = \frac{1}{2N} \left(\dot{h}_{ij} - \nabla_i N_j - \nabla_j N_i \right)$

Hamiltonian

A general class of Lagrangians that respects the spatial diffeomorphism:

$$\sqrt{-g}\mathcal{L} = N\sqrt{h}\left(\sum_{n=1}^{j_{1}j_{1},\cdots,i_{n}j_{n}}K_{i_{1}j_{1}}\cdots K_{i_{n}j_{n}}+\mathcal{V}\right)$$

Conjugate momenta:

$$\pi^{ij} \equiv \frac{\partial \left(N\sqrt{h}\mathcal{L} \right)}{\partial \dot{h}_{ij}} = \frac{\sqrt{h}}{2} \left(\mathcal{G}_{(1)}^{ij} + 2\mathcal{G}_{(2)}^{ij,kl} K_{kl} + 3\mathcal{G}_{(3)}^{ij,k_1l_1,k_2l_2} K_{k_1l_1} K_{k_2l_2} \cdots \right)$$
$$K_{ij} = \Gamma_{ij}^{(1)} + \frac{1}{\sqrt{h}} \Gamma_{ij,kl}^{(2)} \pi^{kl} + \frac{1}{h} \Gamma_{ij,k_1l_1,k_2l_2}^{(3)} \pi^{k_1l_1} \pi^{k_2l_2} + \cdots$$

 $K_{ij} = \frac{1}{2N} \left(\dot{h}_{ij} - \nabla_i N_j - \nabla_j N_i \right)$

Hamiltonian

A general class of Lagrangians that respects the spatial diffeomorphism:

$$\sqrt{-g}\mathcal{L} = N\sqrt{h}\left(\sum_{n=1}^{i_1j_1,\cdots,i_nj_n} K_{i_1j_1}\cdots K_{i_nj_n} + \mathcal{V}\right)$$

Conjugate momenta:

$$K_{ij} = \frac{1}{2N} \left(\dot{h}_{ij} - \nabla_i N_j - \nabla_j N_i \right)$$

$$\pi^{ij} \equiv \frac{\partial \left(N\sqrt{h}\mathcal{L} \right)}{\partial \dot{h}_{ij}} = \frac{\sqrt{h}}{2} \left(\mathcal{G}_{(1)}^{ij} + 2\mathcal{G}_{(2)}^{ij,kl} K_{kl} + 3\mathcal{G}_{(3)}^{ij,k_1l_1,k_2l_2} K_{k_1l_1} K_{k_2l_2} \cdots \right)$$

$$K_{ij} = \Gamma_{ij}^{(1)} + \frac{1}{\sqrt{h}} \Gamma_{ij,kl}^{(2)} \pi^{kl} + \frac{1}{h} \Gamma_{ij,k_1 l_1,k_2 l_2}^{(3)} \pi^{k_1 l_1} \pi^{k_2 l_2} + \cdots$$

Canonical Hamiltonian:

$$\begin{aligned}
\mathcal{H}_{c} &\equiv \pi^{ij}\dot{h}_{ij} - N\sqrt{h}\mathcal{L} \simeq N\tilde{\mathcal{C}} + N_{i}\mathcal{C}^{i} \\
\tilde{\mathcal{C}} &\equiv 2\pi^{ij}K_{ij} - \sqrt{h}\mathcal{L} = \sqrt{h}\left(C^{(0)} + \frac{1}{\sqrt{h}}C^{(1)}_{ij}\pi^{ij} + \frac{1}{h}C^{(2)}_{i_{1}j_{1},i_{2}j_{2}}\pi^{i_{1}j_{1}}\pi^{i_{2}j_{2}} + \cdots\right) \\
&= \tilde{\mathcal{C}}\left(t, \mathbf{N}, h_{ij}, R_{ij}, \nabla_{i}, \pi^{ij}\right), \\
\mathcal{C}^{i} &\equiv -2\sqrt{h}\nabla_{j}\left(\frac{\pi^{ij}}{\sqrt{h}}\right),
\end{aligned}$$

4 primary constraints:

$$\pi_N \equiv \frac{\partial \left(N \sqrt{h} \mathcal{L} \right)}{\partial \dot{N}} \approx 0, \qquad \pi_i \equiv \frac{\partial \left(N \sqrt{h} \mathcal{L} \right)}{\partial \dot{N}^i} \approx 0,$$

4 primary constraints:

$$\pi_N \equiv \frac{\partial \left(N \sqrt{h} \mathcal{L} \right)}{\partial \dot{N}} \approx 0, \qquad \pi_i \equiv \frac{\partial \left(N \sqrt{h} \mathcal{L} \right)}{\partial \dot{N}^i} \approx 0,$$

