Nonlinear Behaviour of Axions

Mark Hertzberg

Tufts University

May 10 2019

Two Popular Models of Dark Matter

- WIMPs and Axions

Two Popular Models of Dark Matter

- WIMPs and Axions

Two Popular Models of Dark Matter

- WIMPs and Axions

$\Delta \mathcal{L}_{qcd} \sim \theta \, \mathbf{E}^a \cdot \mathbf{B}^a$

QCD-Axion

$$\begin{array}{l} \Delta \mathcal{L}_{qcd} \sim \theta \, \mathbf{E}^a \cdot \mathbf{B}^a & |\theta| \lesssim 10^{-10} \\ \\ \text{(Peccei-Quinn, Weinberg, Wilczek)} & \theta \rightarrow \phi/f_a \\ \Delta \mathcal{L}_a \sim \frac{\phi}{f_a} \mathbf{E}^a \cdot \mathbf{B}^a + \frac{1}{2} (\partial \phi)^2 \end{array}$$

QCD-Axion

$$\Delta \mathcal{L}_{qcd} \sim \theta \mathbf{E}^{a} \cdot \mathbf{B}^{a} \qquad |\theta| \lesssim 10^{-10}$$
(Peccei-Quinn, Weinberg, Wilczek)
$$\begin{array}{c|c} \theta \rightarrow \phi/f_{a} \\ \Delta \mathcal{L}_{a} \sim \frac{\phi}{f_{a}} \mathbf{E}^{a} \cdot \mathbf{B}^{a} + \frac{1}{2} (\partial \phi)^{2} - V(\phi) \end{array}$$

D-Axion

Axion Dark Matter Abundance

- Axion is neutral and stable

(For axion-string contribution, recall Masahide's talk on Thursday)

Axion Dark Matter Abundance

- Axion is neutral and stable
- Careful calculation from misalignment mechanism:

$$\begin{split} \Omega_a &\approx \langle \theta_i^2 \rangle \left(\frac{f_a}{10^{12} {\rm GeV}} \right)^{7/6} < 0.25 \\ & \text{If } f_a \, \text{large we need } \, \theta_i \, \text{small} \end{split}$$

- The allowed distribution for θ_i depends on inflation scale E_I relative to PQ SB scale f_a

(For axion-string contribution, recall Masahide's talk on Thursday)

If PQ SB after inflation

If PQ SB after inflation

High $f_a \gtrsim 10^{12} \,\mathrm{GeV}$ is disallowed

If PQ SB before inflation

If PQ SB before inflation

QCD-Axion Allowed Windows

QCD-Axion Allowed Windows

Focus on Classic Window

In Classic Window; Axion Initial Distribution

Consider Non-Relativistic Behavior

$$\phi(\mathbf{x},t) = \frac{1}{\sqrt{2m}} \left(e^{-imt} \psi(\mathbf{x},t) + e^{imt} \psi^*(\mathbf{x},t) \right)$$

(For rigorous treatment: Namjoo, Guth, Kaiser 2017)

Consider Non-Relativistic Behavior

$$\begin{split} \phi(\mathbf{x},t) &= \frac{1}{\sqrt{2\,m}} \left(e^{-imt} \psi(\mathbf{x},t) + e^{imt} \psi^*(\mathbf{x},t) \right) \\ \text{Hamiltonian} & \hat{H} = \hat{H}_{\text{kin}} + \hat{H}_{\text{int}} + \hat{H}_{\text{grav}} \\ \hat{H}_{\text{kin}} &= \int d^3 x \frac{1}{2m} \nabla \hat{\psi}^{\dagger} \cdot \nabla \hat{\psi} \\ \hat{H}_{\text{int}} &= \int d^3 x \frac{\lambda}{16m^2} \hat{\psi}^{\dagger} \hat{\psi}^{\dagger} \hat{\psi} \hat{\psi} \\ \hat{H}_{\text{grav}} &= -\frac{Gm^2}{2} \int d^3 x \int d^3 x' \frac{\hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}^{\dagger}(\mathbf{x}') \hat{\psi}(\mathbf{x}) \hat{\psi}}{|\mathbf{x} - \mathbf{x}'|} \end{split}$$

