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cosmological scalar fields  
attractive self-interaction + gravity
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plan for the talk (part 1)

• motivation & implications 

• understanding what is happening in the movie 

1. relativistic but no gravitational clustering 
(w/ K. Lozanov, 1902.06736)

2. non-relativistic with gravitational clustering 
(w/ P. Mocz,1902.07261)

3. + earlier papers with Shirokoff, Lozanov, Easther, Hertzberg, Finkel, Flauger …



inflation: 
post-inflationary dynamics

Planck Collaboration: Cosmological parameters
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Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck
TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running and the inflationary consistency rela-
tion. The result is model-dependent; for example, the grey contours show how the results change if there were additional relativistic
degrees of freedom with �Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). Dotted lines show loci of approximately con-
stant e-folding number N, assuming simple V / (�/mPl)p single-field inflation. Solid lines show the approximate ns–r relation for
quadratic and linear potentials to first order in slow roll; red lines show the approximate allowed range assuming 50 < N < 60 and
a power-law potential for the duration of inflation. The solid black line (corresponding to a linear potential) separates concave and
convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the
default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level
of significance compared to the Planck-alone constraints.

limited by cosmic variance of the dominant scalar anisotropies,
and it is also model dependent. In polarization, in addition to B-
modes, the EE and T E spectra also contain a signal from tensor
modes coming from reionization and last scattering. However,
in this release the addition of Planck polarization constraints at
` � 30 do not significantly change the results from temperature
and low-` polarization (see Table 5).

Figure 21 shows the 2015 Planck constraint in the ns–r plane,
adding r as a one-parameter extension to base ⇤CDM. Note that
for base ⇤CDM (r = 0), the value of ns is

ns = 0.9655 ± 0.0062, Planck TT+lowP. (38)

We highlight this number here since ns, a key parameter for in-
flationary cosmology, shows one of the largest shifts of any pa-
rameter in base ⇤CDM between the Planck 2013 and Planck
2015 analyses (about 0.7�). As explained in Sect. 3.1, part of
this shift was caused by the ` ⇡ 1800 systematic in the nominal-
mission 217 ⇥ 217 spectrum used in PCP13.

The red contours in Fig. 21 show the constraints from Planck
TT+lowP. These are similar to the constraints shown in Fig. 23
of PCP13, but with ns shifted to slightly higher values. The ad-
dition of BAO or the Planck lensing data to Planck TT+lowP
lowers the value of ⌦ch2, which at fixed ✓⇤ increases the small-
scale CMB power. To maintain the fit to the Planck tempera-
ture power spectrum for models with r = 0, these parameter
shifts are compensated by a change in amplitude As and the tilt
ns (by about 0.4�). The increase in ns to match the observed
power on small scales leads to a decrease in the scalar power
on large scales, allowing room for a slightly larger contribution

from tensor modes. The constraints shown by the blue contours
in Fig. 21, which add Planck lensing, BAO, and other astrophys-
ical data, are therefore tighter in the ns direction and shifted to
slightly higher values, but marginally weaker in the r-direction.
The 95 % limits on r0.002 are

r0.002 < 0.10, Planck TT+lowP, (39a)
r0.002 < 0.11, Planck TT+lowP+lensing+ext, (39b)

consistent with the results reported in PCP13. Note that we as-
sume the second-order slow-roll consistency relation for the ten-
sor spectral index. The result in Eqs. (39a) and (39b) are mildly
scale dependent, with equivalent limits on r0.05 being weaker by
about 5 %.

PCP13 noted a mismatch between the best-fit base ⇤CDM
model and the temperature power spectrum at multipoles ` <⇠ 40,
partly driven by the dip in the multipole range 20 <⇠ ` <⇠ 30. If
this mismatch is simply a statistical fluctuation of the ⇤CDM
model (and there is no compelling evidence to think otherwise),
the strong Planck limit (compared to forecasts) is the result of
chance low levels of scalar mode confusion. On the other hand if
the dip represents a failure of the ⇤CDM model, the 95 % limits
of Eqs. (39a) and (39b) may be underestimates. These issues are
considered at greater length in Planck Collaboration XX (2015)
and will not be discussed further in this paper.

As mentioned above, the Planck temperature constraints on
r are model-dependent and extensions to ⇤CDM can give sig-
nificantly di↵erent results. For example, extra relativistic de-
grees of freedom increase the small-scale damping of the CMB
anisotropies at a fixed angular scale, which can be compensated
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for example:
Peccei & Quinn (1977)
Hu, Barkana & Gruzinov (2000)
Arvanitaki et. al (2009)
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Figure 2 | A slice of the density field of the  DM simulation on various
scales at z=0.1. This scaled sequence (each of thickness 60 pc) shows
how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to
the granular structure inside the haloes. Distinct solitonic cores with radii
⇠0.3–1.6kpc are found within collapsed haloes (which have virial masses
Mvir ⇠ 109˘1011 M�). The density shown here spans over nine orders of
magnitude, from 10�1 to 108 (normalized to the cosmic mean density). The
colour map scales logarithmically, with cyan corresponding to density .10.

giving rise to a co-moving Jeans length, �J / (1+z)1/4m�1/2
B , during

the matter-dominated epoch17. The insensitivity of �J to redshift, z ,
generates a sharp cuto�mass belowwhich structures are suppressed.
Cosmological simulations in this context turn out to be much
more challenging than standard N-body simulations, as the highest
frequency oscillations, !, given approximately by the matter wave
dispersion relation, ! /m�1

B �
�2, where � is the wavelength, occur

on the smallest scales, requiring very fine temporal resolution even
formoderate spatial resolution (Supplementary Fig. 1). In this work,
we optimize an adaptive-mesh-refinement (AMR) scheme, with
graphic processing unit acceleration, improving performance by
almost two orders of magnitude22 (see Supplementary Section 1
for details).

Figure 1 demonstrates that despite the completely di�erent
calculations employed, the pattern of filaments and voids generated
by a conventional N-body particle3CDM simulation is remarkably
indistinguishable from the wavelike 3 DM for the same linear
power spectrum (Supplementary Fig. 3). Here 3 represents the
cosmological constant. This agreement is desirable given the
success of standard 3CDM in describing the statistics of large-scale
structure. To examine the wave nature that distinguishes DM from
CDM on small scales, we re-simulate with a very high maximum
resolution of 60 pc for a 2 Mpc co-moving box, so that the densest
objects formed of &300 pc size are well resolved with ⇠103 grids. A
slice through this box is shown in Fig. 2, revealing fine interference
fringes defining long filaments, with tangential fringes near the
boundaries of virialized objects, where the de Broglie wavelengths
depend on the local velocity of matter. An unexpected feature of
our DMsimulations is the generation of prominent dense coherent
standing waves of dark matter in the centre of every gravitational
bound object, forming a flat core with a sharp boundary (Figs 2
and 3). These dark matter cores grow as material is accreted and
are surrounded by virialized haloes of material with fine-scale,
large-amplitude cellular interference, which continuously fluctuate
in density and velocity, generating quantum and turbulent pressure
support against gravity.

The central density profiles of all our collapsed cores fit well
the stable soliton solution of the Schrödinger–Poisson equation, as
shown in Fig. 3 (see also Supplementary Section 2 and Figs 2 and 4).
On the other hand, except for the lightest halo, which has just formed
and is not yet virialized, the outer profiles of other haloes possess a
steepening logarithmic slope, similar to the Navarro–Frenk–White
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Figure 3 | Radial density profiles of haloes formed in the  DMmodel.
Dashed lines with various symbols show six examples of the halo profiles
normalized to the cosmic mean density. All haloes are found to possess a
distinct inner core fitted extremely well by the soliton solution (solid lines).
A detailed soliton fit for the largest halo is inset, where the error is the root-
mean-square scatter of density in each radial bin. A Navarro–Frenk–White
(NFW) profile representing standard CDM is also shown for comparison
(black dot-dashed line, with a very large scale radius of 10kpc), which fits
well the profiles outside the cores. The yellow hatched area indicates the
⇢300 of the dSph satellites around the Milky Way3,24, which is consistent
with the majority of galaxy haloes formed in the  DM simulations.

(NFW) profile23 of standard CDM. These solitonic cores, which are
gravitationally self-bound and appear as additional mass clumps
superposed on the NFW profile, are clearly distinct from the cores
formed by WDM and collisional CDM, which truncate the NFW
cuspy inner profile at lower values and require an external halo for
confinement. The radius of the soliton scales inversely with mass,
such that the widest cores are the least massive and are hosted by the
least massive galaxies. Eighty percent of the haloes in the simulation
have an average density within 300 pc (defined as ⇢300) in the range
5.3⇥ 10�3–6.1⇥ 10�1 M�/pc3, consistent with the dSph satellites
around the Milky Way3,24, and objects like these are resilient to
close interaction with massive galaxies. By contrast, the very lowest
mass objects in our simulation have ⇢300 ⇠ 4.0⇥ 10�4 M�/pc3 and
Mvir ⇠108 M�, but exist only briefly as they are vulnerable to tidal
disruption by large galaxies in our simulations. Together with the
cuto� in the power spectrum at the Jeans scale (Supplementary
Fig. 3), this leads to a marked suppression of substructure below
a few times 108 M� relative to the prediction of standard CDM
(refs 8,9). A quantitative evaluation of the mass function of satellite
galaxies predicted by  DM with larger simulations is thus another
crucial test to be addressed.

The prominent solitonic cores uncovered in our simulations
provide an opportunity to estimate the boson mass, mB, by
comparison with observations, particularly for dSph galaxies where
dark matter dominates. The local Fornax dSph galaxy is the best
studied case, with thousands of stellar velocity measurements,
allowing a detailed comparison with our soliton mass profile.
We perform a Jeans analysis for the dominant intermediate
metallicity stellar population, which exhibits a nearly uniform
projected velocity dispersion (�k; ref. 25). We simultaneously
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(a)  DM (b) CDM

Schive et. al (2014) 



implications

• reheating after inflation ?

• stochastic gravitational wave-generation ?
• constrained by Neff or direct detection

• primordial black hole formation ?

• distinguishability from WIMPS ? (small scales)

• early structure formation

• compact objects 
• eg. sources of gravitational waves ?



eq. of motion for cosmological fields

⇤�+ V 0(�) = 0 Gµ⌫ =
1

m2
pl

Tµ⌫

V (�) =
1

2
m2�2 + Vnl(�)

�
� = M

nonlinear Klein-Gordon eq. Einstein Eq.

examples:

V (�) =
m2M2

2
tanh2

✓
�

M

◆

V (�) = m2M2

"r
1 +

�2

M2
� 1

#

V (�) = m2M2


1� cos

�

M

�



instabilities in oscillating fields

V (�) / |�|2n

|�| ⇠ M� = M

�
(t
,
x
)/
M

⇤� = V 0(�)

expansion

self-interactions

gravitational int.



instabilities in oscillating fields

V (�) / |�|2n

|�| ⇠ M� = M

�
(t
,
x
)/
M

⇤� = V 0(�)

expansion

self-interactions

gravitational int.



instabilities in an expanding universe
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dynamics of oscillating fields
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soliton formation in relativistic fields

MA, Easther, Finkel, Flaugher & Hertzberg (2011) 
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solitons dominate the energy density of the field!



soliton formation in relativistic fields
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solitons dominate the energy density of the field!



insensitive to initial conditions

simulation of  “quasi-thermal” example in Farhi et. al 2008



insensitive to initial conditions

simulation of  “quasi-thermal” example in Farhi et. al 2008



solitons?

(1) oscillatory (2) spatially localized (3) very long lived

Bogolubsky & Makhankov (1976), Gleiser (1994), Copeland et. al (1995)

osc
illon

existence and stability:  

Segur & Kruskal (1987)
Kasuya, Kawasaki, Takashi (2003)
Hertzberg (2011)
Mukaido et. al (2016)
Salmi & Hindmarsh (2014)

MA (2013)
MA & Shirokoff (2010)



“passively” calculated  
gravitational potential
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FIG. 2. Formation of oscillons after inflation and their persistence. In each row we show the histograms of the energy
density, ⇢, Newtonian potential, �, and the gravitational acceleration, g, across the simulation box at �N e-folds
after the end of inflation (in each column, later times are at the bottom). The orange contours, in the snapshots of
the simulation box in the last column, are drawn around regions of overdensity � 5. This is for the T-model with
n = 1, M =

p
6↵mPl, ↵ = 10�5. The vertical dashed line is at gR = �� = 10(M/mPl)

2 – the approximate prediction
for the Newtonian potential on the oscillon surface of radius R. Since oscillons are spherical, localized objects, g
should be maximal near their surfaces. It agrees with the observed maximal value of g within the simulation box.

Gravitational field:
In the third column of Fig. 2, we show the evolution
of histograms of the gravitational field (equivalently,
acceleration). If the oscillons had a uniform spheri-
cally symmetric density up to radius R, then g / r
for r < R and g / r�2 for r > R, where r is the
distance from the oscillon core. Hence, the maximal
g will be on the surface of the oscillons. Our oscil-
lons do not have an exactly uniform density, but we
still expect that the maximal g in the histograms
will come from regions close to the oscillon surfaces.
This maximal value was estimated in eq. (12) and is

represented by a vertical dashed line; it again agrees
with the values from the numerical simulations.

Let us re-iterate the main takeaway from this sub-
section. Since oscillons do not form e�ciently for
M & 10�2mPl, the gravitational potential on the
surfaces of individual objects is bound to be
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linear treatment of metric perturbations. Neverthe-
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FIG. 2. Formation of oscillons after inflation and their persistence. In each row we show the histograms of the energy
density, ⇢, Newtonian potential, �, and the gravitational acceleration, g, across the simulation box at �N e-folds
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6↵mPl, ↵ = 10�5. The vertical dashed line is at gR = �� = 10(M/mPl)
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should be maximal near their surfaces. It agrees with the observed maximal value of g within the simulation box.
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FIG. 2. Formation of oscillons after inflation and their persistence. In each row we show the histograms of the energy
density, ⇢, Newtonian potential, �, and the gravitational acceleration, g, across the simulation box at �N e-folds
after the end of inflation (in each column, later times are at the bottom). The orange contours, in the snapshots of
the simulation box in the last column, are drawn around regions of overdensity � 5. This is for the T-model with
n = 1, M =

p
6↵mPl, ↵ = 10�5. The vertical dashed line is at gR = �� = 10(M/mPl)

2 – the approximate prediction
for the Newtonian potential on the oscillon surface of radius R. Since oscillons are spherical, localized objects, g
should be maximal near their surfaces. It agrees with the observed maximal value of g within the simulation box.
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FIG. 2. Formation of oscillons after inflation and their persistence. In each row we show the histograms of the energy
density, ⇢, Newtonian potential, �, and the gravitational acceleration, g, across the simulation box at �N e-folds
after the end of inflation (in each column, later times are at the bottom). The orange contours, in the snapshots of
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n = 1, M =
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6↵mPl, ↵ = 10�5. The vertical dashed line is at gR = �� = 10(M/mPl)
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FIG. 2. Formation of oscillons after inflation and their persistence. In each row we show the histograms of the energy
density, ⇢, Newtonian potential, �, and the gravitational acceleration, g, across the simulation box at �N e-folds
after the end of inflation (in each column, later times are at the bottom). The orange contours, in the snapshots of
the simulation box in the last column, are drawn around regions of overdensity � 5. This is for the T-model with
n = 1, M =

p
6↵mPl, ↵ = 10�5. The vertical dashed line is at gR = �� = 10(M/mPl)

2 – the approximate prediction
for the Newtonian potential on the oscillon surface of radius R. Since oscillons are spherical, localized objects, g
should be maximal near their surfaces. It agrees with the observed maximal value of g within the simulation box.

