Non-perturbative Dynamics of Cosmological Fields

- I. Gravitational Aspects of Oscillons/Solitons
- 2. Stochastic Particle Production In Cosmology

Mustafa A. Amin

Non-perturbative Dynamics of Cosmological Fields

Mustafa A. Amin

cosmological scalar field: self-interactions + gravity*

 $cosmological scalar field: self-interactions + gravity^*$

 $cosmological scalar field: self-interactions + gravity^*$

cosmological scalar fields attractive self-interaction + gravity

$$S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right]$$

previous movie was non-relativistic*

plan for the talk (part 1)

- motivation & implications
- understanding what is happening in the movie
 - relativistic but no gravitational clustering (w/ K. Lozanov, 1902.06736)
 - 2. non-relativistic with gravitational clustering (w/ P. Mocz, 1902.07261)
 - 3. + earlier papers with Shirokoff, Lozanov, Easther, Hertzberg, Finkel, Flauger ...

inflation: post-inflationary dynamics

axion-like fields

(b) CDM

Schive et. al (2014)

for example: Peccei & Quinn (1977) Hu, Barkana & Gruzinov (2000) Arvanitaki et. al (2009)

10 (d)/(J) d 10

1

1

1

1

1

implications

- reheating after inflation ?
- stochastic gravitational wave-generation ?
 - constrained by $N_{
 m eff}$ or direct detection
- primordial black hole formation ?

- distinguishability from WIMPS ? (small scales)
- early structure formation
- compact objects
 - eg. sources of gravitational waves ?

eq. of motion for cosmological fields

$$\Box \phi + V'(\phi) = 0$$

nonlinear Klein-Gordon eq.

$$G_{\mu
u} = rac{1}{m_{
m pl}^2} T_{\mu
u}$$

Einstein Eq.

instabilities in oscillating fields

instabilities in oscillating fields

instabilities in an expanding universe

dynamics of oscillating fields

MA (2010)

dynamics of oscillating fields

$$\Box \phi = V'(\phi)$$

dynamics of oscillating fields

$$\Box \phi = V'(\phi)$$

soliton formation in relativistic fields

soliton formation in relativistic fields

insensitive to initial conditions

simulation of "quasi-thermal" example in Farhi et. al 2008

insensitive to initial conditions

simulation of "quasi-thermal" example in Farhi et. al 2008

solitons?

existence and stability:

Segur & Kruskal (1987) Kasuya, Kawasaki, Takashi (2003) Hertzberg (2011) Mukaido et. al (2016) Salmi & Hindmarsh (2014)

MA (2013) MA & Shirokoff (2010) (1) oscillatory (2) spatially localized (3) very long lived

Bogolubsky & Makhankov (1976), Gleiser (1994), Copeland et. al (1995)

"passively" calculated gravitational potential

 $\Phi \lesssim \text{few} \times 10^{-3}$

w/ K. Lozanov (2019)

passively calculated gravitational potential

passively calculated gravitational waves

 $\Delta N = 1.0$

*also see Zhou et. al (2014)

can be constrained ?

* assumes radiation domination after production

Also see: Kitojima, Soda & Urakawa (2018)

summary so far ...

$$|\Phi|_{
m sol} \lesssim 10 \times \left(\frac{M}{m_{
m pl}}\right)^2$$

 $\Phi \lesssim {
m few} \times 10^{-3}$

not easy to form black holes from individual solitons*

$$\Omega_{\rm gw,0} \sim 10^{-6} \left(\frac{M}{m_{\rm Pl}}\right)^2 \lesssim \mathcal{O}[10^{-9}]$$

M

$$\begin{split} |\Phi|_{\rm sol} \lesssim 10 \times \left(\frac{M}{m_{\rm pl}}\right)^2 \\ \Phi \lesssim {\rm few} \times 10^{-3} \end{split}$$

not easy to form black holes from individual solitons*

$$\Omega_{\rm gw,0} \sim 10^{-6} \left(\frac{M}{m_{\rm Pl}}\right)^2 \lesssim \mathcal{O}[10^{-9}]$$

- gravitational clustering takes time
- long time makes it difficult to resolve very fast oscillatory time scale

a way forward ...