 (\mathbf{x}')

Number Density $\hat{n}(\mathbf{x}) = \hat{\psi}^{\dagger}(\mathbf{x})\hat{\psi}(\mathbf{x})$

(For rigorous treatment: Namjoo, Guth, Kaiser 2017)

Equation of Motion

$$i\dot{\psi} = -\frac{1}{2m}\nabla^2\psi + \frac{\lambda}{8m^2}|\psi|^2\psi - Gm^2\psi \int d^3x' \frac{|\psi(\mathbf{x}')|^2}{|\mathbf{x} - \mathbf{x}'|}$$

Equation of Motion

$$i\dot{\psi} = -\frac{1}{2m}\nabla^2\psi + \frac{\lambda}{8m^2}|\psi|^2\psi - Gm^2\psi \int d^3x' \frac{|\psi(\mathbf{x}')|^2}{|\mathbf{x} - \mathbf{x}'|}$$

Interaction Rate of Modes $\Gamma_k \equiv \frac{\dot{\mathcal{N}}_k}{\mathcal{N}_k}$

Equation of Motion

$$i\dot{\psi} = -\frac{1}{2m}\nabla^2\psi + \frac{\lambda}{8m^2}|\psi|^2\psi - Gm^2\psi \int d^3x' \frac{|\psi(\mathbf{x}')|^2}{|\mathbf{x} - \mathbf{x}'|}$$

Interaction Rate of Modes $\Gamma_k \equiv \frac{\dot{\mathcal{N}}_k}{\mathcal{N}_k}$
 $\Gamma_k \sim \frac{\lambda n_{ave}}{8m^2} \propto \frac{1}{a^3}$

 $\Gamma_k > H$ Early universe

Equation of Motion

Equation of Motion

Axion BEC Literature

- Sikivie, Yang (2009)
- Erken, Sikivie, Tam, Yang (2011)
- **–** Chavanis (2012)
- Banik, Sikivie (2013)
- Davidson, Elmer (2013)
- Saikawa, Yamaguchi (2013)
- Noumi, Saikawa, Sato, Yamaguchi (2014)
- Vega, Sanchez (2014)
- Li, Rindler-Daller, Shapiro (2014)
- Berges, Haeckel (2014)
- Banik, Christopherson, Sikivie, Todarello (2015)
- **–** Davidson (2015)
-

Classical Description of BEC Phase Transition

Free Theory
$$F[\psi] = \int \frac{d^3k}{(2\pi)^3} \left[\frac{k^2}{2m} - \mu(T)\right] |\psi_k|^2$$

Number
$$\langle N \rangle = \frac{\int \mathcal{D}\psi N[\psi] \exp\left(-F[\psi]/T\right)}{\int \mathcal{D}\psi \exp\left(-F[\psi]/T\right)}$$

Density
$$n_{\rm th} = \int \frac{d^3k}{(2\pi)^3} \frac{T}{\frac{k^2}{2m} - \mu(T)}$$

Critical Temperature

$$T_{\rm crit} = \frac{\pi^2 \, n_{\rm tot}}{m \, k_{\rm uv}}$$

Guth, Hertzberg, Prescod-Weinstein 1412.5930

Classical vs Quantum with Interactions
What About Interactions?

Fundamental claim of Sikivie, Todarello, 1607.00949

On time scales $t > \tau = 1/\Gamma$ the classical description breaks down, requiring the full quantum theory, which is the only way to see thermalization

Toy Model

Second Quantized Language

$$\hat{H} = \sum_{i} \omega_i \, \hat{a}_i^{\dagger} \hat{a}_i + \frac{1}{4} \sum_{ijkl} \Lambda_{ij}^{kl} \, \hat{a}_i^{\dagger} \hat{a}_j^{\dagger} \hat{a}_k \hat{a}_l,$$