Gravitational field:
In the third column of Fig. 2, we show the evolution
of histograms of the gravitational field (equivalently,
acceleration). If the oscillons had a uniform spheri-
cally symmetric density up to radius R, then g / r
for r < R and g / r�2 for r > R, where r is the
distance from the oscillon core. Hence, the maximal
g will be on the surface of the oscillons. Our oscil-
lons do not have an exactly uniform density, but we
still expect that the maximal g in the histograms
will come from regions close to the oscillon surfaces.
This maximal value was estimated in eq. (12) and is

represented by a vertical dashed line; it again agrees
with the values from the numerical simulations.
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FIG. 2. Formation of oscillons after inflation and their persistence. In each row we show the histograms of the energy
density, ⇢, Newtonian potential, �, and the gravitational acceleration, g, across the simulation box at �N e-folds
after the end of inflation (in each column, later times are at the bottom). The orange contours, in the snapshots of
the simulation box in the last column, are drawn around regions of overdensity � 5. This is for the T-model with
n = 1, M =

p
6↵mPl, ↵ = 10�5. The vertical dashed line is at gR = �� = 10(M/mPl)

2 – the approximate prediction
for the Newtonian potential on the oscillon surface of radius R. Since oscillons are spherical, localized objects, g
should be maximal near their surfaces. It agrees with the observed maximal value of g within the simulation box.

Gravitational field:
In the third column of Fig. 2, we show the evolution
of histograms of the gravitational field (equivalently,
acceleration). If the oscillons had a uniform spheri-
cally symmetric density up to radius R, then g / r
for r < R and g / r�2 for r > R, where r is the
distance from the oscillon core. Hence, the maximal
g will be on the surface of the oscillons. Our oscil-
lons do not have an exactly uniform density, but we
still expect that the maximal g in the histograms
will come from regions close to the oscillon surfaces.
This maximal value was estimated in eq. (12) and is

represented by a vertical dashed line; it again agrees
with the values from the numerical simulations.

Let us re-iterate the main takeaway from this sub-
section. Since oscillons do not form e�ciently for
M & 10�2mPl, the gravitational potential on the
surfaces of individual objects is bound to be

|�nl| ⇠ 10 ⇥
✓

M

mPl

◆
2

. 10�3 . (13)

Oscillons do not gravitate strongly, justifying the
linear treatment of metric perturbations. Neverthe-
less, it will be interesting to study the stability of
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FIG. 6. The gravitational waves generated between
�N = 0 to 1 (red to purple curves) for the oscillon model
from Fig. 2. The peak of the red curves is close to the
predicted values in eqs. (33) and (34).

the most unstable ��̃k. The rapid growth of the
peak height reflects the exponential amplification of
the inflaton perturbations. Even at this stage, the
source term in eq. (16) has to be evaluated beyond
linear order in perturbations.

The next 3 � 4 red curves show the onset of the
nonlinear regime. This stage is known as rescatter-
ing, since mode-mode couplings, including the back-
reaction of amplified ��̃k on the condensate, become
important. The broad peak, centered on the most
unstable frequency, becomes wider. Its height grows
more slowly than before and approaches the pre-
dicted value of ⇠ 10�10, see eq. (34), as the field
becomes completely inhomogeneous (with ⇠ 1/3 of
the total energy being stored in gradients).

The following thick band of red-green curves rep-
resents the third stage. There the oscillons form and
stabilize, with GWs power increasing slowly on all
scales.

The last and longest stage is given by the green-
purple curves. The oscillons have stabilized and
sphericalized, while being assembled in a fixed co-
moving grid-like configuration. Since there are al-
most no time-dependent quadrupole moments to
act as sources, there is very little and slow pro-
duction of GWs. On intermediate and low fre-
quencies, GW power propagates (almost freely) to-
wards lower frequencies and lower values as time
goes by and the universe expands. This makes
sense since the oscillon-dominated universe under-
goes a matter-like state of expansion, with ⇢̄ / a�3.
Since HLattice uses a formula like eq. (21) to cal-
culate the GW frequency today (more specifically,

FIG. 7. The gravitational waves generated between
�N = 0 to 0.85 (red to purple curves) for the tran-
sients model from Fig. 3. The peak of the red curves is
close to the predicted values in eqs. (33) and (34), and
almost identical to the one in Fig. 6.

f
0

(k, ⌧) = k/(a(⌧)⇢̄1/4(⌧)) ⇥ 4 ⇥ 1010 Hz, where ⌧ is
the time of output, beyond which it is assumed that
the universe is thermal and radiation dominated),
it follows that f

0

(k, ⌧) will decrease with time in
a matter-dominated universe. The energy density
of GWs redshifts as radiation, which explains why
the GWs contribution to the energy budget of the
matter-dominated universe decreases with time. Al-
beit nearly-spherical, individual oscillons do gener-
ate small amounts of GWs. This is visible at the high
frequency end of the GW spectrum. Oscillons act as
objects of fixed physical size, sourcing GWs of fixed
physical wavenumber. For the HLattice conventions
this implies that f

0

(k, ⌧)⇢̄1/4(⌧) / k/a(⌧) = const,
i.e., the oscillons-sourced GWs are at increasingly
higher f

0

(k, ⌧). This small late-time e↵ect has an
intrinsic numerical component. The oscillons are in-
evitably less well resolved as the comoving lattice ex-
pands, sourcing weak late-time high-frequency GWs.
This does not a↵ect the spectrum on intermediate
and low frequencies. For more detailed studies of
GWs from oscillons see [55–61].

2. Transients

Transients decay away quickly, in a non-spherical
manner. Hence, unlike the cases when we have oscil-
lons in which gravitational waves are not generated
after oscillons are formed, the decay of the transients
potentially can act as an additional source of GWs.
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In the calculations below, we will use �r = 1/3 for
the inhomogeneous scalar field, typically valid at the
time of backreaction of the field.

The typical values of ⌦
GW,0

h2

100

. 10�10 at the
peak are quite small. Qualitatively, this bound
can be understood from the following reasoning.
The factor of 10�5 in eq. (31) comes from ⌦

rel,0

.
Since gravitational waves redshift as radiation (or
relativistic matter) we expect ⌦

GW

to scale linearly
with ⌦

rel

, which has been decreasing since the
epoch of equality. The additional � suppression is a
consequence of the suppression of GW production
on subhorizon scales sourced by the anisotropic
part of the energy momentum tensor of the scalar
field (see eq. (29)). This last suppression is similar
in nature to the one discussed after eq. (8) for the
scalar metric perturbations.

3. Oscillons & Transients

Oscillons: For the typical lengthscale which first
becomes nonlinear when oscillons form, the param-
eter � is given by (refer to Section III A 2)

� =
H

br

a
br

k
⇠ H

br

R

2⇡
⇠ M

mPl

. (32)

Assuming that the peak of the GWs is generated
around the time of backreaction of this mode, its
frequency today is

f
0

⇠
r

mPl

M
⇥ 108 Hz . (33)

In deriving the above expression we used eq. (24)
and H

br

⇠ ⇤2/m
pl

with ⇤2 given by eq. (4).
Similarly, using eq. (31), the expected strength of

the gravitational waves today is

⌦
GW,0

h2

100

⇠ 10�6

✓
M

mPl

◆
2

. (34)

Once oscillons have settled, we do not expect sig-
nificant emission of GWs from individual oscillons,
since field profiles of individual objects are spheri-
cally symmetric [59].

We stress that if the universe is not radiation
dominated after the time of production (which is
likely since oscillons lead to a matter-like equation
of state), then there will be additional suppression
factors in the frequency (see eq. (20)) and the
fractional density of the gravitational waves (see eq.

(30)) from oscillons after inflation.

Transients: The formation of transients is very
similar to the one of oscillons. We expect the fre-
quency and the strength of the peak of the GW
power spectrum to be the same as in the oscillon
case, see eqs. (33,34). As the transients decay, those
which evolve in a non-spherical manner may gener-
ate an additional GW signal. Its typical frequency
should be again set by the spatial extend of the indi-
vidual objects, whereas its strength is hard to model
analytically and is best studied numerically.

B. Results from lattice simulations

We employed HLattice [93] for the calculation
of the GWs sourced by the nonlinear field dynam-
ics. For the cases we studied, we used the same
simulation parameters, i.e., box size, lattice points
separation, time step, initial conditions, etc., as for
the LatticeEasy simulations discussed in Section
III B. However, we used a more accurate 6th-order
symplectic integrator for the self-consistent evo-
lution of the scalar field and the scale factor.
We also used the HLattice2 spatial-discretization
scheme (with k

e↵

, not k
std

) when calculating the
field spatial derivatives. Those improvements in
accuracy were necessary for the computation of
the GWs. To find the GWs, we evolved the tensor
metric perturbations passively, i.e., we solved eq.
(16), without taking into account their feedback
on the field and background metric dynamics. The
time step for the GW integrator was four times
greater than the one for the field and scale factor
evolution.

1. Oscillons

The generated GW power spectrum from the os-
cillon formation for M ⇡ 0.775 ⇥ 10�2mPl is shown
in Fig. 6. Time runs from red to purple. One can
see four distinct stages [55].

The first 5�6 red peaked curves represent the os-
cillatory stage, during which the condensate is still
intact. A broad range of ��̃k is steadily excited via
broad resonance, see Section II B, and is responsi-
ble for the generation of the GWs. The frequency
of the curves peak is slightly under 109 Hz, which
corresponds to the predicted order of magnitude in
eq. (33) and is determined by the wavenumber of
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can be constrained ?
Universe at the time of the process. In [57], it was as-
sumed that the source was Gaussian with a peak, k⇤, and
width, �; both entered into the approximation as ratios
that include the Hubble parameter at the time of the
process, Hp. The general advice in [57] chose fiducial pa-
rameters for these ratios and set estimates for optimistic,
realistic, and pessimistic limits. We cannot rely on these
fiducial values here because the tachyonic processes at
work in these models excite modes that are very close to
horizon-sized, as can be seen in [34]. Using Fig. 1 of [34]
as a guide, we see that k⇤ can be as small as 3-5m (in
the axial case), which is only about a decade away from
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3m2
pl
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1

2
�̇2
0 +

1

2
m2�2

0

◆
⇡ 0.5 m. (39)

We can also approximate the width of the Gaussian to be
about the same order of magnitude as the peak, � ⇠ 5 m.
Taking h = .68 and the optimistic parameters, ↵ = 1,
� = 0.1 and w = 1/3, we get an optimistic estimate for
the peak height to be

⌦gw,0(f) ⇡ 10�8. (40)

where the estimate changes by a factor of a few when we
go from k⇤ = 3m to k⇤ = 5m. Therefore we see that
the enhancement of near–horizon-sized modes so quickly
after inflation can create a gravitational wave signal a
few orders of magnitude larger than we expect from a
parametric instability. These estimates are consistent
with our most e�cient results above.

Such a large signal puts the detection of gravitational
waves from preheating within the reach of ground-based
interferometers. In this work we choose the inflationary
scale m = 10�6 mpl to fit the amplitude of the scalar
spectrum for chaotic inflation, for which reason the fre-
quencies of the generated gravitational waves lie far from
those to which LIGO is sensitive. However, the amplitude
of this signal will remain (relatively6) invariant when
changing m, while the emitted frequencies are propor-
tional to this scale [14]. For this reason, these preheating
dynamics after low-scale inflation could in principle be
detected by LIGO. Advanced LIGO’s peak sensitivity
is on the order of ⌦gw,0(f)h2 ⇠ 10�10, which is sev-
eral orders of magnitude lower than that the amplitude
produced by the simulations which achieve complete re-
heating. aLIGO’s peak sensitivity lies around f ⇠ 50 Hz,
which would probe inflationary scales ⇠ 106 GeV. Note
that the subsequent expansion history of the Universe
also a↵ects the gravitational-wave transfer function; we
assume the Universe is radiation dominated after emis-
sion until matter-radiation equality. Since preheating into

6

The mass scale m only enters the simulations via the initial

amplitude of the Bunch-Davies spectrum; results should be fairly

insensitive to this amplitude due to the preheating’s dramatic

amplification of modes.

↵ ⌦
gw,0h

2

40 5.5 ⇥ 10�10

45 3.4 ⇥ 10�8

50 9.5 ⇥ 10�8

55 1.6 ⇥ 10�7

60 3.2 ⇥ 10�7

65 5.4 ⇥ 10�7

� ⌦
gw,0h

2

50.1 4.2 ⇥ 10�10

56.0 2.0 ⇥ 10�8

60.2 4.5 ⇥ 10�8

66.1 8.5 ⇥ 10�8

72.4 1.3 ⇥ 10�7

TABLE I. The fraction of the total energy density of the sim-
ulation in gravitational waves, ⌦

gw,0h
2, for the axial coupling,

↵, (left) and the dilatonic coupling, � (right).

gauge fields naturally leads into radiation domination
after inflation, this approximation is well-justified.