- rapid oscillatory behavior of fields (integrate out)
- size of solitons and instability length scales $^* \gg m^{-1}$
- gravity is weak
- non-relativistic simulations including local gravitational interactions

* by an order of magnitude or less, so care is needed

"non-relativistic" limit

$$\Box \phi + V'(\phi) = 0 \qquad \qquad G_{\mu\nu} = \frac{1}{m_{\rm pl}^2} T_{\mu\nu}$$

$$\phi(t, \mathbf{x}) = \frac{\sqrt{2}}{m} \Re[e^{-imt} \psi(t, \mathbf{x})] \qquad \qquad ds^2 = -(1 + 2\Phi) dt^2 + a^2(t)(1 - 2\Phi) d\mathbf{x}^2$$

$$\frac{|\nabla|}{m}, \frac{\partial_t}{m} \ll 1 \qquad \qquad |\Phi| \ll 1$$

non-linear Schrodinger eq.

Poisson eq. + Friedmann eq.

$$V(\phi) = \frac{1}{2}m^2\phi^2 + V_{\rm nl}(\phi)$$

* some dragons hide here ...

non-relativistic case

$$\left[i\left(\partial_t + \frac{3}{2}H\right) + \frac{1}{2a^2}\nabla^2 - U'_{\rm nl}(|\psi|^2) - \Phi\right]\psi = 0\,,$$

nonlinear Schrodinger eq.

$$\phi(t, \mathbf{x}) = \frac{\sqrt{2}}{m} \Re \left[e^{-imt} \psi(t, \mathbf{x}) \right]$$

non-relativistic case

$$\begin{split} & \left[i \left(\partial_t + \frac{3}{2} H \right) + \frac{1}{2a^2} \nabla^2 - U'_{nl}(|\psi|^2) - \Phi \right] \psi = 0, & \text{nonlinear Schrodinger eq.} \\ & \frac{\nabla^2}{a^2} \Phi = \frac{\beta^2}{2} \left[|\psi|^2 + \frac{1}{2a^2} |\nabla \psi|^2 + U_{nl}(|\psi|^2) \right] - \frac{3}{2} H^2, & \text{Poisson eq.} \\ & H^2 = \frac{\beta^2}{3} \overline{\left[|\psi|^2 + \frac{1}{2a^2} |\nabla \psi|^2 + U_{nl}(|\psi|^2) \right]}, & \text{Friedmann eq.} \end{split}$$

 $mx^{\mu} \to x^{\mu}$

length/time units

$$\frac{\psi}{mM} \to \psi$$

non-linearity

 $\beta \equiv \frac{M}{m_{\rm pl}}$

 $\phi(t, \mathbf{x}) = \frac{\sqrt{2}}{m} \Re \left[e^{-imt} \psi(t, \mathbf{x}) \right]$

MA & Mocz (2019)

two linear instabilities

. . .

. . .

$$\begin{split} \psi(t,\mathbf{x}) &= \bar{\psi}(t) \left[1 + \varepsilon \frac{\delta \psi_{\mathbf{k}}(t)}{\bar{\psi}(t)} e^{i\mathbf{k}\cdot\mathbf{x}} \right] & |\delta \psi_{\mathbf{k}}/\bar{\psi}| \sim e^{\mu_{k}t} \\ \hline \mathbf{self-interactions} & \mathbf{gravitational interactions} \\ k^{2} &< -4 |\bar{\psi}|^{2} U_{\mathrm{nl}}^{\prime\prime}(|\bar{\psi}|^{2}) , & k < k_{J} \approx \sqrt{\sqrt{2\beta}|\bar{\psi}|} \\ \mu_{k} &= \left| i \frac{k}{2} \sqrt{k^{2} + 4 |\bar{\psi}|^{2} U_{\mathrm{nl}}^{\prime\prime}(|\bar{\psi}|^{2})} \right| & \mu_{k} = \sqrt{\frac{1}{2}\beta^{2}|\bar{\psi}|^{2} - \frac{k^{4}}{4}} \\ \frac{\mu_{k}}{H} \sim \frac{1}{\beta} & \frac{\mu_{k}}{H} \sim 1 \\ \hline \mathbf{For} \quad \beta \equiv \frac{M}{m_{\mathrm{pl}}} \ll 1 & \text{self-interaction instability dominates} \end{split}$$