Consider just 5 oscillators for simplicity

Initial quantum state $|\{N_i\}\rangle = |12, 25, 4, 12, 1\rangle$

Sikivie, Todarello, 1607.00949

Toy Model

Second Quantized Language

$$\hat{H} = \sum_{i} \omega_i \, \hat{a}_i^{\dagger} \hat{a}_i + \frac{1}{4} \sum_{ijkl} \Lambda_{ij}^{kl} \, \hat{a}_i^{\dagger} \hat{a}_j^{\dagger} \hat{a}_k \hat{a}_l,$$

Consider just 5 oscillators for simplicity

Initial quantum state $|\{N_i\}\rangle = |12, 25, 4, 12, 1\rangle$ Initial classical state $a_i = \sqrt{N_i}$

Sikivie, Todarello, 1607.00949

Quantum vs Classical??

Sikivie, Todarello, 1607.00949

Correct Classical Treatment

Initial classical state $a_i = \sqrt{N_i} e^{I\theta_i}, \quad \theta_i \in [0, 2\pi)$

Ensemble average over random initial phases

Meaningful comparison

Connects to uncertainty in branch of wavefunction

Hertzberg 1609.01342

Correct Classical Treatment

Implication for Correlation Functions

Implication for Correlation Functions

At high occupancy

 $\langle \{N_i\} | \hat{\psi}^{\dagger}(\mathbf{x}, t) \, \hat{\psi}(\mathbf{y}, t) | \{N_i\} \rangle \approx \langle \psi^*(\mathbf{x}, t) \, \psi(\mathbf{y}, t) \rangle_{ens}$

Ergodic theorem

$$\langle \psi^*(\mathbf{x},t) \, \psi(\mathbf{y},t) \rangle_{ens} = \frac{1}{V} \int_V d^3 z \, \psi^*_\mu(\mathbf{x}+\mathbf{z},t) \, \psi_\mu(\mathbf{y}+\mathbf{z},t)$$

Hertzberg 1609.01342

Implication for Correlation Functions

Correlation functions of quantum and classical micro-states agree at high occupancy, despite the spread of the quantum wave-function in these chaotic systems

(Note: this is not some trivial consequence of Ehrenfest theorem; more akin to billiard balls which exhibit chaos)

Hertzberg 1609.01342

Related Issues for Classical Pre-heating Simulations

$$\psi(\mathbf{x},t) = \psi_c(t) + \delta\psi(\mathbf{x},t)$$

(Recall Mustafa's talk. Kofman, Linde, Starobinsky 1994, 1997; Felder, Tkachev 2001; Amin, Easther, Finkel, Flauger, Hertzberg 2011; Lozanov, Amin 2016, 2017,2019; Kitajima, Soda, Urakawa 2018) Related Issues for Classical Pre-heating Simulations

$$\psi(\mathbf{x},t) = \psi_c(t) + \delta\psi(\mathbf{x},t)$$

- True classical behavior is $\delta \psi(\mathbf{x}, t) = 0$, but that only means classical field theory fails at zero occupancy (no surprise)
- In LINEAR regime, ensemble average is correct (despite small occupancy)

- In NONLINEAR regime, ensemble average is correct (since occupancy is large)

(Recall Mustafa's talk. Kofman, Linde, Starobinsky 1994, 1997; Felder, Tkachev 2001; Amin, Easther, Finkel, Flauger, Hertzberg 2011; Lozanov, Amin 2016, 2017,2019; Kitajima, Soda, Urakawa 2018)

- Numerical agreement found in: Braden, Johnson, Peiris, Pontzen, Weinfurtner 2018

- Numerical agreement found in: Braden, Johnson, Peiris, Pontzen, Weinfurtner 2018
- In LINEAR regime, ensemble average is correct (despite small occupancy)

- In NONLINEAR regime; ensemble average can (sometimes) describe tunneling (since bubble's have high occupancy)

Hertzberg, Yamada 1904.08565

Implication for Axion Dark Matter

Statistically, axions are well described by classical field theory, after all

What is the BEC?