Further, the total energy density in gravitational waves,
i.e.,

⌦gw,0h
2 =

Z
d ln k

1

⇢

d⇢gw,0

d ln k
, (41)

is constrained by CMB measurements. If we assume that
there are no light degrees of freedom beyond the standard
model that contribute to the radiation density during
the formation of the CMB, we can directly translate the
constraint on Ne↵ onto a constraint on ⌦gw,0(f)h2 via [72]

⌦gw,0h
2

⌦�,0h2
=

7

8

✓
4

11

◆4/3

�Ne↵ , (42)

where ⌦�,0h
2 = 2.47 ⇥ 10�5 is the present energy density

in photons and �Ne↵ = (Ne↵ � 3.046). Planck limits
|�Ne↵ | . 0.33 [73], which constrains the energy density
to ⌦gw,0h

2 . 1.85 ⇥ 10�6. Next-generation CMB exper-
iments, such as CMB-S4, will probe �Ne↵ to a level of
�(Ne↵) ⇠ 0.02 � 0.03 [58] and potentially constrain the
gravitational wave energy density to

⌦gw,0h
2 . 1.12 � 1.68 ⇥ 10�7. (43)

In Table I we list the final value of ⌦gw,0h
2 for each

coupling; upcoming experiments could constrain the
axion-gauge field coupling ↵ < 55 and the dilaton-gauge
field coupling � < 72.4. A more sophisticated fore-
cast, such as that of [74], obtains constraints as low as
⌦gw,0h

2 . 7.6 ⇥ 10�8, which would probe ↵ ⇡ 50 and
� ⇡ 66.1.

A. Gravitational wave polarization

During axion-driven inflation, the rolling axion pref-
erentially amplifies one gauge-field polarization (in the
linear regime). These gauge fields in turn lead to the
production of gravitational waves through their contri-
bution to the anisotropic stress. That is, scattering of
helically-polarized gauge bosons produces gravitational
waves [52]. Because they are helically polarized and an-
gular momentum is conserved in their scattering, these

7
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Figure 2. The instability bands and the magnitude of the Floquet exponent (in units of the field dependent
e↵ective mass m(�̄)) are shown as functions of the oscillating condensate amplitude and the dimensionless physical
wavenumber  = k/am. The white lines indicate how a given co-moving wavenumber passes through the instability
bands as the universe expands.

Linear Instability Analysis — At the end of infla-
tion, the homogeneous inflaton condensate �̄ starts
oscillating around the minimum of its potential. In
the presence of any perturbations, such homoge-
neous oscillations are unstable: they lead to a rapid
growth in field perturbations ��(t,x ), or equiva-
lently, to non-adiabatic particle production [22–25].

A useful way of characterizing the e�ciency of
particle production is as follows. First, let us ignore
expansion. Floquet theory tells us that the gen-
eral solution for the field perturbations in Fourier
space is of the form ��

k

/ exp(±µkt), where µk is
the Floquet exponent. If <(µk) 6= 0, then there is
an ‘unstable’ solution growing exponentially with
time. In general, any nonlinearity in V (�) will
lead to resonant particle production. The real part
of the Floquet exponent, which characterizes the
particle production rate, is shown in Fig. 2 as a
function of the amplitude of the oscillating con-
denstate and the physical wavenumber  ⌘ k/am

(with a = 1). Note that we have expressed k and
µk in units of a field/time dependent e↵ective mass

scale: m2 ⌘ 2n⇤2 (⇤/M)2
�
�̄/M

�
2(n�1)

. This e↵ec-
tive mass scale m2 ⇡ @

¯�V/�̄ when �̄ ⌧ M and is
what sets the period of �̄.

The expansion of the universe can now be in-
corporated qualitatively. The amplitude of the
inflaton field oscillating in V / |�|2n decays as
�̄ / a�3/(n+1), and the dimensionless wavenumber
scales as  / a�2(2�n)/(1+n). Hence a given Fourier
mode flows through a number of Floquet bands as
shown in Fig. 2. Heuristically, the mode will grow
if the expansion rate H is much less than |<(µk)|.
Strong resonance occurs for |<(µk)|/H ⇠> O[10].

For the lowest-k band (k/am near 0):

[|<(µk)|/H]0
max

= f(n)(mPl/M), (1)

where f(n) . O[1] with a very weak dependence
on n for moderate values of n. It is M/mPl that
controls whether there is e�cient self-resonance
at low wave-numbers. In particular, for M .
2.5 ⇥ 10�2mPl, the fluctuations grow rapidly and
become energetically comparable to the homoge-
neous condensate. They backreact on the conden-
sate, leading to its complete fragmentation.

When the initial fragmentation is ine�cient
(M & 2.5 ⇥ 10�2mPl), the higher order instabil-
ity bands can play an important role. Compared
to the band near k = 0, the bands at higher k are
narrower, and < (µk) is typically smaller. However,
these narrow bands can lead to fragmentation of the
condensate at late times for two reasons. First, in
these bands

[<(µk)/H]1 / mPl/|�̄| |�̄| ⌧ M . (2)

Furthermore, the modes tend to spend a lot of
time in these narrow bands. This e↵ect can be
understood by considering the white flow lines in
Fig. 2. The flow lines cross the first narrow band
from right to left (n < 2), left to right (n > 2),
or never leave it (n = 2). The narrow resonance
will clearly persist until non-linear e↵ects become
important in the n = 2 case. Upon closer inspec-
tion, the same holds for the n < 2 and n > 2 cases
as well. For these two cases, |̇| ⇠ H. Since H

is decreasing, at some point a given k-mode will
spend su�cient time within the narrow band for
fluctuations to grow substantially. This eventually
leads to backreaction on the condensate and

In the calculations below, we will use �r = 1/3 for
the inhomogeneous scalar field, typically valid at the
time of backreaction of the field.

The typical values of ⌦
GW,0

h2

100

. 10�10 at the
peak are quite small. Qualitatively, this bound
can be understood from the following reasoning.
The factor of 10�5 in eq. (31) comes from ⌦

rel,0

.
Since gravitational waves redshift as radiation (or
relativistic matter) we expect ⌦

GW

to scale linearly
with ⌦

rel

, which has been decreasing since the
epoch of equality. The additional � suppression is a
consequence of the suppression of GW production
on subhorizon scales sourced by the anisotropic
part of the energy momentum tensor of the scalar
field (see eq. (29)). This last suppression is similar
in nature to the one discussed after eq. (8) for the
scalar metric perturbations.

3. Oscillons & Transients

Oscillons: For the typical lengthscale which first
becomes nonlinear when oscillons form, the param-
eter � is given by (refer to Section III A 2)

� =
H

br

a
br

k
⇠ H

br

R

2⇡
⇠ M

mPl

. (32)

Assuming that the peak of the GWs is generated
around the time of backreaction of this mode, its
frequency today is

f
0

⇠
r

mPl

M
⇥ 108 Hz . (33)

In deriving the above expression we used eq. (24)
and H

br

⇠ ⇤2/m
pl

with ⇤2 given by eq. (4).
Similarly, using eq. (31), the expected strength of

the gravitational waves today is

⌦
GW,0

h2

100

⇠ 10�6

✓
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mPl

◆
2

. (34)

Once oscillons have settled, we do not expect sig-
nificant emission of GWs from individual oscillons,
since field profiles of individual objects are spheri-
cally symmetric [59].

We stress that if the universe is not radiation
dominated after the time of production (which is
likely since oscillons lead to a matter-like equation
of state), then there will be additional suppression
factors in the frequency (see eq. (20)) and the
fractional density of the gravitational waves (see eq.

(30)) from oscillons after inflation.

Transients: The formation of transients is very
similar to the one of oscillons. We expect the fre-
quency and the strength of the peak of the GW
power spectrum to be the same as in the oscillon
case, see eqs. (33,34). As the transients decay, those
which evolve in a non-spherical manner may gener-
ate an additional GW signal. Its typical frequency
should be again set by the spatial extend of the indi-
vidual objects, whereas its strength is hard to model
analytically and is best studied numerically.

B. Results from lattice simulations

We employed HLattice [93] for the calculation
of the GWs sourced by the nonlinear field dynam-
ics. For the cases we studied, we used the same
simulation parameters, i.e., box size, lattice points
separation, time step, initial conditions, etc., as for
the LatticeEasy simulations discussed in Section
III B. However, we used a more accurate 6th-order
symplectic integrator for the self-consistent evo-
lution of the scalar field and the scale factor.
We also used the HLattice2 spatial-discretization
scheme (with k

e↵

, not k
std

) when calculating the
field spatial derivatives. Those improvements in
accuracy were necessary for the computation of
the GWs. To find the GWs, we evolved the tensor
metric perturbations passively, i.e., we solved eq.
(16), without taking into account their feedback
on the field and background metric dynamics. The
time step for the GW integrator was four times
greater than the one for the field and scale factor
evolution.

1. Oscillons

The generated GW power spectrum from the os-
cillon formation for M ⇡ 0.775 ⇥ 10�2mPl is shown
in Fig. 6. Time runs from red to purple. One can
see four distinct stages [55].

The first 5�6 red peaked curves represent the os-
cillatory stage, during which the condensate is still
intact. A broad range of ��̃k is steadily excited via
broad resonance, see Section II B, and is responsi-
ble for the generation of the GWs. The frequency
of the curves peak is slightly under 109 Hz, which
corresponds to the predicted order of magnitude in
eq. (33) and is determined by the wavenumber of
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• gravitational clustering takes time … 

• long time makes it difficult to resolve very fast oscillatory time 
scale 

gravitational interactions



a way forward …

• rapid oscillatory behavior of fields (integrate out)

• size of solitons and instability length scales* 

• gravity is weak

• non-relativistic simulations including local gravitational 
interactions 

� m�1

* by an order of magnitude or less, so care is needed
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two linear instabilities
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scale, which results in the formation of solitons. We
calculate and compare this instability with gravitational
instability below.

A. Self-Interaction Instability

Let us consider small spatial perturbations around a
homogeneous solution  ̄(t):
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where " = (m/M)L�3/2. Su�ciently long wavelength
perturbations of the field are unstable due to self-
interactions of the field U 0(| |2). To see this, let us first
ignore expansion and gravitational interactions (that is,
a = 1, H = 0, � = 0), and substitute eq. (5) into eq. (1).
At the background level, we find  ̄(t) =  ̄(0)e�i⌫t with
⌫ = U 0(| ̄|2) < 0. At linear order in the perturbation,
we find5
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The corresponding (approximate) expressions in an ex-
panding universe, are obtained via k ! k/a. Moreover,
in an expanding universe  ̄ / a�3/2 and H ⇠ �a�3/2.

In an expanding universe, this growth rate should be
compared to H to ascertain whether the growth of per-
turbations can compete with expansion related dilution.
Using our expressions for U

nl

(| |2) in eq. (7) and H2

from the Friedman equation (1), we need

µk

H
⇠ 1

�
� 1 for rapid growth. (9)

In the above expression we have assumed that | ̄| . 1.

5 To obtain this equation, we found it useful to first derive the first
order equations for the real and imaginary parts of the perturba-
tion eik·x� 

k

/ and then combine them to get the second order
in time equations for each part. The real and imaginary parts
satisfy the same second order linear equation, thus we arrive at
eq. (6).

FIG. 2. Power spectrum of the field  . The initial conditions
are consistent with vacuum fluctuations, with a cuto↵ remov-
ing relativistic scales. A self-interaction driven instability on

the wavenumber k/a ⇡
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(| ̄|2) drives the initial

growth of the perturbations. These perturbations backreact
on the homogeneous condensate around a
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' 2 when, on the
physical scale k
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/a ' 0.35 . After this time, solitons soon be-
gin to form, separated by a co-moving distance of ⇠ 2⇡/k

nl

.
Note that in this figure, we have divided the power spectrum
| ̄|2, so that back-reaction takes place when the spectrum is
roughly of order unity.

B. Gravitational Instability

Spatial perturbations of the field also grow due to grav-
itational interactions (we ignore self-interactions for the
moment). Again, ignoring expansion, usual linear insta-
bility analysis of eq. (1) reveals that the unstable per-
turbations grow exponentially |� 
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/ ̄| ⇠ eµkt when [21]
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Heuristically, including expansion means that | ̄| and k
redshift, and k above should be interpreted as a physical
wavenumber k/a.6

We end this section by noting that there are two insta-
bility scales associated with self-interactions and grav-
ity respectively (see eqns. (7) and (10)). Assuming
| ̄| ⇠ a�3/2 . 1, the instabilities are active on physi-
cal wave-numbers

k
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a�3/2 self-interactions ,p
�a�3/4 gravity .

(11)

6 We recognize that including expansion more carefully, the gravi-
tational instability is power-law rather than exponential and the
fractional over-density must grow as ⇠ a for k < kJ , however our
argument is su�cient to capture the slowness of gravitational in-
stability compared to the self-interaction one [44].
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| ̄|2, so that back-reaction takes place when the spectrum is
roughly of order unity.

B. Gravitational Instability

Spatial perturbations of the field also grow due to grav-
itational interactions (we ignore self-interactions for the
moment). Again, ignoring expansion, usual linear insta-
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turbations grow exponentially |� 
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Heuristically, including expansion means that | ̄| and k
redshift, and k above should be interpreted as a physical
wavenumber k/a.6

We end this section by noting that there are two insta-
bility scales associated with self-interactions and grav-
ity respectively (see eqns. (7) and (10)). Assuming
| ̄| ⇠ a�3/2 . 1, the instabilities are active on physi-
cal wave-numbers
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6 We recognize that including expansion more carefully, the gravi-
tational instability is power-law rather than exponential and the
fractional over-density must grow as ⇠ a for k < kJ , however our
argument is su�cient to capture the slowness of gravitational in-
stability compared to the self-interaction one [44].
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µk <[µ̃k]

FIG. 8. Left: The colors in the left panel in the above figure shows the growth rate µk as a function of k and  ̄. The
dark red regions are stable. The color bar indicates the magnitude of the µk and µ̃k. The dotted lined indicate the flow of
k and  ̄ as the universe expands. To compare this plot with the corresponding Floquet chart (right) from the relativistic
case, we set  ̄ = �̄/

p
2. The factor of

p
2 can be seen from � =

p
2<[ e�it]. The magnitude of the growth rate of the

instability, and the boundary of the non-relativistic instability band (solid black line) deviates from the relativistic one at large
amplitudes. Same is true (to a larger extent) for the magnitude of the Floquet exponent. Also notice that the higher order
instability bands are absent in the non-relativistic treatment. We have used V
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Rescaling our field by mM we recover the potential used in the main body of the text. We caution, that the form
beyond | | > ⇡/(2

p
2) need not be simply connected to the relativistic potential. Moreover, at these large amplitudes,

we might benefit by time-averaging over amplitude-dependent frequencies.