MA & Mocz (2019), Johnson & Kamionkowski (2008)

digression — Floquet vs. non-relativistic instability

MA & Mocz (2019)
power spectrum

co-moving number density of solitons

few x 10^3 /Hubble volume at time of formation

individual solitons

$$\phi(t,r) = \sqrt{2}\Re[e^{-it}\psi(t,r)] = \sqrt{2}\Psi(r)\cos[(1+\nu)t]$$

 $\nu < 0, \qquad |\nu| \ll 1$

$$\psi(t,r) = e^{-i\nu t} \Psi(r)$$
$$\mathcal{N} \equiv \int d^3 r \Psi^2(r)$$

stable iff: Vakhitov Kolokolov (1973)

$$\frac{d\mathcal{N}}{d(-\nu)} > 0$$

— caution, relativistic + quantum effects missing

gravity remains weak

$$|\Phi| \sim \mathcal{O}[10^{-3}]$$

not easy to form black holes from individual solitons still

— caution, relativistic + quantum effects missing

gravitational clustering of solitons

gravitational clustering of solitons

MA & Mocz (2019)

strong interactions

strong interactions

"ultra-compact" soliton collision

Numerical GR

self-interactions

formation

X

X

Helfer, Lim, Garcia & MA (2018)

summary I

things that need more work

- long term state of the strongly interacting soliton gas does probability of PBH formation increase ?
- additional source of g-waves ?
- velocity distribution ...
- relativistic vs. relativistic fields + classical fields vs. quantum aspects

things in progress that I did not discuss

• dynamics in late-time ultra-light axions

- solitons at centers of halos/galaxies
- small-scale structure of CDM (including baryons in progress)

Mocz et. al (in prep)

- solitons in Bose-Einstein condensates
 - ID already demonstrated experimentally
 - first examples of 3D solitons in the BECs in the lab

Nguyen, Luo & Hulet (2017)

Non-perturbative Dynamics of Cosmological Fields

I. Gravitational Aspects of Oscillons/Solitons Lozanov, Mocz + earlier collaborators

2. Stochastic Particle Production In Cosmology Garcia, Wen, Carlsten, Baumann, Xie, Green ...

Mustafa A. Amin

plan for the talk (part 11)

- motivation
- framework
- implications

- Wires to Cosmology (w/ Baumann 1512.02637)
- Multifield Stochastic Particle Production (w/ Garcia, Wen & Xie 1706.02319)
- Stochastic Particle Production in deSitter Space (w/ Garcia, Carlsten & Green 1902.06736)
- Curvature Perturbations from Stochastic Particle Production (in progress)

two approaches

SIMPLE enough

inspiration from disordered wires

MA & Baumann 2015

multifield inflation/reheating

- inflation/reheating: many coupled fields (spectators)
- fluctuations: coupled, non-perturbative

complexity in the "effective mass"/ interactions

simplified version!

$$\ddot{\chi}_{k}(\tau) + \left[k^{2} + m_{\text{eff}}^{2}(\tau)\right] \chi_{k}(\tau) = 0$$
$$m_{\text{eff}}^{2}(\tau) = -\frac{\ddot{a}(\tau)}{a(\tau)} + a^{2}(\tau) \left[M^{2} + \sum_{j} g_{j}^{2}(\phi(\tau) - \phi_{j}^{*})^{2} + \dots\right]$$

particle production as "scattering"

occupation number per mode

$$n(k,\tau) = \frac{1}{2\omega_k} \left(|\dot{\chi}_k|^2 + \omega_k^2 |\chi_k|^2 \right)$$

$$|\chi_k(\text{after})\rangle = \underbrace{\begin{pmatrix} 1/t_j^* & -r_j^*/t_j^* \\ -r_j/t_j & 1/t_j \end{pmatrix}}_{\mathsf{M}_j} |\chi_k(\text{before})\rangle$$