Implication for Axion Dark Matter

Statistically, axions are well described by classical field theory, after all

What is the BEC?

Small clumps (miniclusters)

that may populate the galaxy

Hogan, Rees 1988; Kolb, Tkachev 1993, 1994, 1995; Barranco, Bernal 2001; Guth, Hertzberg, Prescod-Weinstein 2014; Fairbairn, Marsh, Quevillon, Rozier 2017; Kitajima, Soda, Urakawa 2018; Amin, Mocz 2019

Axion Clumps in Detail

Return to Non-Relativistic Classical Field Theory

Equation of Motion

$$i\dot{\psi} = -\frac{1}{2m}\nabla^2\psi + \frac{\lambda}{8m^2}|\psi|^2\psi - Gm^2\psi \int d^3x' \frac{|\psi(\mathbf{x}')|^2}{|\mathbf{x} - \mathbf{x}'|}$$
$$(\lambda < 0)$$

Clump Solutions (BEC) at fixed N

Schiappacasse, Hertzberg 1710.04729

Clump Solutions (BEC) at fixed N

Schiappacasse, Hertzberg 1710.04729

Two Branches of Solutions

Schiappacasse, Hertzberg 1710.04729

Two Branches of Solutions

Schiappacasse, Hertzberg 1710.04729

Perturbing Upper Branch

Schiappacasse, Hertzberg 1710.04729

Perturbing Upper Branch

Schiappacasse, Hertzberg 1710.04729

Two Branches of Solutions

Schiappacasse, Hertzberg 1710.04729

Two Branches of Solutions

Schiappacasse, Hertzberg 1710.04729

Perturbing Lower Branch

Schiappacasse, Hertzberg 1710.04729

Perturbing Lower Branch

Two Branches of Solutions

Schiappacasse, Hertzberg 1710.04729

Two Branches of Solutions

where
$$\tilde{f}_a \equiv f_a/(6 \times 10^{11} \,\text{GeV})$$
 and $\tilde{m} \equiv m/(10^{-5} \,\text{eV})$.

Schiappacasse, Hertzberg 1710.04729

Relativistic Branch (Axiton)

Relativistic Branch (Axiton/Oscillon)

Kolb, Tkachev astro-ph/9311037; Schiappacasse, Hertzberg 1710.04729; Visinelli, Baum, Redondo, Freese, Wilczek 1710.08910

Relativistic Branch (Axiton/Oscillon)

Kolb, Tkachev astro-ph/9311037, Schiappacasse, Hertzberg 1710.04729, Visinelli, Baum, Redondo, Freese, Wilczek 1710.08910

Repulsive Self Interactions

(see; Fan 2016)
Repulsive Self Interaction (Axion-Like Particle)

Schiappacasse, Hertzberg 1710.04729

Implications for Fuzzy Dark Matter

Core Density Vs Core Radius (Data)

Data from: Rodriguez, del Popolo, Marra, de Oliveira 2017

Core Density Vs Core Radius (Data)

Data from: Rodriguez, del Popolo, Marra, de Oliveira 2017

Deng, Hertzberg, Namjoo, Masoumi 1804.05921

Deng, Hertzberg, Namjoo, Masoumi 1804.05921

Deng, Hertzberg, Namjoo, Masoumi 1804.05921

Axion Clump Resonance into Photons

Consider Axion to Photon Coupling

Photon Lagrangian
$$\mathcal{L}_{\gamma} = \frac{1}{2} (\mathbf{E}^2 - \mathbf{B}^2) + g_{a\gamma} \phi \mathbf{E} \cdot \mathbf{B}$$

(Sikivie 1983; Adshead, Giblin, Scully, Sfakianakis 2015, 2016; Masaki, Aoki, Soda 2017)

Consider Axion to Photon Coupling

Photon Lagrangian
$$\mathcal{L}_{\gamma} = \frac{1}{2} (\mathbf{E}^2 - \mathbf{B}^2) + g_{a\gamma} \phi \mathbf{E} \cdot \mathbf{B}$$