C. Comparison of Linear Instability Relativistic and non-Relativistic Systems

The instability analysis discussed in the main text is connected to Floquet analysis in the corresponding relativistic
theory (see for example, [21]). However, the instability bands as well as the Floquet exponents can di↵er from the
relativistic case at large amplitudes and relativistic wave-numbers. For the relativistic version (with a = 1, H = 0),
the perturbation to the homogeneous field satisfies:
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where the field � is measured in units of M and spacetime in units of m�1. The periodic term in V 00
nl

(�̄) leads to
growth of perturbations of the form ��

k

⇠ P
k

(t)e<[µ̃k]t where µ̃k are the Floquet exponents and P
k

(t) are periodic
functions. We find that µk ⇡ <[µ̃k] for �̄,  ̄ ⌧ 1 and k . 1. The boundary of the non-relativistic band yields a good
approximation to the relativistic case for  ̄ . 1.
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V. LINEAR INSTABILITIES

As seen in Fig. 1, there is a rapid growth in
field/density perturbations on a characteristic length
scale, which results in the formation of solitons. We
calculate and compare this instability with gravitational
instability below.

A. Self-Interaction Instability

Let us consider small spatial perturbations around a
homogeneous solution  ̄(t):
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where " = (m/M)L�3/2. Su�ciently long wavelength
perturbations of the field are unstable due to self-
interactions of the field U 0(| |2). To see this, let us first
ignore expansion and gravitational interactions (that is,
a = 1, H = 0, � = 0), and substitute eq. (5) into eq. (1).
At the background level, we find  ̄(t) =  ̄(0)e�i⌫t with
⌫ = U 0(| ̄|2) < 0. At linear order in the perturbation,
we find5
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The corresponding (approximate) expressions in an ex-
panding universe, are obtained via k ! k/a. Moreover,
in an expanding universe  ̄ / a�3/2 and H ⇠ �a�3/2.

In an expanding universe, this growth rate should be
compared to H to ascertain whether the growth of per-
turbations can compete with expansion related dilution.

5 To obtain this equation, we found it useful to first derive the first
order equations for the real and imaginary parts of the perturba-
tion eik·x� 

k

/ and then combine them to get the second order
in time equations for each part. The real and imaginary parts
satisfy the same second order linear equation, thus we arrive at
eq. (6).
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FIG. 2. Power spectrum of the field  (scaled by | ̄|2 / a3).
The initial conditions are consistent with vacuum fluctu-
ations, with a cuto↵ removing relativistic scales. A self-
interaction driven instability on the wavenumber k/a ⇡q

�2| ̄|2U 00
nl

(| ̄|2) drives the initial growth of the perturba-

tions. These perturbations backreact on the homogeneous
condensate around a
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' 2.1 on the physical scale k
nl

/a '
0.35 first. After this time, solitons soon begin to form, sep-
arated by a co-moving distance of ⇠ 2⇡/k

nl

. Note that in
this figure, since we have divided the power spectrum | ̄|2,
tje back-reaction takes place when the spectrum is roughly of
order unity.

Using our expressions for U
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(| |2) in eq. (7) and H2

from the Friedman equation (1), we need
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� 1 for rapid growth. (9)

In the above expression we have assumed that | ̄| . 1.

B. Gravitational Instability

Spatial perturbations of the field also grow due to grav-
itational interactions (we ignore self-interactions for the
moment). Again, ignoring expansion, usual linear insta-
bility analysis of eq. (1) reveals that the unstable per-
turbations grow exponentially |� 
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Heuristically, including expansion means that | ̄| and k
redshift, and k above should be interpreted as a physical
wavenumber k/a.6

6 We recognize that including expansion more carefully, the gravi-
tational instability is power-law rather than exponential and the
fractional over-density must grow as ⇠ a for k < kJ , however our
argument is su�cient to capture the slowness of gravitational in-
stability compared to the self-interaction one [44].
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The unstable modes having characteristic “growth
rates”:

µk
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⇠

(
��1 self-interactions ,

1 gravity .
(12)

This simple scaling analysis reveals that for � ⌧ 1, the
self-interaction instability will dominate at early times.

VI. POWER SPECTRUM

The power spectrum of the field perturbations is shown
in Fig. 2. The initial spectrum (black) is based on our
initial conditions (see eq. (4), including an exponential
cuto↵ which removes k � 1 modes at this time).

The dashed blue line is the expected power spectrum
at a = 1.5 based on our instability analysis in Section V.
This calculated power spectrum is consistent with the
numerically evaluated spectrum at the same time which
was obtained using the full lattice simulation, with both
local gravitational interaction included (solid line) and
turned o↵ (dotted line).7

Soon after this time, the perturbations start becoming
nonlinear, and back-reaction of the perturbations on the
homogeneous evolution of the field becomes significant.
The scale-factor when the perturbations become nonlin-
ear can be obtained from the following heuristic criterion
which compares the amplitude of field perturbations to
the background homogeneous field:

m

M
k3/2h|� 

k

|2i1/2 ⇠  ̄ , (13)

where the left hand side is an estimate of the variance
of fluctuations on a scale l ⇠ k�1. The above criterion
is satisfied by a combination (a

nl

, k
nl

) such that the field
perturbations on the co-moving scale k

nl

become nonlin-
ear first. For � = 0.03, we analytically estimate a

nl

' 2
and k

nl

' 0.7. Note this scale k
nl

/a ' 0.35 in the spec-
trum in Fig 2 (see the blue curves). A characteristic
scale is also visible in the second column (a = 2) of the
snapshots of the field evolution shown in Fig. 1.

VII. SOLITON FORMATION

Once the perturbations become nonlinear, the attrac-
tive self-interactions lead to the formation of localized,
roughly spherical energy density configurations (our soli-
tons) at the peaks of the density perturbations. The

7 We note that there is some power on k/a & 1 in the power
spectrum; part of this is from initial conditions where we were
not aggressive in removing all k/a & 1 modes, and part from
re-scattering due to nonlinear evolution. However at late times,
most of the power is on k/a . 1.

FIG. 3. The figure shows the co-moving number density
of solitons a3n

sol

in our simulations with (solid) and without
(dotted) gravitational interactions. Proper solitons begin to
form around a ⇡ 4, with O[103] solitons per Hubble volume
H�3 at this time. At late time, a & 10, the number density of
solitons again changes because of mergers/disruptions made
possible by gravitational clustering. The curves are obtained
by averaging over 6 runs.

co-moving number density of such peaks (and hence of
solitons) is crudely given by:

a3n
sol

⇠ (k
nl

/2⇡)3 , (14)

at the time of formation (see [45, 46]). Using k
nl

' 0.7,
we get a3n

sol

⇠ 10�3 consistent with our simulations (see
Fig. 3 ).

The formation of solitons following the initial linear
instability is clearly visible in the snapshots shown in
Fig. 1. While we do not show the a = 3 snapshot, the
formation of solitons is complete by this time. The a = 4
snapshot shows well formed, and separated solitons with
typical overdensity in inside solitons of O[10].

In more detail, Fig. 3 shows the co-moving number
density of solitons as a function of time in our simu-
lations. The initial number density established by the
formation of the solitons is independent of self-gravity.
However, gravity is strong enough to lead to subsequent
mergers/disruptions which leads to a drop in number
density of solitons at late times (. 10% per Hubble time).
This drop in co-moving number density is evident in the
di↵erence between the dashed (ignores gravitational in-
teractions) and solid lines.8

We find that a large fraction (& 80%) of the energy in a
co-moving volume of the universe is locked up in solitons.
This result is consistent with related earlier simulations

8 In addition to close encounters, small amplitude solitons are also
unstable to perturbations as we will see the next section.
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8 In addition to close encounters, small amplitude solitons are also
unstable to perturbations as we will see the next section.
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FIG. 6. Gravitational clustering facilitates close encounters at late times between solitons. Such close encounters lead to
mergers, strong scattering and formation of soliton binaries. Non-gravitational interactions can play a dominant role in the
close-encounters, with the phase of the scalar field also playing an important role. This richness in the close-encounter dynamics
makes the soliton gas distinct from a gravitationally interacting gas of particles (CDM).

4. Only few � 10% of the number of solitons in our
simulations undergo strong encounters per Hubble
time.15 This is consistent with the rate of change
in the co-moving number density of solitons

d ln(a3n
sol

)

d ln a
' 0.1 , (21)

as seen from Fig. 3.

We re-iterate that bouncing, binary formation and
merging of solitons is self-consistently obtained from our
cosmological initial conditions. Evidently, the dynamics
of these strong interactions are quite rich, and deviate
from the expectations of treating these solitons as just
point particles. The relative phase of the solitons plays
an important role in these close encounters. A more de-
tailed investigation of the rich dynamics of close encoun-
ters is left for future work.16

The repulsive and attractive behavior of such solitons
as a function of relative phase can be heuristically un-
derstood as follows. Consider a probe soliton moving
past another stationary soliton (in absence of gravity).
The nonlinearity in the Schrödinger equation (/ | |2 for
| |2 ⌧ 1) can be thought of as a nonlinear refractive in-
dex.17 If the two solitons are in phase, we expect this

15 We inspected 6 numerical runs with di↵erent initial conditions
to get this number.

16 For an early, and detailed investigation of Q-ball interactions
(relativistic complex field valued analogs of our solitons), but
without gravity, see [55].

17 This is more than an analogy since nonlinear Schrödinger equa-

term to be larger in the region between the solitons than
the case when the stationary soliton is absent. It also in-
creases towards the stationary soliton. As a result, this
larger refractive index, and its gradient, will cause the
core of the probe soliton to bend towards the stationary
one, i.e. there will be attraction between the solitons. On
the other hand, when our two solitons are out of phase,
the | |2 between the two solitons will be smaller, and
have go to zero in the middle due to (from symmetry),
causing the probe soliton to move away from the station-
ary one (hence “repulsion”). A more detailed, e↵ective
potential based analysis at large separations is provided
by [37, 57].

XI. CONCLUSIONS & FUTURE DIRECTIONS

We investigated the dynamics of non-relativistic
scalar fields in an expanding background. By includ-
ing self-interactions and gravitational interactions, we
demonstrated the formation of solitons driven by self-
interactions from cosmologically relevant initial condi-
tions, followed by gravitational clustering of solitons. We
showed that this clustering leads to dynamically rich in-
teractions between solitons including scattering, merg-
ing and binary formation at late times (which is absent
in the case when gravity is not included). The highly

tions are used to model light pulse propagation in nonlinear me-
dia [56], we learned of the above heuristic explanation from the
same paper.
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FIG. 4. The relationship between the central amplitude,
and 1/e width of the solitons is shown in the figure. The
points are extracted from our simulations, whereas the curve
is calculated semi-analytically. Note that at late times, only
solitons that are stable according to the Vakhitov-Kolokolov
stability criterion (on right of the gray line remain). For our
parameters, gravity remains weak and does not significantly
alter individual soliton properties. The gravitational poten-
tial at the center of the solitons is plotted on the top axis.

using the relativistic nonlinear Klein-Gordon equation in
an expanding universe (but ignoring gravitational clus-
tering), see for example [7, 46]).

VIII. INDIVIDUAL SOLITONS

The first two equations in eq. (1) (ignoring expansion)
admit spatially localized, spherically symmetric, solitonic
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Note that ⌫ can be absorbed into the definition �̃ = ��⌫.
We then find smooth, localized, node-free solutions for
 (r) for each  (0), by appropriately adjusting �̃(0).9

9 If needed, we can recover ⌫ = �� �̃ by insisting that �(r) ! 0
for r ! 1. In practice, recovering accurate values of ⌫ is not
easy since �̃ falls o↵ as a power law.

We note that by going to the large r limit of the profile
equations,  (r) decays in an exponential fashion at large
radii (see [47]). This will be relevant when discussing
soliton interactions.

In Fig. 4 we plot the 1/e width of these soliton pro-
files as a function of the central amplitude (solid black
curve) using the profiles obtained from the above proce-
dure. Note that the width is non-monotonic in the cen-
tral amplitude. The data points in this plot correspond
to solitons extracted from our simulations, and are in
excellent agreement with the calculated analytic expec-
tation. Note that for early times (a = 2), not all high
density regions are solitons yet, hence they do not lie on
the analytic curve initially.

While we have done the above calculation including
gravity, the gravitational potential remains small for
most of the solitons: |�(0)| = O[10�3] for � = O[10�2],
and gravity does not significantly a↵ect profiles for cen-
tral amplitudes  (0) . few. The same is true in our
simulations. We also show the gravitational potential at
the center of these solitons Fig. 4 (top axis).
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for the range of central amplitudes shown in Fig. 4 and
seen in simulations. Note that with m ⌧ M , E � m.
We find that the energy is a non-monotonic function of
 (0), with a minimum near  (0) ' 1.

Stability

From our calculated profiles, we find that for �⌫ &
0.05 (correspondingly  (0) & 0.9):

dN
d(�⌫) > 0 where N ⌘

Z
d3r 2(r) , (18)

whereas it is smaller than zero at smaller amplitudes.
This Vakhitov-Kolokolov stability criterion [48] guaran-
tees stability for solitons with  (0) & 0.9 from against
long-wavelength perturbations.11

The stability criterion elegantly explains the dearth
of solitons with central amplitudes below  (0) . 1 in
Fig. 4.12

10 Note that ignoring the gradient and potential terms only changes
the answer by a factor of few. We also briefly restore units with
~ = c = 1 to clarify that each soliton is made up of a very large
number of m particles.

11 At least for � ! 0.
12 A similar long-wavelength stability analysis for relativistic soli-

tons (oscillons) was carried out in [29, 46] (albeit in a di↵erent
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FIG. 4. The relationship between the central amplitude,
and 1/e width of the solitons is shown in the figure. The
points are extracted from our simulations, whereas the curve
is calculated semi-analytically. Note that at late times, only
solitons that are stable according to the Vakhitov-Kolokolov
stability criterion (on right of the gray line remain). For our
parameters, gravity remains weak and does not significantly
alter individual soliton properties. The gravitational poten-
tial at the center of the solitons is plotted on the top axis.
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tering), see for example [7, 46]).
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Note that ⌫ can be absorbed into the definition �̃ = ��⌫.
We then find smooth, localized, node-free solutions for
 (r) for each  (0), by appropriately adjusting �̃(0).9

9 If needed, we can recover ⌫ = �� �̃ by insisting that �(r) ! 0
for r ! 1. In practice, recovering accurate values of ⌫ is not
easy since �̃ falls o↵ as a power law.

We note that by going to the large r limit of the profile
equations,  (r) decays in an exponential fashion at large
radii (see [47]). This will be relevant when discussing
soliton interactions.