Kofman, Linde & Starobinsky 1997

$$T_j = |t_j|^2$$
 $n_j \equiv \frac{|r_j|^2}{|t_j|^2} = T_j^{-1} - 1$

chaining transfer matrices

occupation number performs a drifted random walk

a drifted random walk different realizations

probability distribution ? typical occupation number ?

MA & Baumann (2015)

a Fokker Planck equation

MA & Baumann (2015)

generalization to many fields

MA, Garcia, Xie & Wen (2017)

• simple *Trace formula* for estimating particle production rate when the number of fields is large (*without being statistically similar*)

$$n_{\rm typ} \sim \exp\left[\frac{2}{1+N_{\rm f}}\langle {\rm Tr}\,\Lambda^2\rangle \,\,\tau
ight]$$

• Λ contains all the information about the strengths of interactions

stochastic particle production in an <u>expanding universe</u>

MA, Garcia, Carlsten, Green (2019)

$$\ddot{\chi} + 3H\dot{\chi} - \frac{\nabla^2\chi}{a^2} + m_{\rm eff}^2(t)\chi = 0 \qquad \qquad {\rm spectator \ field}$$

$$m_{\text{eff}}^2(t) = M^2 + m^2(t)$$
 with $m^2(t) = \sum_j m_j \delta(t - t_j)$

$$\langle m_j \rangle = 0, \qquad \langle m_j m_i \rangle = \sigma^2 \delta_{ij}$$

useful dimensionless parameter for superhorizon scale evolution

of scatters per Hubble time

* delta functions not necessary, good approx. when momentum less than inverse width

stochastic particle production in de Sitter universe

universal features

MA, Garcia, Carlsten, Green (2019)

I. *typical* mode amplitudes grow/decay exponentially with cosmic time outside the horizon

- 2. the distribution of field amplitudes is log-normal
- 3. correlation functions have the characteristics of a geometric random walk.

also see: Dias, Fraser & Marsh (2015)

curvature perturbations

MA, Garcia, Carlsten, Green, Baumann & Chia (in progress)

"mean" curvature perturbations

MA, Garcia, Carlsten, Green, Baumann & Chia (in progress)

NORGRESS backreaction? detectable?

implications ?

- I. implications PBH ?
- 2. primordial gravitational waves
- 3. higher point correlation functions
- 4. application to reheating ...

applications : reheating

WORKINSS PROGRESS

> Kofman, Linde & Starobinsky (1997) Traschen & Brandenberger (1997) Zanchin et. al (1998) & Bassett (1998) [with noise]

multichannel — multifield — statistical

model-insensitive description of a complicated reheating process.
NORGRESS Simplicity from stochasticity

see hints in: Bassett (1998), Barnaby, Kofman & Braden et. al 2010

what is the connection to wires?

From Wires to Cosmology [MA & Baumann 2016]

scattering inside disordered wires

location along the wire $x \rightarrow$

universal behavior: Anderson Localization

• impurities increase resistance exponentially

at low temperatures, one dimensional wires are insulators

complexity in time cosmology

complexity in space wires

for periodic case with noise see Zanchin et. al 1998, Brandenburger & Craig 2008

dictionary

- tools for dealing with theoretical complexity
- hints of universality

general non-perturbative dynamics from early universe

from review: MA, Kaiser, Karouby & Hertzberg (2013)

radiation dominated, thermal universe

expansion history, baryogenesis ...

Cosmological Dynamics & Higgs Fine Tuning

arXiv: 1802.00444

MA, Fan, Lozanov & Reece