(Sikivie 1983; Adshead, Giblin, Scully, Sfakianakis 2015, 2016; Masaki, Aoki, Soda 2017)

Homogeneous Axion Field

Mathieu Equation

$$\ddot{\mathbf{A}}_{\mathbf{k}}^{T} + k^{2}\mathbf{A}_{\mathbf{k}}^{T} + g_{a\gamma} k \partial_{t} \phi(t) \mathbf{A}_{\mathbf{k}}^{T} = 0$$

e.g., Yoshimura 1996

Comment on Photon Plasma Mass

In plasma, the photon acquires an effective mass

$$\omega_p^2 = \frac{4\pi\alpha \, n_e}{m_e}$$

In early universe, this is huge; preventing resonance

Comment on Photon Plasma Mass

In plasma, the photon acquires an effective mass

$$\omega_p^2 = \frac{4\pi\alpha \, n_e}{m_e}$$

In early universe, this is huge; preventing resonance

Clumps in halo:
$$\omega_p^2 \approx \frac{n_e}{0.03 \,\mathrm{cm}^{-3}} \left(6 \times 10^{-12} \,\mathrm{eV} \right)^2$$

Negligibly small; allowing for resonance

Decomposition into vector spherical harmonics

$$\begin{split} \mathbf{A}(\mathbf{r},t) &= \sum_{lm} \int \frac{d^3k}{(2\pi)^3} \left[a_{lm}(k,t) \mathbf{N}_{lm}(k,\mathbf{r}) + b_{lm}(k,t) \mathbf{M}_{lm}(k,\mathbf{r}) \right] \\ & \mathbf{M}_{lm}(k,\mathbf{r}) = i \frac{j_l(kr)}{\sqrt{l(l+1)}} \nabla \times \left[Y_{lm}(\theta,\varphi) \mathbf{r} \right] \\ & \mathbf{N}_{lm}(k,\mathbf{r}) = \frac{i}{k} \nabla \times \mathbf{M}_{lm} \end{split}$$

Instability channel $l = 1, m = 0, \quad b_{10} = -i a_{10}$ $\ddot{a}_{10}(k,t) + k^2 a_{10}(k,t) + g_{a\gamma} k \int \frac{dk'}{(2\pi)} \partial_t \tilde{\phi}(k-k') a_{10}(k',t) = 0$

Hertzberg, Schiappacasse 1805.00430

Instability channel
$$l = 1, m = 0, \quad b_{10} = -i a_{10}$$

 $\ddot{a}_{10}(k,t) + k^2 a_{10}(k,t) + g_{a\gamma} k \int \frac{dk'}{(2\pi)} \partial_t \tilde{\phi}(k-k') a_{10}(k',t) = 0$

Instability channel
$$l = 1, m = 0, \quad b_{10} = -i a_{10}$$

 $\ddot{a}_{10}(k,t) + k^2 a_{10}(k,t) + g_{a\gamma} k \int \frac{dk'}{(2\pi)} \partial_t \tilde{\phi}(k-k') a_{10}(k',t) = 0$

Hertzberg, Schiappacasse 1805.00430

Hertzberg 2010, Kawasaki, Yamada 2014

Resonance Condition (Spherical) Axion Clump

$$g_{a\gamma} > \frac{0.3}{f_a} \tag{$\lambda < 0$}$$

No resonance for standard QCD axion-photon coupling $g_{a\gamma} \sim \frac{\alpha}{f_a}$

Allowed for models with enhanced couplings, decay to hidden sectors, or repulsive interactions (see; Fan 2016) (see; Fan 2016)

Including Angular Momentum

Two Branches of Solutions (with Angular Momentum)

High angular momentum allows higher amplitude at core, which helps for resonance into photons

Resonance Condition (Non-Spherical) Axion Clump

Astrophysical Consequences

Energy Loss

Hertzberg, Schiappacasse 1805.00430

Energy Loss

Hertzberg, Schiappacasse 1805.00430

Energy Loss

Hertzberg, Schiappacasse 1805.00430

(also Tkachev 2015)

Thank you