In Fig. 4 we plot the 1/e width of these soliton pro-
files as a function of the central amplitude (solid black
curve) using the profiles obtained from the above proce-
dure. Note that the width is non-monotonic in the cen-
tral amplitude. The data points in this plot correspond
to solitons extracted from our simulations, and are in
excellent agreement with the calculated analytic expec-
tation. Note that for early times (a = 2), not all high
density regions are solitons yet, hence they do not lie on
the analytic curve initially.

While we have done the above calculation including
gravity, the gravitational potential remains small for
most of the solitons: |�(0)| = O[10�3] for � = O[10�2],
and gravity does not significantly a↵ect profiles for cen-
tral amplitudes  (0) . few. The same is true in our
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for the range of central amplitudes shown in Fig. 4 and
seen in simulations. Note that with m ⌧ M , E � m.
We find that the energy is a non-monotonic function of
 (0), with a minimum near  (0) ' 1.

Stability

From our calculated profiles, we find that for �⌫ &
0.05 (correspondingly  (0) & 0.9):

dN
d(�⌫) > 0 where N ⌘

Z
d3r 2(r) , (18)

whereas it is smaller than zero at smaller amplitudes.
This Vakhitov-Kolokolov stability criterion [48] guaran-
tees stability for solitons with  (0) & 0.9 from against
long-wavelength perturbations.11

The stability criterion elegantly explains the dearth
of solitons with central amplitudes below  (0) . 1 in
Fig. 4.12

10 Note that ignoring the gradient and potential terms only changes
the answer by a factor of few. We also briefly restore units with
~ = c = 1 to clarify that each soliton is made up of a very large
number of m particles.

11 At least for � ! 0.
12 A similar long-wavelength stability analysis for relativistic soli-
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points are extracted from our simulations, whereas the curve
is calculated semi-analytically. Note that at late times, only
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stability criterion (on right of the gray line remain). For our
parameters, gravity remains weak and does not significantly
alter individual soliton properties. The gravitational poten-
tial at the center of the solitons is plotted on the top axis.

using the relativistic nonlinear Klein-Gordon equation in
an expanding universe (but ignoring gravitational clus-
tering), see for example [7, 46]).
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solutions of the form
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Note that ⌫ can be absorbed into the definition �̃ = ��⌫.
We then find smooth, localized, node-free solutions for
 (r) for each  (0), by appropriately adjusting �̃(0).9

9 If needed, we can recover ⌫ = �� �̃ by insisting that �(r) ! 0
for r ! 1. In practice, recovering accurate values of ⌫ is not
easy since �̃ falls o↵ as a power law.

We note that by going to the large r limit of the profile
equations,  (r) decays in an exponential fashion at large
radii (see [47]). This will be relevant when discussing
soliton interactions.

In Fig. 4 we plot the 1/e width of these soliton pro-
files as a function of the central amplitude (solid black
curve) using the profiles obtained from the above proce-
dure. Note that the width is non-monotonic in the cen-
tral amplitude. The data points in this plot correspond
to solitons extracted from our simulations, and are in
excellent agreement with the calculated analytic expec-
tation. Note that for early times (a = 2), not all high
density regions are solitons yet, hence they do not lie on
the analytic curve initially.

While we have done the above calculation including
gravity, the gravitational potential remains small for
most of the solitons: |�(0)| = O[10�3] for � = O[10�2],
and gravity does not significantly a↵ect profiles for cen-
tral amplitudes  (0) . few. The same is true in our
simulations. We also show the gravitational potential at
the center of these solitons Fig. 4 (top axis).
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for the range of central amplitudes shown in Fig. 4 and
seen in simulations. Note that with m ⌧ M , E � m.
We find that the energy is a non-monotonic function of
 (0), with a minimum near  (0) ' 1.

Stability

From our calculated profiles, we find that for �⌫ &
0.05 (correspondingly  (0) & 0.9):

dN
d(�⌫) > 0 where N ⌘

Z
d3r 2(r) , (18)

whereas it is smaller than zero at smaller amplitudes.
This Vakhitov-Kolokolov stability criterion [48] guaran-
tees stability for solitons with  (0) & 0.9 from against
long-wavelength perturbations.11

The stability criterion elegantly explains the dearth
of solitons with central amplitudes below  (0) . 1 in
Fig. 4.12

10 Note that ignoring the gradient and potential terms only changes
the answer by a factor of few. We also briefly restore units with
~ = c = 1 to clarify that each soliton is made up of a very large
number of m particles.

11 At least for � ! 0.
12 A similar long-wavelength stability analysis for relativistic soli-
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FIG. 4. The relationship between the central amplitude,
and 1/e width of the solitons is shown in the figure. The
points are extracted from our simulations, whereas the curve
is calculated semi-analytically. Note that at late times, only
solitons that are stable according to the Vakhitov-Kolokolov
stability criterion (on right of the gray line remain). For our
parameters, gravity remains weak and does not significantly
alter individual soliton properties. The gravitational poten-
tial at the center of the solitons is plotted on the top axis.

using the relativistic nonlinear Klein-Gordon equation in
an expanding universe (but ignoring gravitational clus-
tering), see for example [7, 46]).
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admit spatially localized, spherically symmetric, solitonic
solutions of the form
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for the profile  (r) and gravitational potential �(r):


⌫ +

1

2r2

@r(r
2@r) � U 0

nl

( 2) � �
�
 = 0 ,

1

r2

@r(r
2@r)� =

�2

2


 2 +

1

2
(@r )2 + U

nl

( 2)

�
.

(16)

Note that ⌫ can be absorbed into the definition �̃ = ��⌫.
We then find smooth, localized, node-free solutions for
 (r) for each  (0), by appropriately adjusting �̃(0).9

9 If needed, we can recover ⌫ = �� �̃ by insisting that �(r) ! 0
for r ! 1. In practice, recovering accurate values of ⌫ is not
easy since �̃ falls o↵ as a power law.

We note that by going to the large r limit of the profile
equations,  (r) decays in an exponential fashion at large
radii (see [47]). This will be relevant when discussing
soliton interactions.

In Fig. 4 we plot the 1/e width of these soliton pro-
files as a function of the central amplitude (solid black
curve) using the profiles obtained from the above proce-
dure. Note that the width is non-monotonic in the cen-
tral amplitude. The data points in this plot correspond
to solitons extracted from our simulations, and are in
excellent agreement with the calculated analytic expec-
tation. Note that for early times (a = 2), not all high
density regions are solitons yet, hence they do not lie on
the analytic curve initially.

While we have done the above calculation including
gravity, the gravitational potential remains small for
most of the solitons: |�(0)| = O[10�3] for � = O[10�2],
and gravity does not significantly a↵ect profiles for cen-
tral amplitudes  (0) . few. The same is true in our
simulations. We also show the gravitational potential at
the center of these solitons Fig. 4 (top axis).
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for the range of central amplitudes shown in Fig. 4 and
seen in simulations. Note that with m ⌧ M , E � m.
We find that the energy is a non-monotonic function of
 (0), with a minimum near  (0) ' 1.

Stability

From our calculated profiles, we find that for �⌫ &
0.05 (correspondingly  (0) & 0.9):

dN
d(�⌫) > 0 where N ⌘

Z
d3r 2(r) , (18)

whereas it is smaller than zero at smaller amplitudes.
This Vakhitov-Kolokolov stability criterion [48] guaran-
tees stability for solitons with  (0) & 0.9 from against
long-wavelength perturbations.11

The stability criterion elegantly explains the dearth
of solitons with central amplitudes below  (0) . 1 in
Fig. 4.12

10 Note that ignoring the gradient and potential terms only changes
the answer by a factor of few. We also briefly restore units with
~ = c = 1 to clarify that each soliton is made up of a very large
number of m particles.

11 At least for � ! 0.
12 A similar long-wavelength stability analysis for relativistic soli-
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FIG. 4. The relationship between the central amplitude,
and 1/e width of the solitons is shown in the figure. The
points are extracted from our simulations, whereas the curve
is calculated semi-analytically. Note that at late times, only
solitons that are stable according to the Vakhitov-Kolokolov
stability criterion (on right of the gray line remain). For our
parameters, gravity remains weak and does not significantly
alter individual soliton properties. The gravitational poten-
tial at the center of the solitons is plotted on the top axis.

using the relativistic nonlinear Klein-Gordon equation in
an expanding universe (but ignoring gravitational clus-
tering), see for example [7, 46]).
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The first two equations in eq. (1) (ignoring expansion)
admit spatially localized, spherically symmetric, solitonic
solutions of the form

 (t, r) = e�i⌫t (r) . (15)
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Note that ⌫ can be absorbed into the definition �̃ = ��⌫.
We then find smooth, localized, node-free solutions for
 (r) for each  (0), by appropriately adjusting �̃(0).9

9 If needed, we can recover ⌫ = �� �̃ by insisting that �(r) ! 0
for r ! 1. In practice, recovering accurate values of ⌫ is not
easy since �̃ falls o↵ as a power law.

We note that by going to the large r limit of the profile
equations,  (r) decays in an exponential fashion at large
radii (see [47]). This will be relevant when discussing
soliton interactions.

In Fig. 4 we plot the 1/e width of these soliton pro-
files as a function of the central amplitude (solid black
curve) using the profiles obtained from the above proce-
dure. Note that the width is non-monotonic in the cen-
tral amplitude. The data points in this plot correspond
to solitons extracted from our simulations, and are in
excellent agreement with the calculated analytic expec-
tation. Note that for early times (a = 2), not all high
density regions are solitons yet, hence they do not lie on
the analytic curve initially.

While we have done the above calculation including
gravity, the gravitational potential remains small for
most of the solitons: |�(0)| = O[10�3] for � = O[10�2],
and gravity does not significantly a↵ect profiles for cen-
tral amplitudes  (0) . few. The same is true in our
simulations. We also show the gravitational potential at
the center of these solitons Fig. 4 (top axis).
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for the range of central amplitudes shown in Fig. 4 and
seen in simulations. Note that with m ⌧ M , E � m.
We find that the energy is a non-monotonic function of
 (0), with a minimum near  (0) ' 1.

Stability

From our calculated profiles, we find that for �⌫ &
0.05 (correspondingly  (0) & 0.9):

dN
d(�⌫) > 0 where N ⌘

Z
d3r 2(r) , (18)

whereas it is smaller than zero at smaller amplitudes.
This Vakhitov-Kolokolov stability criterion [48] guaran-
tees stability for solitons with  (0) & 0.9 from against
long-wavelength perturbations.11

The stability criterion elegantly explains the dearth
of solitons with central amplitudes below  (0) . 1 in
Fig. 4.12

10 Note that ignoring the gradient and potential terms only changes
the answer by a factor of few. We also briefly restore units with
~ = c = 1 to clarify that each soliton is made up of a very large
number of m particles.

11 At least for � ! 0.
12 A similar long-wavelength stability analysis for relativistic soli-
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FIG. 4. The relationship between the central amplitude,
and 1/e width of the solitons is shown in the figure. The
points are extracted from our simulations, whereas the curve
is calculated semi-analytically. Note that at late times, only
solitons that are stable according to the Vakhitov-Kolokolov
stability criterion (on right of the gray line remain). For our
parameters, gravity remains weak and does not significantly
alter individual soliton properties. The gravitational poten-
tial at the center of the solitons is plotted on the top axis.

using the relativistic nonlinear Klein-Gordon equation in
an expanding universe (but ignoring gravitational clus-
tering), see for example [7, 46]).

VIII. INDIVIDUAL SOLITONS

The first two equations in eq. (1) (ignoring expansion)
admit spatially localized, spherically symmetric, solitonic
solutions of the form

 (t, r) = e�i⌫t (r) . (15)
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Note that ⌫ can be absorbed into the definition �̃ = ��⌫.
We then find smooth, localized, node-free solutions for
 (r) for each  (0), by appropriately adjusting �̃(0).9

9 If needed, we can recover ⌫ = �� �̃ by insisting that �(r) ! 0
for r ! 1. In practice, recovering accurate values of ⌫ is not
easy since �̃ falls o↵ as a power law.

We note that by going to the large r limit of the profile
equations,  (r) decays in an exponential fashion at large
radii (see [47]). This will be relevant when discussing
soliton interactions.

In Fig. 4 we plot the 1/e width of these soliton pro-
files as a function of the central amplitude (solid black
curve) using the profiles obtained from the above proce-
dure. Note that the width is non-monotonic in the cen-
tral amplitude. The data points in this plot correspond
to solitons extracted from our simulations, and are in
excellent agreement with the calculated analytic expec-
tation. Note that for early times (a = 2), not all high
density regions are solitons yet, hence they do not lie on
the analytic curve initially.

While we have done the above calculation including
gravity, the gravitational potential remains small for
most of the solitons: |�(0)| = O[10�3] for � = O[10�2],
and gravity does not significantly a↵ect profiles for cen-
tral amplitudes  (0) . few. The same is true in our
simulations. We also show the gravitational potential at
the center of these solitons Fig. 4 (top axis).
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for the range of central amplitudes shown in Fig. 4 and
seen in simulations. Note that with m ⌧ M , E � m.
We find that the energy is a non-monotonic function of
 (0), with a minimum near  (0) ' 1.

Stability

From our calculated profiles, we find that for �⌫ &
0.05 (correspondingly  (0) & 0.9):

dN
d(�⌫) > 0 where N ⌘

Z
d3r 2(r) , (18)

whereas it is smaller than zero at smaller amplitudes.
This Vakhitov-Kolokolov stability criterion [48] guaran-
tees stability for solitons with  (0) & 0.9 from against
long-wavelength perturbations.11

The stability criterion elegantly explains the dearth
of solitons with central amplitudes below  (0) . 1 in
Fig. 4.12

10 Note that ignoring the gradient and potential terms only changes
the answer by a factor of few. We also briefly restore units with
~ = c = 1 to clarify that each soliton is made up of a very large
number of m particles.

11 At least for � ! 0.
12 A similar long-wavelength stability analysis for relativistic soli-
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and 1/e width of the solitons is shown in the figure. The
points are extracted from our simulations, whereas the curve
is calculated semi-analytically. Note that at late times, only
solitons that are stable according to the Vakhitov-Kolokolov
stability criterion (on right of the gray line remain). For our
parameters, gravity remains weak and does not significantly
alter individual soliton properties. The gravitational poten-
tial at the center of the solitons is plotted on the top axis.

using the relativistic nonlinear Klein-Gordon equation in
an expanding universe (but ignoring gravitational clus-
tering), see for example [7, 46]).
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The first two equations in eq. (1) (ignoring expansion)
admit spatially localized, spherically symmetric, solitonic
solutions of the form
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Note that ⌫ can be absorbed into the definition �̃ = ��⌫.
We then find smooth, localized, node-free solutions for
 (r) for each  (0), by appropriately adjusting �̃(0).9

9 If needed, we can recover ⌫ = �� �̃ by insisting that �(r) ! 0
for r ! 1. In practice, recovering accurate values of ⌫ is not
easy since �̃ falls o↵ as a power law.