Extended Hamiltonian: $H_{\text{ex}} = \int d^3x \left(\mathbf{N}\tilde{\mathcal{C}} + N_i\mathcal{C}^i + \lambda^N\pi_N + \lambda^i\pi_i \right)$ $\tilde{\mathcal{C}} = \tilde{\mathcal{C}}\left(t, \mathbf{N}, h_{ij}, R_{ij}, \nabla_i, \pi^{ij}\right), \qquad \mathcal{C}^i \equiv -2\sqrt{h}\nabla_j\left(\frac{\pi^{ij}}{\sqrt{h}}\right)$

4 primary constraints:

$$\pi_N \equiv \frac{\partial \left(N \sqrt{h} \mathcal{L} \right)}{\partial \dot{N}} \approx 0, \qquad \pi_i \equiv \frac{\partial \left(N \sqrt{h} \mathcal{L} \right)}{\partial \dot{N}^i} \approx 0,$$

Extended Hamiltonian: $H_{\text{ex}} = \int d^3x \left(\mathbf{N}\tilde{\mathcal{C}} + N_i\mathcal{C}^i + \lambda^N\pi_N + \lambda^i\pi_i \right)$ $\tilde{\mathcal{C}} = \tilde{\mathcal{C}}\left(t, \mathbf{N}, h_{ij}, R_{ij}, \nabla_i, \pi^{ij}\right), \qquad \mathcal{C}^i \equiv -2\sqrt{h}\nabla_j\left(\frac{\pi^{ij}}{\sqrt{h}}\right)$

N appears nonlinearly in the Hamiltonian, as the space-dependent time reparametrization invariance is broken.

4 primary constraints:

$$\pi_N \equiv \frac{\partial \left(N \sqrt{h} \mathcal{L} \right)}{\partial \dot{N}} \approx 0, \qquad \pi_i \equiv \frac{\partial \left(N \sqrt{h} \mathcal{L} \right)}{\partial \dot{N}^i} \approx 0,$$

Extended Hamiltonian:
$$H_{\text{ex}} = \int d^3x \left(\mathbf{N} \tilde{\mathcal{C}} + N_i \mathcal{C}^i + \lambda^N \pi_N + \lambda^i \pi_i \right)$$

 $\tilde{\mathcal{C}} = \tilde{\mathcal{C}} \left(t, \mathbf{N}, h_{ij}, R_{ij}, \nabla_i, \pi^{ij} \right), \qquad \mathcal{C}^i \equiv -2\sqrt{h} \nabla_j \left(\frac{\pi^{ij}}{\sqrt{h}} \right)$

N appears nonlinearly in the Hamiltonian, as the space-dependent time reparametrization invariance is broken.

4 secondary constraints:

$$\frac{\mathrm{d}}{\mathrm{d}t}\pi_{N} = \{\pi_{N}, H_{\mathrm{ex}}\}_{\mathrm{P}} = -\mathcal{C}, \qquad \frac{\mathrm{d}}{\mathrm{d}t}\pi_{i} = \{\pi_{i}, H_{\mathrm{ex}}\}_{\mathrm{P}} = -\mathcal{C}_{i}$$
$$\mathcal{C} \equiv \tilde{\mathcal{C}} + \sqrt{h}\sum_{n=0}^{\infty} (-1)^{n} \nabla_{i_{n}} \cdots \nabla_{i_{1}} \left(\frac{N}{\sqrt{h}} \frac{\partial \tilde{\mathcal{C}}}{\partial \left(\nabla_{i_{1}} \cdots \nabla_{i_{n}} N\right)}\right)$$
$$= \mathcal{C}\left(t, N, h_{ij}, R_{ij}, \nabla_{i}, \pi^{ij}\right).$$

Poisson brackets among all 8 constraints:

$\{\cdot,\cdot\}_{\mathrm{P}}$	$ \pi_N $	π_j	\mathcal{C}	\mathcal{C}_j
π_N	0	0	$-\frac{\delta C}{\delta N}$	0
π_i	0	0	0	0
${\mathcal C}$	$rac{\delta \mathcal{C}}{\delta N}$	0	0	$-\mathcal{E}_i$
${\mathcal C}_i$	0	0	\mathcal{E}_i	0

[Shinji's talk]

Poisson brackets among all 8 constraints:

$\{\cdot,\cdot\}_{\mathrm{P}}$	$ \pi_N $	π_j	${\mathcal C}$	\mathcal{C}_{j}
π_N	0	0	$-\frac{\delta C}{\delta N}$	0
π_i	0	0	0	0
${\mathcal C}$	$rac{\delta \mathcal{C}}{\delta N}$	0	0	$-\mathcal{E}_i$
${\mathcal C}_i$	0	0	${\mathcal E}_i$	0

[Shinji's talk]

Eigenvalues: 6 zero, 2 non-zero:

 $\pm \sqrt{\left(\frac{\delta \mathcal{C}}{\delta N}\right)^2 + \mathcal{E}_i \mathcal{E}_i}$

Poisson brackets among all 8 constraints:

$\{\cdot,\cdot\}_{\mathrm{P}}$	$ \pi_N $	π_j	\mathcal{C}	\mathcal{C}_{j}
π_N	0	0	$-\frac{\delta C}{\delta N}$	0
π_i	0	0	0	0
${\mathcal C}$	$rac{\delta \mathcal{C}}{\delta N}$	0	0	$-\mathcal{E}_i$
${\mathcal C}_i$	0	0	${\mathcal E}_i$	0

[Shinji's talk]

Eigenvalues: 6 zero, 2 non-zero:

 $\pm \sqrt{\left(\frac{\delta \mathcal{C}}{\delta N}\right)^2 + \mathcal{E}_i \mathcal{E}_i}$

 \rightarrow Among (linearly independent combinations of) 8 constraints: 6 are first class, 2 are second class

Poisson brackets among all 8 constraints:

$\{\cdot,\cdot\}_{\mathrm{P}}$	$ \pi_N $	π_j	\mathcal{C}	\mathcal{C}_j
π_N	0	0	$-\frac{\delta C}{\delta N}$	0
π_i	0	0	0	0
${\mathcal C}$	$rac{\delta \mathcal{C}}{\delta N}$	0	0	$-\mathcal{E}_i$
${\mathcal C}_i$	0	0	${\mathcal E}_i$	0

[Shinji's talk]

Eigenvalues: 6 zero, 2 non-zero:

$$\pm \sqrt{\left(\frac{\delta \mathcal{C}}{\delta N}\right)^2 + \mathcal{E}_i \mathcal{E}_i}$$

 \rightarrow Among (linearly independent combinations of) 8 constraints: 6 are first class, 2 are second class

 \rightarrow Number of degrees of freedom:

number of d.o.f. = $\frac{1}{2} (2 \times \text{number of canonical variables} - 2 \times \text{number of first class constraints})$ -number of second class constraints) = $\frac{1}{2} (2 \times 10 - 2 \times 6 - 2) = 3.$

Linear perturbations

GLPV model contains very special combinations:

$$\mathcal{L}^{\text{GLPV}} = A_2 (t, N) + B_4 (t, N) {}^{3}R + (A_3 (t, N) h^{ij} + B_5 (t, N) {}^{3}G^{ij}) K_{ij} + A_4 (t, N) (K^2 - K_{ij}K^{ij}) + A_5 (t, N) (K^3 - 3KK_{ij}K^{ij} + 2K_j^i K_k^j K_i^k)$$

The equations of motion for linear perturbations stay at second order.

Linear perturbations

GLPV model contains very special combinations:

$$\begin{aligned} \mathcal{L}^{\text{GLPV}} &= A_2 \left(t, N \right) + B_4 \left(t, N \right) \,{}^3R \\ &+ \left(A_3 \left(t, N \right) h^{ij} + B_5 \left(t, N \right) \,{}^3G^{ij} \right) K_{ij} \\ &+ A_4 \left(t, N \right) \left(K^2 - K_{ij} K^{ij} \right) \\ &+ A_5 \left(t, N \right) \left(K^3 - 3K K_{ij} K^{ij} + 2K_j^i K_k^j K_i^k \right) \end{aligned}$$

The equations of motion for linear perturbations stay at second order.

Within our general framework, we checked that at the cubic order in K_{ij} , the following combination also has this property:

$$\sim c(\phi, N) \left(3KK_{ij}K^{ij} - 5K^{i}_{j}k^{j}_{k}K^{k}_{i} \right)$$
 [XG 1406.0822]

GLPV model is not unique nor that special.

Summary

• We propose a very large class of gravity theories, which respect to the spatial diffeomorphism.

• This class of gravity theories corresponds to single-field scalar-tensor theories, which generally possesses higher order equations of motion.

- How to prove the absence of ghost in a general gauge? [Shinji's talk]
- Are all single-field scalar-tensor theory can be embedded in our formalism (e.g. f(R))?
- What is the most general spatially covariant gravity, with 3 d.o.f.s?
- Multi-field generalization?

Thank you for your attention!