We note that by going to the large r limit of the profile
equations,  (r) decays in an exponential fashion at large
radii (see [47]). This will be relevant when discussing
soliton interactions.

In Fig. 4 we plot the 1/e width of these soliton pro-
files as a function of the central amplitude (solid black
curve) using the profiles obtained from the above proce-
dure. Note that the width is non-monotonic in the cen-
tral amplitude. The data points in this plot correspond
to solitons extracted from our simulations, and are in
excellent agreement with the calculated analytic expec-
tation. Note that for early times (a = 2), not all high
density regions are solitons yet, hence they do not lie on
the analytic curve initially.

While we have done the above calculation including
gravity, the gravitational potential remains small for
most of the solitons: |�(0)| = O[10�3] for � = O[10�2],
and gravity does not significantly a↵ect profiles for cen-
tral amplitudes  (0) . few. The same is true in our
simulations. We also show the gravitational potential at
the center of these solitons Fig. 4 (top axis).

The mass (or energy) per soliton is10

E =

Z
d3r


 2 +

1

2
(@r )2 + U

nl

( 2)

�
,

= O[102] ⇥
✓

M

m

◆
2

m ,

(17)

for the range of central amplitudes shown in Fig. 4 and
seen in simulations. Note that with m ⌧ M , E � m.
We find that the energy is a non-monotonic function of
 (0), with a minimum near  (0) ' 1.

Stability

From our calculated profiles, we find that for �⌫ &
0.05 (correspondingly  (0) & 0.9):

dN
d(�⌫) > 0 where N ⌘

Z
d3r 2(r) , (18)

whereas it is smaller than zero at smaller amplitudes.
This Vakhitov-Kolokolov stability criterion [48] guaran-
tees stability for solitons with  (0) & 0.9 from against
long-wavelength perturbations.11

The stability criterion elegantly explains the dearth
of solitons with central amplitudes below  (0) . 1 in
Fig. 4.12

10 Note that ignoring the gradient and potential terms only changes
the answer by a factor of few. We also briefly restore units with
~ = c = 1 to clarify that each soliton is made up of a very large
number of m particles.

11 At least for � ! 0.
12 A similar long-wavelength stability analysis for relativistic soli-

tons (oscillons) was carried out in [29, 46] (albeit in a di↵erent

|�| ⇠ O[10�3]

not easy to form black holes 
from individual solitons still 

— caution, relativistic + quantum effects missing
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IX. GRAVITATIONAL CLUSTERING

For � ⌧ 1, gravitational clustering is expected to be-
come important at late times (significantly after the soli-
tons have formed, see eq. (12)). At these late times,
this universe essentially behaves as a matter dominated
universe (a(t) / t2/3), with solitons becoming our new
non-relativistic dust particles on scales much larger than
their size. As a result, our zeroth order expectation is
that the gravitational clustering of these solitons should
proceed in a manner similar to dust in an expanding uni-
verse. Moreover, we can ignore non-gravitational forces
between the solitons at separations much larger than 2re

because we expect them to be Yukawa-like, with the force
falling away exponentially with separation.13

We construct the two point correlation function of soli-
ton locations obtained from our simulations to quantita-
tively investigate the e↵ects of gravitational clustering.
In Fig. 5, we show the two-point correlation function of
the solitons, calculated with the Landy-Szalay estimator
[52, 53]:

⇠
LS

(r) =
DD

RR
� N � 1

N
DR

RR
+ 1 , (19)

where there are N solitons (the data D), and N uniform
randomly chosen points R, and RR is the number of soli-
ton pairs in a given co-moving radial separation bin, RR
is the mean count for the random points over several re-
alization R, and DR is the cross-correlation statistic.

As seen in Fig. 5, the measured two point correlation
function is the same for the case with and without gravi-
tational interactions at early times soon after soliton for-
mation (a . 4). The distribution is close to Poissonian
on large scales: ⇠

LS

(r & 10) ⇡ 0. However, the co-moving
scale r

nl

⇠ k�1

nl

which is the typical separation of solitons
when they first form manifests itself in a negative corre-
lation function on small scales (we find very few solitons
with separations less than k�1

nl

).
If we allow for gravitational interactions, solitons begin

to cluster. This clustering can be quantified in our simu-
lations at late times as excess power in ⇠

LS

(for a & 10).
Consistent with clustering of point particles in a matter
dominated universe starting with uncorrelated positions
[54], we find

⇠
LS

(r) / 1

r2

, (20)

where r is a co-moving separation. Fitting the model
⇠
LS

/ a↵r� for our 6 simulations in the range of a = 10

self-interaction potential), which also showed that the above sta-
bility criterion correctly predicted the survival of large amplitude
oscillons in simulations. We further note that three dimensional
oscillons in Sine-Gordon potentials (for axions, but without grav-
ity) are not stable and have a relatively short lifetime, compared
to flattened potentials [49, 50]. Also see the Appendix.

13 This is also reminiscent of the force between solitons as analyzed
by [51].

[co-moving separation]

/ r�2

FIG. 5. The two point correlation function of soliton loca-
tions with and without the inclusion of gravitational interac-
tions. At early times, the correlation function with and with-
out gravity agree with each other. However, at late times
gravitational clustering ⇠

LS

(r) / r�2 is clearly visible for the
a = 16 and a = 20 cases in the above figure.

to a = 20, we find: ↵ = 1.7 ± 0.3, � = �2.1 ± 0.2. It
would be interesting to explore this clustering further in
detail, since it might reveal di↵erences from the point
particle case at late times.

X. STRONG SOLITON INTERACTIONS

Self-gravity plays the important role of bringing soli-
tons together at late times (i.e., significantly after their
formation), and allows them to interact.14 Fig. 6 shows
three di↵erent types of interactions that are achieved
from our cosmological initial conditions.

1. Solitons “repel/bounce o↵” each other when the
relative phase of the interacting solitons |✓

1

�✓
2

| ⇡
⇡ where  a(t,x) =  a(x)e�i(⌫at+✓a) with a = 1, 2.
The repulsive interactions lead to some of the
largest post interaction kicks to our solitons. We
observe some solitons zooming across our simula-
tion volume.

2. A few solitons merge to form more massive solitons
(typically when the relative phase is ⇠ 0), resulting
in a change in number density of solitons. Such in-
teractions are typically accompanied by generation
of a burst of scalar waves as the solitons settle into
new configurations.

3. A small fraction of solitons form orbiting binaries.

14 There are interactions at early times when gravity is ignored as
well, but not so at late times in our simulations.

consistent with nonlinear 
clustering of “point” masses

MA & Mocz (2019)
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Gravitational Wave Emission from Collisions of Compact Scalar Solitons

Thomas Helfer†, Eugene A. Lim†, Marcos A. G. Garcia‡, Mustafa A. Amin‡⇤
†Theoretical Particle Physics and Cosmology Group, Physics Department,
Kings College London, Strand, London WC2R 2LS, United Kingdom

‡Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1827, U.S.A.

We numerically investigate the gravitational waves generated by the head-on collision of equal-
mass, self-gravitating, real scalar field solitons (oscillatons) as a function of their compactness C.
We start with solitons that are initially at rest with respect to each other, and show that there exist
three di↵erent possible outcomes resulting from their collisions: (1) an excited stable oscillaton for
low C, (2) a merger and formation of a black-hole for intermediate C, and (3) a pre-merger collapse
of both oscillatons into individual black-holes for large C. For (1), the excited, aspherical oscillaton
continues to emit gravitational waves. For (2), the total energy in gravitational waves emitted
increases with compactness, and possesses a maximum which is greater than that from the merger
of a pair of equivalent mass black-holes. The initial amplitudes of the quasi-normal modes in the
post-merger ring-down in this case are larger than that of collisions of corresponding mass black-
holes – potentially a key observable to distinguish black-hole mergers from their scalar mimics. For
(3), the gravitational wave output is indistinguishable from a similar mass, black-hole–black-hole
merger. Based on our results, LIGO may be sensitive to oscillaton collisions from light scalars of
mass 10�12 eV . m . 10�10 eV.

I. INTRODUCTION AND RESULTS

The spectacular recent detections of gravitational
waves from binary black-hole mergers has heralded a new
golden age in gravitational wave physics [1–3]. Gravita-
tional waves from the merger of compact objects are one
of our best resources for probing the strong-field regime
of gravity. They also provide us with a probe of the na-
ture of the compact objects themselves.

In addition to black-holes (BH) and neutron stars
(NS), the expected quality of the gravitational wave
data could allow for the search of exotic compact ob-
jects as progenitors in such collisions [4]. In particular,
coherent, self-gravitating, non-topological solitons made
of scalar fields are known to have highly compact cores
[5–7]. Their collisions may generate observable amounts
of gravitational waves and whose waveforms can deviate
from those of BH-BH or NS-NS mergers (see in particular
[8–11]).

In this paper, we study the head-on collisions of a
class of real scalar field solitons called oscillatons [12]
using GRChombo [13] in full general relativity. Unlike bo-
son stars made of complex scalar fields, oscillatons do
not have a conserved U(1) charge, but can nevertheless
be stable on cosmological time scales [14]. For example,
such objects can consist of a spatially localized conden-
sate of an axion field oscillating near the minimum of the
potential [15]. Such axion fields are ubiquitous in many
high energy physics theories, and are considered to be

⇤ thomashelfer@live.de; eugene.a.lim@gmail.com;
marcos.garcia@rice.edu; mustafa.a.amin@gmail.com
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FIG. 1. Fraction of initial rest mass energy of the two oscilla-
tons (E

tot

) radiated into gravitational waves (E
gw

) as a func-
tion of the initial compactness (C) of each oscillaton. In the
subcritical case, oscillatons collide to form a new stable but
aspherical, excited oscillaton. In the critical regime, oscilla-
tons collide to yield a black-hole after/during the collision. In
the degenerate case, individual oscillatons collapse to black-
holes before the collision. Note that in the critical regime (and
possibly in the subcritical regime also), the emitted fraction
in gravitational waves can exceed that of corresponding mass
black-holes (0.06% dashed line).

Helfer, Lim, Garcia & MA (2018)
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FIG. 1. Projected co-moving “densities” a3| |2 (average along the line of sight) at several scale factors (a = 1 to a = 20) in
our 3+1 dimensional lattice simulations, with � ⌘ M/m

pl

= 0.03, and local gravitational interactions switched on (top panels)
and o↵ (bottom panels). The early instability due to self-interactions gives rise to the formation of solitons from an almost
homogeneous initial state. A statistical analysis of the locations of solitons at late times shows reveals evidence for clustering
only in the case where gravitational interactions are included. Note that inside solitons, | |2 = const. that is, their core density
does not redshift, whereas the background | ̄|2 / a�3. Moreover, solitons maintain a fixed physical size, hence the illusion of
them shrinking in size in a co-moving volume. The initial size of the box is the size of the horizon at the beginning of the
simulation L ' H�1

in

. The solitons contain a dominant fraction (⇠ 80%) of the mass in the simulation volume. On a technical
aside, note that the projected co-moving density even in the densest (lightest in color) appearing regions in the above plot will
be smaller that the density inside the cores because of the small volume occupied by the solitons.

between relativistic/non-relativistic models and results
is discussed in the Appendix.

The rest of the paper is organized as follows in short
sections. In Section II we discuss the model for a non-
relativistic, self-interacting field in an expanding universe
with weak field gravity. In Section III, we briefly dis-
cuss the lattice simulation and our numerical algorithm.
The initial conditions for the simulations is provided
in Section IV. We analyze linear instabilities from self-
interactions and gravitational interactions in Section V.
The numerically calculated power spectrum for the field
perturbations is provided in Section VI. In Section VII we
discuss the formation of solitons, followed by a discussion
of their individual profiles and stability in Section VIII.
The gravitational clustering of solitons is discussed in
Section IX, and resulting strong soliton interactions are
explored in Section X. Finally, we present our conclusions
and future directions in Section XI. In the Appendix we
discuss connections to a related relativistic system.

II. THE MODEL

We use the following equations of motion (and con-
straint equations) to explore the dynamics of a non-
relativistic, self-interacting, self-gravitating scalar field in

an approximately homogeneous and isotropic universe:

i

✓
@t +

3

2
H

◆
+

1

2a2

r2 � U 0
nl

(| |2) � �

�
 = 0 ,

r2

a2

� =
�2

2


| |2 +

1

2a2

|r |2 + U
nl

(| |2)
�

� 3

2
H2 ,

H2 =
�2

3


| |2 +

1

2a2

|r |2 + U
nl

(| |2)
�

,

(1)

where [. . .] indicates a spatial average, a(t) is the scale-
factor, H(t) = ȧ(t)/a(t) is the Hubble rate,  (t,x) is
complex field amplitude, �(t,x) is the Newtonian po-
tential and U

nl

(| |2) encodes the self-interactions of the
field.2

All variables and parameters appearing in the above
equation are dimensionless. We have expressed time t in
units of ⌧m = ~/mc2, lengths in units of �m = ~/mc,
the Newtonian gravitational potential � in units of c2

and | |2 in units of m2M2c3/~3. Note that m2M2c3/~3

has dimensions of mass density. We assume that the
parameter

� ⌘ M

m
pl

⌧ 1 . (2)

2 We have checked that qualitatively similar results are obtained
even if we set U

nl

! 0 in the Poisson and Friedmann equations,
but keep U 0

n

(| |2) ⌘ @| |2Un

(| |2) in the nonlinear Schrödinger
equation.
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FIG. 6. Gravitational clustering facilitates close encounters at late times between solitons. Such close encounters lead to
mergers, strong scattering and formation of soliton binaries. Non-gravitational interactions can play a dominant role in the
close-encounters, with the phase of the scalar field also playing an important role. This richness in the close-encounter dynamics
makes the soliton gas distinct from a gravitationally interacting gas of particles (CDM).

2. A few solitons merge to form more massive solitons
(typically when the relative phase is ⇠ 0), resulting
in a change in number density of solitons. Such in-
teractions are typically accompanied by generation
of a burst of scalar waves as the solitons settle into
new configurations.

3. A small fraction of solitons form orbiting binaries.

4. Only few � 10% of the number of solitons in our
simulations undergo strong encounters per Hubble
time.15 This is consistent with the rate of change
in the co-moving number density of solitons

d ln(a3n
sol

)

d ln a
' 0.1 , (21)

as seen from Fig. 3.

We re-iterate that bouncing, binary formation and
merging of solitons is self-consistently obtained from our
cosmological initial conditions. Evidently, the dynamics
of these strong interactions are quite rich, and deviate
from the expectations of treating these solitons as just
point particles. The relative phase of the solitons plays
an important role in these close encounters. A more de-
tailed investigation of the rich dynamics of close encoun-
ters is left for future work.16

15 We inspected 6 numerical runs with di↵erent initial conditions
to get this number.

16 For an early, and detailed investigation of Q-ball interactions
(relativistic complex field valued analogs of our solitons), but
without gravity, see [55].

The repulsive and attractive behavior of such solitons
as a function of relative phase can be heuristically un-
derstood as follows. Consider a probe soliton moving
past another stationary soliton (in absence of gravity).
The nonlinearity in the Schrödinger equation (/ | |2 for
| |2 ⌧ 1) can be thought of as a nonlinear refractive in-
dex.17 If the two solitons are in phase, we expect this
term to be larger in the region between the solitons than
the case when the stationary soliton is absent. It also in-
creases towards the stationary soliton. As a result, this
larger refractive index, and its gradient, will cause the
core of the probe soliton to bend towards the stationary
one, i.e. there will be attraction between the solitons. On
the other hand, when our two solitons are out of phase,
the | |2 between the two solitons will be smaller, and
have to go to zero in the middle (from symmetry), caus-
ing the probe soliton to move away from the stationary
one (hence “repulsion”). A more detailed, e↵ective po-
tential based analysis at large separations is provided by
[37, 57].

XI. CONCLUSIONS & FUTURE DIRECTIONS

We investigated the dynamics of non-relativistic
scalar fields in an expanding background. By includ-
ing self-interactions and gravitational interactions, we

17 This is more than an analogy since nonlinear Schrödinger equa-
tions are used to model light pulse propagation in nonlinear me-
dia [56], we learned of the above heuristic explanation from the
same paper.
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IX. GRAVITATIONAL CLUSTERING

For � ⌧ 1, gravitational clustering is expected to be-
come important at late times (significantly after the soli-
tons have formed, see eq. (12)). At these late times,
this universe essentially behaves as a matter dominated
universe (a(t) / t2/3), with solitons becoming our new
non-relativistic dust particles on scales much larger than
their size. As a result, our zeroth order expectation is
that the gravitational clustering of these solitons should
proceed in a manner similar to dust in an expanding uni-
verse. Moreover, we can ignore non-gravitational forces
between the solitons at separations much larger than 2re

because we expect them to be Yukawa-like, with the force
falling away exponentially with separation.13

We construct the two point correlation function of soli-
ton locations obtained from our simulations to quantita-
tively investigate the e↵ects of gravitational clustering.
In Fig. 5, we show the two-point correlation function of
the solitons, calculated with the Landy-Szalay estimator
[52, 53]:

⇠
LS

(r) =
DD

RR
� N � 1

N
DR

RR
+ 1 , (19)

where there are N solitons (the data D), and N uniform
randomly chosen points R, and RR is the number of soli-
ton pairs in a given co-moving radial separation bin, RR
is the mean count for the random points over several re-
alization R, and DR is the cross-correlation statistic.

As seen in Fig. 5, the measured two point correlation
function is the same for the case with and without gravi-
tational interactions at early times soon after soliton for-
mation (a . 4). The distribution is close to Poissonian
on large scales: ⇠

LS

(r & 10) ⇡ 0. However, the co-moving
scale r

nl

⇠ k�1

nl

which is the typical separation of solitons
when they first form manifests itself in a negative corre-
lation function on small scales (we find very few solitons
with separations less than k�1

nl

).
If we allow for gravitational interactions, solitons begin

to cluster. This clustering can be quantified in our simu-
lations at late times as excess power in ⇠

LS

(for a & 10).
Consistent with clustering of point particles in a matter
dominated universe starting with uncorrelated positions
[54], we find

⇠
LS

(r) / 1

r2

, (20)

where r is a co-moving separation. Fitting the model
⇠
LS

/ a↵r� for our 6 simulations in the range of a = 10

self-interaction potential), which also showed that the above sta-
bility criterion correctly predicted the survival of large amplitude
oscillons in simulations. We further note that three dimensional
oscillons in Sine-Gordon potentials (for axions, but without grav-
ity) are not stable and have a relatively short lifetime, compared
to flattened potentials [49, 50]. Also see the Appendix.

13 This is also reminiscent of the force between solitons as analyzed
by [51].

[co-moving separation]

/ r�2

FIG. 5. The two point correlation function of soliton loca-
tions with and without the inclusion of gravitational interac-
tions. At early times, the correlation function with and with-
out gravity agree with each other. However, at late times
gravitational clustering ⇠

LS

(r) / r�2 is clearly visible for the
a = 16 and a = 20 cases in the above figure.

to a = 20, we find: ↵ = 1.7 ± 0.3, � = �2.1 ± 0.2. It
would be interesting to explore this clustering further in
detail, since it might reveal di↵erences from the point
particle case at late times.

X. STRONG SOLITON INTERACTIONS

Self-gravity plays the important role of bringing soli-
tons together at late times (i.e., significantly after their
formation), and allows them to interact.14 Fig. 6 shows
three di↵erent types of interactions that are achieved
from our cosmological initial conditions.

1. Solitons “repel/bounce o↵” each other when the
relative phase of the interacting solitons |✓

1

�✓
2

| ⇡
⇡ where  a(t,x) =  a(x)e�i(⌫at+✓a) with a = 1, 2.
The repulsive interactions lead to some of the
largest post interaction kicks to our solitons. We
observe some solitons zooming across our simula-
tion volume.

2. A few solitons merge to form more massive solitons
(typically when the relative phase is ⇠ 0), resulting
in a change in number density of solitons. Such in-
teractions are typically accompanied by generation
of a burst of scalar waves as the solitons settle into
new configurations.

3. A small fraction of solitons form orbiting binaries.

14 There are interactions at early times when gravity is ignored as
well, but not so at late times in our simulations.
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FIG. 4. The relationship between the central amplitude,
and 1/e width of the solitons is shown in the figure. The
points are extracted from our simulations, whereas the curve
is calculated semi-analytically. Note that at late times, only
solitons that are stable according to the Vakhitov-Kolokolov
stability criterion (on right of the gray line remain). For our
parameters, gravity remains weak and does not significantly
alter individual soliton properties. The gravitational poten-
tial at the center of the solitons is plotted on the top axis.

using the relativistic nonlinear Klein-Gordon equation in
an expanding universe (but ignoring gravitational clus-
tering), see for example [7, 46]).

VIII. INDIVIDUAL SOLITONS

The first two equations in eq. (1) (ignoring expansion)
admit spatially localized, spherically symmetric, solitonic
solutions of the form

 (t, r) = e�i⌫t (r) . (15)

We substitute this ansatz into (1), to obtain equations
for the profile  (r) and gravitational potential �(r):


⌫ +

1

2r2

@r(r
2@r) � U 0

nl

( 2) � �
�
 = 0 ,

1

r2

@r(r
2@r)� =

�2

2


 2 +

1

2
(@r )2 + U

nl

( 2)

�
.

(16)

Note that ⌫ can be absorbed into the definition �̃ = ��⌫.
We then find smooth, localized, node-free solutions for
 (r) for each  (0), by appropriately adjusting �̃(0).9

9 If needed, we can recover ⌫ = �� �̃ by insisting that �(r) ! 0
for r ! 1. In practice, recovering accurate values of ⌫ is not
easy since �̃ falls o↵ as a power law.

We note that by going to the large r limit of the profile
equations,  (r) decays in an exponential fashion at large
radii (see [47]). This will be relevant when discussing
soliton interactions.

In Fig. 4 we plot the 1/e width of these soliton pro-
files as a function of the central amplitude (solid black
curve) using the profiles obtained from the above proce-
dure. Note that the width is non-monotonic in the cen-
tral amplitude. The data points in this plot correspond
to solitons extracted from our simulations, and are in
excellent agreement with the calculated analytic expec-
tation. Note that for early times (a = 2), not all high
density regions are solitons yet, hence they do not lie on
the analytic curve initially.

While we have done the above calculation including
gravity, the gravitational potential remains small for
most of the solitons: |�(0)| = O[10�3] for � = O[10�2],
and gravity does not significantly a↵ect profiles for cen-
tral amplitudes  (0) . few. The same is true in our
simulations. We also show the gravitational potential at
the center of these solitons Fig. 4 (top axis).

The mass (or energy) per soliton is10

E =

Z
d3r


 2 +

1

2
(@r )2 + U

nl

( 2)

�
,

= O[102] ⇥
✓

M

m

◆
2

m ,

(17)

for the range of central amplitudes shown in Fig. 4 and
seen in simulations. Note that with m ⌧ M , E � m.
We find that the energy is a non-monotonic function of
 (0), with a minimum near  (0) ' 1.

Stability

From our calculated profiles, we find that for �⌫ &
0.05 (correspondingly  (0) & 0.9):

dN
d(�⌫) > 0 where N ⌘

Z
d3r 2(r) , (18)

whereas it is smaller than zero at smaller amplitudes.
This Vakhitov-Kolokolov stability criterion [48] guaran-
tees stability for solitons with  (0) & 0.9 from against
long-wavelength perturbations.11

The stability criterion elegantly explains the dearth
of solitons with central amplitudes below  (0) . 1 in
Fig. 4.12

10 Note that ignoring the gradient and potential terms only changes
the answer by a factor of few. We also briefly restore units with
~ = c = 1 to clarify that each soliton is made up of a very large
number of m particles.

11 At least for � ! 0.
12 A similar long-wavelength stability analysis for relativistic soli-

tons (oscillons) was carried out in [29, 46] (albeit in a di↵erent
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things that need more work

• long term state of the strongly interacting soliton gas — does 
probability of PBH formation increase ?

• additional source of g-waves ?

• velocity distribution … 

• relativistic vs. relativistic fields +  classical fields vs. quantum aspects



things in progress that I did not discuss

• dynamics in late-time ultra-light axions 
• solitons at centers of halos/galaxies
• small-scale structure of CDM (including baryons — in progress)

• solitons in Bose-Einstein condensates

• 1D already demonstrated experimentally
• first examples of 3D solitons in the BECs in the lab

Nguyen, Luo & Hulet (2017)

Mocz et. al  (in prep)

2

interference

c) FDM

1 10 M10.

1.5 Mpc                                                           0.5 Mpc

5 10 M 9.

5 10 M 9. 2 10 M 7.

FIG. 1. Anatomy of a cosmic filament. We show, for a) CDM, b) WDM, and c) FDM cosmologies, the projected dark matter
distribution in the simulation domain at z = 5.5, projections of dark matter, gas, and stars in a filament, and slices of the dark
matter through a filament. In CDM the dark matter fragments into subhalos on all scales. In WDM rich caustic structures are
formed. FDM, shows interference patterns with wavelength �dB, which regularize caustic singularities. The stellar distributions
of Mpc-scale first “galaxies” are seen to be strongly filamentary in WDM and FDM (M⇤,filament ⇠ 3 · 107M�).

Compared to the local Universe, in which galaxies
in dark matter halos of 1011 M� are typical, an early
CDM universe is populated by much smaller halos of
⇠ 105 � 107 M� in which the first galaxy-like star-
forming objects are born [14]. In contrast, first star-
forming structures in WDM are filamentary and star for-
mation is delayed [15], due to the initial suppression of
the power spectrum by particle free-streaming. Com-
pared to WDM, wavelike FDM additionally features in-
terference patterns and soliton cores on kpc scales [2]. So
far, structure formation in the FDM paradigm has been
studied via dark matter-only simulations which show fil-
aments and quantum interference (e.g. [2]), and hydro-
dynamical simulations that ignore the wavelike aspects of
the dark matter superfluid [3]. In this Letter, we explore
the formation of first galaxies under the FDM hypothe-
sis performing first consistent cosmological simulations of
ultralight bosons coupled to the hydrodynamical model-

ing with the state-of-the-art code Arepo, which includes
star formation, feedback, and reionization.
Simulating a ‘fuzzy’ universe. FDM, a pseudo-scalar-

field boson in the non-relativistic limit, is described by a
complex wavefunction  = A exp[�i�], with the ampli-
tude related to the dark matter density ⇢ via ⇢ ⌘ |A|2;
and phase � encoding the velocity of the dark matter
field v ⌘ (~/m)r�.
Evolution of FDM in an expanding universe is gov-

erned by the Schrödinger-Poisson (SP) equations, given
in physical coordinates by

i~
✓
@ 

@t
+

3

2
H

◆
= � ~2

2m
FDM

r2 +m
FDM

V  (1)

r2V = 4⇡G(⇢� ⇢) (2)

where ~ is Planck constant, V is the total gravitational
potential, ⇢ is the volume-average density, H is the Hub-
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Non-perturbative Dynamics 
of Cosmological Fields

1. Gravitational Aspects of Oscillons/Solitons
Lozanov, Mocz + earlier collaborators

2. Stochastic Particle Production In Cosmology
Garcia, Wen, Carlsten, Baumann, Xie, Green … 



plan for the talk (part 1I)

• motivation 

• framework 

•  implications 

• Wires to Cosmology 
(w/ Baumann 1512.02637)

• Multifield Stochastic Particle Production 
(w/ Garcia, Wen & Xie 1706.02319)

• Stochastic Particle Production in deSitter Space 
(w/ Garcia, Carlsten & Green 1902.06736)

• Curvature Perturbations from Stochastic Particle Production 
(in progress)
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two approaches

credit: Wayne Hu

SIMPLE enough COMPLEX enough



inspiration from disordered wires

MA & Baumann 2015



• inflation/reheating: many coupled fields (spectators)

• fluctuations: coupled, non-perturbative

multifield inflation/reheating

reheating

inflation �

�n



complexity in the  
“effective mass”/ interactions

⌧ �!

m2
e↵(⌧)
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⇥
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simplified version!
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 particle production as “scattering”
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Kofman, Linde & Starobinsky 1997
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chaining transfer matrices

⌧ �!

M1 M2 MNs

where M � MNs · · · M2M1|�k(Ns)i = M|�k(0)i
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occupation number performs  
a drifted random walk 
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a drifted random walk 
 different realizations
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probability distribution ? 
typical occupation number ? 
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MA & Baumann (2015)
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• simple Trace formula for estimating particle production rate when 
the number of fields is large (without being statistically similar)

• ! contains all the information about the strengths of interactions

generalization to  
many fields

ntyp ⇠ exp


2

1 +Nf
hTr⇤2i ⌧

�

MA, Garcia, Xie & Wen (2017)



stochastic particle production  
in an expanding universe

1 Summary: Curvature Perturbations from Stochastic Particle Production

During Inflation

Figure 1: The behavior of ln |�k|2 for di↵erent realizations of {mj}. The growth rates of means and
variances of the trajectories @Hthln |�k|2i = µ

1

and @HtVar[ln |�k|2] = µ
2

on superhorizon scales. In the
above figure k crosses the Horizon at H�t ⇡ 20. Both the mean and variance of ln |�k|2 grow linearly
with time. We have chosen N

s

�2/H2 = 3 here. The trajectories of ln |�k|2 undergo a “random walk” like
behavior, and have a Gaussian distribution (over the {mj} ensemble) at all times.

1.1 Overview

We consider � fields in quasi-deSitter space being excited by non-adiabatic changes in their

e↵ective mass

�̈ + 3H�̇ � r2�

a2
+ m2

e↵

(t)� = 0 , (1.1)

where m2

e↵

(t) = M2 + m2(t) with m2(t) =
P

j mj�(t � tj). The “locations” in cosmic time tj
are drawn from uniform distribution, and the amplitudes mj have hmji = 0 and hmimji = �2�ij
where the angled brackets indicate ensemble averages over di↵erent realizations of {mj}. In what

follows we restrict our attention to conformal fields M2 = 2H2 and with scattering beginning at

some finite time t
0

during inflation.

These excited � fields in turn source the curvature perturbation ⇡ (with ⇣ ⇡ �H⇡ on super-

horizon scales):

⇡̈ + 3H⇡̇ � r2⇡

a2
= � 1

2c

dm2

dt
�2 , (1.2)

where c = 2M2

P Ḣ = �2M2

PH2✏ ⇡ const., and ✏ is the usual slow roll parameter. The correction

1

spectator field
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1

assuming that the temporal width of the scatterers is much smaller than the characteristic period

of the mode-functions �k, we approximate the stochasticity of the background dynamics by a sum

of Dirac-delta scatterers,

m2(t) =
X

j

mj �(t � tj)

=
X

j

mj

a(⌧j)
�(⌧ � ⌧j) = m2(⌧) . (2.26)

Under the condition that the scatterer amplitudes have zero-mean and are uncorrelated at di↵erent

times,

hmji = 0 , hmjmii = �2�ij , (2.27)

and that the scatterer locations are distributed uniformly over cosmic time, the dynamics of the

ensemble of solutions (realizations) for the mode functions �k(⌧) are known for two particular cases:

for conformally massive fields (M2 = 2H2) and for massless fields (M2 = 0) []. Below we summarize

the results of this study which are relevant for the present paper. Nevertheless, we encourage the

interested reader to consult the source of these results, which are derived by a combination of

analytical and numerical methods by means of Transfer Matrix and Fokker-Planck formalisms. It is

worth noting that the following statements technically apply for a pure de Sitter background, but

we do not expect them to be significantly altered by slow-roll corrections.

1. In the limit of a large density of scatterers in a given interval �t in cosmic time, the char-

acteristic “strength” of the non-adiabatic events can be uniquely determined by the so-called

scattering strength parameter
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2

⌘ Ns

H�t

⇣ �

H

⌘

2

, (2.28)

where Ns denotes the number of scatterings, and Ns the density of scatterers per Hubble time.

This result is independent of the distribution of the scatterer amplitudes mi, provided that it

satisfies (2.27), and that the locations ti are roughly uniformly distributed.6

2. The random variable ln |�k(t)|2 is normally distributed (as an ensemble over realizations of

m2(t)) on super and sub-horizon scales, for any scattering strength and for any k. Equivalently,

|�k(t)|2 is log-normally distributed.

3. Su�ciently deep inside the horizon, the scalar field is approximately in its vacuum state,

(|k⌧ | � 1)
hln |�k|2i ' � ln(2ka2) ,
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ln |X|2
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1

4
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(k⌧)�2 ⌧ 1 .
(2.29)

Note that the vacuum approximation strictly coincides with the sub-horizon regime only for

Ns(�/H)2 ⇠ O(1). Outside the horizon, ln |�k| evolves linearly with cosmic time (in an

ensemble averaged sense), with

(|k⌧ | ⌧ 1)
@Hthln |�k|2i = µ

1

� 2 ,

@HtVar
⇥

ln |�k|2
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= µ
2

,
(2.30)

6

E.g. uniformly distributed ti over a given time interval, or normally distributed ti centered on an equispaced grid

in cosmic time.
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6

# of scatters per Hubble time

useful dimensionless parameter
for superhorizon scale evolution

   MA, Garcia, Carlsten, Green (2019)

* delta functions not necessary, good approx. when momentum less than inverse width



stochastic particle production  
in de Sitter universe 

1 Summary: Curvature Perturbations from Stochastic Particle Production

During Inflation

Figure 1: The behavior of ln |�k|2 for di↵erent realizations of {mj}. The growth rates of means and
variances of the trajectories @Hthln |�k|2i = µ
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2

on superhorizon scales. In the
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s
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1. typical mode amplitudes grow/decay exponentially with 
cosmic time outside the horizon

2. the distribution of field amplitudes is log-normal

3. correlation functions have the characteristics of a geometric 
random walk.

universal features
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applications: inflationW
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reheating

inflation �

�n

also see: Dias, Fraser & Marsh (2015)

background dynamics particle production curvature fluctuations

h⇣k1⇣k2 . . .ih�k1�k2 . . .i

MA, Garcia, Carlsten, Green, Baumann & Chia  (in progress)



curvature perturbations
MA, Garcia, Carlsten, Green, Baumann &Chia (in progress)
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“mean” curvature perturbations
MA, Garcia, Carlsten, Green, Baumann &Chia (in progress)

10�2 10�1 1 10 102 103 104 105 106 107 108

k/k0

10�8

10�6

10�4

10�2

1

102

104

106

h�
�

2 ⇣
i/

�
2 ⇣

Ns(�/H)2 = 3

2.2

1

W
ORK IN

 

PROGRESS

/ k3

/ k0

sub-horizon
during scattering 

super-horizon 
during scattering

horizon crossing
during scattering 



backreaction? detectable?
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implications ?

1. implications - PBH ?

2. primordial gravitational waves 

3. higher point correlation functions

4. application to reheating … 



applications : reheating

model-insensitive description of a 
complicated reheating process.

Kofman, Linde & Starobinsky (1997)
Traschen & Brandenberger    (1997) 
Zanchin et. al (1998) & Bassett (1998) [with noise]
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multichannel — multifield — statistical
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simplicity from stochasticity
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what is the connection to wires?

�n

From Wires to Cosmology [MA & Baumann 2016]



scattering inside disordered wires

impurites

electron waves

location along the wire x !



universal behavior: Anderson Localization

impurites

electron waves res
ista

nce
 • impurities increase resistance exponentially

location along the wire x !

at low temperatures,  one dimensional wires are insulators
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complexity in time 
cosmology

 � x

�V (x)
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k2 +m2

e↵(⌧)
⇤
�k(⌧) = 0  !

complexity in space 
wires

simplified version!

exponential growth in occupation number Anderson localization

for periodic case with noise see Zanchin et. al 1998, Brandenburger & Craig 2008



dictionary

Time-dependent “Klein-Gordon” Time-independent Schrödinger

resistanceoccupation number

mean free path(local) particle production rate

multiple channelsmultiple fields

�̈k(⌧) +
⇥
k2 +m2

e↵(⌧)
⇤
�k(⌧) = 0



- tools for dealing with theoretical complexity 

- hints of universality  

summary



thanks



general non-perturbative dynamics  
from early universe

inflation
preheating non-linear!

regime
perturbative!

regime thermalization

scalar & gauge bosons + fermions

topological & non-topological solitons!
 (strings, textures, bubbles, Q-balls, oscillons)

gravitational perturbations!
( non-gaussianity, gravitational waves)

particle production

time

expansion history,  baryogenesis …
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from review: MA, Kaiser, Karouby & Hertzberg (2013)



Cosmological Dynamics & Higgs Fine Tuning 

�
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FIG. S4. Snapshots of the values of the Modulus (first row) and Higgs (second row) fields on a two-dimensional slice through
the simulation box at four di↵erent times. Around the time of backreaction, t ⇡ 23m�1 (second column), the Higgs field forms
domains (‘bubbles’) with � = ±p

2|�|f/q. They disappear within �t ⇠ 10m�1, due to collisions, as well as oscillations of the
remnant � condensate. The used parameters are b = 1, q = 102, M = 10�12m

pl

, f = m
pl

.

S2 Gravitational Waves and Lattice Simulations

1. Equations of Motion

We calculate the gravitational waves generated by the nonlinear field dynamics using

ḧTT
ij + 3HḣTT

ij � r2

a2

hTT
ij =

2

m2

pl

⇧TT
ij (S15)

where hTT
ij is the spatial, transverse, traceless part of the metric perturbations (gµ⌫ = gFRW

µ⌫ + hµ⌫), and ⇧TT
ij is the

transverse-traceless part of the energy momentum tensor of the fields which sources the gravitational waves. This is
a “passive calculation” where the (small) backreaction of the metric perturbations on the fields is ignored.

2. Characteristic Scales

Let us consider a gravitational wave generated at a = a
g

in the early universe with a co-moving wavenumber k.
By taking into account red-shifting due to expansion and conservation of entropy after thermalization, the frequency
today of this GW signal is
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where H
g

is the Hubble parameter of the universe at the time of generation of the gravitational waves, g
th

and g
0

are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (a
th

) and today (a
0

), ⌦
r,0 is

the fractional energy density in relativistic species today and w
mod

is the mean equation of state between generation
and thermalization (after which we assume a standard thermal history). We can parametrize the characteristic
wavenumber at which the gravitational waves are generated:
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FIG. S4. Snapshots of the values of the Modulus (first row) and Higgs (second row) fields on a two-dimensional slice through
the simulation box at four di↵erent times. Around the time of backreaction, t ⇡ 23m�1 (second column), the Higgs field forms
domains (‘bubbles’) with � = ±p

2|�|f/q. They disappear within �t ⇠ 10m�1, due to collisions, as well as oscillations of the
remnant � condensate. The used parameters are b = 1, q = 102, M = 10�12m

pl

, f = m
pl

.
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electroweak symmetry breaking and early universe cos-
mology. It also motivates further studies on the potential
of gravitational wave probes for new physics beyond the
SM.

II A Simple Model A simplified potential captur-
ing the most salient features of a Higgs field, h, coupled
to a modulus, �, is
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The global minimum of the potential lies at � = 0, where
the potential becomes simply the Standard Model Higgs
potential. The constant v2 = M2�

0

/(�f). Placing the
minimum at � = 0 is a pure convention; in particular, �
carries no charges and can be shifted by a constant. We
take the mass scale M2 to be the natural value of the
Higgs mass and f to be the natural scale of the modulus
field �. That is, we suppose that quantum corrections to
the Higgs mass would be of order M2 and that generic
values � ⇠ f produce Higgs masses of this order.

The e↵ective Higgs boson mass
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is positive at � � 0 and negative at � ⌧ 0, transitioning
through zero when � = �

0

. The SM Higgs mass parame-
ter is m2

h; e↵

(0) = �M2�
0

/f . In this model, the criterion
for fine tuning is
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In other words, it is an accident if the Higgs mass is zero
at the same point where the � potential is minimized; the
closer these two points, the more surprising the result.

We will mostly have in mind supersymmetric theories,
where this toy simplified potential can arise with M2 ⇠
m2

soft

as explained in § S4 2. We consider the hierarchy
|m2

h; e↵

(0)| ⌧ m2

� . M2 ⌧ f2. Terms we have neglected,

such as (m2

�/f2)�4 or 1

f2

�2@µ�@µ�, could have important

e↵ects on the dynamics (such as oscillon formation [10–
14]). We assume that the field � stays far from singular
points in field space for all relevant times. For now we
have omitted all modulus self-interactions for simplicity.

III Non-linear Dynamics In a tuned universe, the
modulus-Higgs field system can undergo explosive, non-
perturbative field dynamics leading to fragmentation of
the fields on short time scales (t ⌧ H�1), and yield a
non-trivial equation of state for a number of e-folds of
expansion following the fragmentation.

For � � 1, the e↵ective Higgs mass term oscillates
between very large positive and negative values due to
the oscillation of �. One expects such oscillations to

FIG. 2. The ratio of the spatially averaged energy density
in the Higgs and modulus fields as a function of time ob-
tained from our lattice simulations. This dynamics of energy
transfer between the modulus and Higgs fields is represen-
tative of the case where the modulus fragments, i.e. when
b ⌘ M4/2�f2m2

� ! 1. For the above plot we have chosen
b = 1, M2/m2

� = 102 and M/f = 10�12. The interaction
term is not included in the above energy densities.

lead to non-adiabatic, out-of-equilibrium production of
the Higgs particles. By considering tachyonic resonance
[15], and for f ⇠ �

in

⇠ m
pl

, the e�ciency of such particle
production is controlled by q ⌘ M2/m2

�. In particular,
q � 1 (as we assume) should lead to a broad range of
physical momenta for the produced Higgs particles (see
Fig. S3 in § S1).

E�cient transfer of energy from the modulus to the
Higgs field is countered by the Higgs self-interaction �.
Large self-interactions block Higgs production, whereas
at small � the Higgs field will be su�ciently populated
in non-zero momentum modes to backreact on the mod-
ulus, yielding a spatially inhomogeneous modulus (frag-
mentation). A more detailed view of the dynamics of the
modulus-Higgs system can be seen in Fig. S2 in § S1.

A Does the modulus fragment? The Higgs field
must be significantly populated in order to backreact on
the modulus and cause its fragmentation. Large q fa-
vors tachyonic resonance whereas large � limits the Higgs
field occupation numbers. We define the fragmentation
e�ciency parameter

b ⌘ M4

2�f2m2

�

, (4)

which incorporates both e↵ects to determine whether the
modulus field fragments. Note that b  1 from the
constraint that the combined modulus-Higgs potential is
positive definite. From detailed numerical simulations
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