Fitting resonances in the early universe:

 parametric resonance and oscillonsFrancisco Torrentí
University of Basel (Switzerland)

Resonant Instabilities in cosmology and their observational consequences
YITP, Kyoto, 17th May 2019

University of Basel

Where am I?

CONTENTS

1. Fitting parametric resonance

JCAP 1702 (2017) 001 (with D. Figueroa)
2. Fitting GWs from parametric resonance

JCAP 1710 (2017) 057 (with D. Figueroa)
3. Lifetime of oscillons in hilltop potentials

In preparation (with S. Antusch, F. Cefala)

CONTENTS

1. Fitting parametric resonance

JCAP 1702 (2017) 001 (with D. Figueroa)
2. Fitting GWs from parametric resonance

JCAP 1710 (2017) 057 (with D. Figueroa)
3. Lifetime of oscillons in hilltop potentials

In preparation (with S. Antusch, F. Cefala)

Introduction

$$
\mathscr{L}=\mathscr{L}\left(\phi, \varphi_{i}, \psi_{j}, A_{\mu}, h_{\mu \nu}, \ldots\right) ? ?
$$

> Poor understanding of reheating: details depend on high-energy physics model.

- Non-linear, non-perturbative, out-of-equilibrium physics.
> First stage is normally PREHEATING: an explosive production of particles due to non-perturbative effects.
> Resonant effects (e.g. parametric resonance, self-resonance, tachyonic resonance, flipping resonance...)

1. Fitting parametric resonance

$$
\begin{array}{|l|}
V_{\mathrm{inf}}(\phi)=\frac{1}{n} \lambda M^{4-n} \phi^{n} \quad \begin{array}{l}
n=2,4,6 \ldots \\
M: \text { mass scale } \\
\lambda: \text { dimensionless parameter }
\end{array}
\end{array}
$$

Frequency of oscillation:

$$
\omega_{*}^{2} \simeq \lambda M^{4-n} \phi_{i}^{n-2}
$$

Natural time scale: ω_{*}^{-1}

1. Fitting parametric resonance

PARAMETRIC RESONANCE after inflation:

 power-law potential + quadratic interaction term $g^{2} \varphi^{2} \mathbf{X}^{2}$> Two scalar fields $\begin{cases}\phi & \text { mother field (inflaton) } \\ X & \text { daughter field }\end{cases}$
> Action:

$$
S=-\int d^{4} x \sqrt{-g}\left\{\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{2} \partial_{\mu} X \partial^{\mu} X+\frac{1}{2} g^{2} \phi^{2} X^{2}+V_{\mathrm{inf}}(\phi)\right\}
$$

- Equations of motion:

$$
\begin{aligned}
& \ddot{\phi}-\frac{1}{a^{2}} \nabla^{2} \phi+3 H \dot{\phi}+g^{2} X^{2} \phi+\lambda M^{4-n} \phi^{n-1}=0 \\
& \ddot{X}-\frac{1}{a^{2}} \nabla^{2} X+3 H \dot{X}+g^{2} \phi^{2} X=0
\end{aligned}
$$

1. Fitting parametric resonance

DAUGHTER EOM:

$$
\begin{gathered}
\ddot{X}-\frac{1}{a^{2}} \nabla^{2} X+3 H \dot{X}+g^{2} \phi^{2} X=0 \\
\chi=a(t) X \\
\varphi=a(t)\left(\phi / \phi_{i}\right)
\end{gathered}
$$

Resonance parameter:

$$
q \equiv \frac{g^{2}}{\lambda}\left(\frac{\phi_{\mathrm{i}}}{2 M}\right)^{4-n}
$$

$$
\chi_{\omega_{\mathrm{eff}}^{2}(t)}^{\chi_{\mathbf{k}}^{\prime \prime}+(\underbrace{k^{2}+q \varphi^{2}(t)}) \chi_{\mathbf{k}} \simeq 0}
$$

depends on interaction, potential, and initial amplitude

$$
n_{\mathbf{k}} \sim\left|X_{\mathbf{k}}\right|^{2} \sim e^{2 \mu_{\kappa}(q, a) t}
$$

For some values of (k, q, a), $\operatorname{Re}\left[\mu_{k}\right]>0$, and there is PARTICLE CREATION

Kofman et al $(1994,1997)$

1. Fitting parametric resonance

> Previously on (p)reheating...:

- Analytical calculations: for wide ranges of q, but valid only at initial times (linear regime)

Kofman et al (1994, 1997),

- Lattice simulations: valid at later times, but only for very specific q.

Greene et al (1997), ...

Khlebnikov \& Tkachev (1996), Prokopec \& Ross (1996), ...

Figueroa and F.T. (2017):

- With classical lattice simulations, we parametrize the dynamics of parametric resonance from the initial resonance until the later stationary regime.
- Power-law potentials: $V(\phi)=\left\{\begin{array}{l}\frac{1}{4} \lambda \phi^{4} \\ \frac{1}{2} m^{2} \phi^{2}\end{array}\right.$
> Related questions:
- Is energy efficiently transferred from the inflationary sector to preheated species?
> Do we need perturbative decay channels?
> Equation-of-state evolution? (MD \rightarrow RD \rightarrow MD). Effect on inflationary constraints? (see Kaloian talk)

1. Fitting parametric resonance

1.1. Parametric resonance in $\lambda \varphi^{4}$

DAUGHTER FIELD SPECTRA

$$
q=\frac{g^{2}}{\lambda}
$$

1.1. Parametric resonance in $\lambda \varphi^{4}$

INFLATON (CONFORMAL) AMPLITUDE

$$
q=\frac{g^{2}}{\lambda}
$$

$$
\omega_{*}=\sqrt{\lambda} \phi_{i}
$$

1.1. Parametric resonance in $\lambda \varphi^{4}$

1.1. Parametric resonance in $\lambda \varphi^{4}$

BACKREACTION TIME t_{br}

1.1. Parametric resonance in $\lambda \varphi^{4}$

1.1. Parametric resonance in $\lambda \varphi^{4}$

$$
\begin{aligned}
& \frac{E_{K, \chi}}{E_{t}} \simeq(29.5 \pm 3.3) \% \\
& \frac{E_{G, \chi}}{E_{t}} \simeq(26.2 \pm 3.4) \% \\
& \frac{E_{K, \varphi}}{E_{t}} \simeq(22.6 \pm 3.4) \% \\
& \frac{E_{G, \varphi}}{E_{t}} \simeq(17.7 \pm 3.0) \%
\end{aligned}
$$

Approximately 40\% of the energy remains on the inflaton. This result is independent on \mathbf{q}

1.2. Parametric resonance in $m^{2} \varphi^{2}$

BACKREACTION TIME $t_{b r}$

Due to the expansion of the Universe, a given mode redshifts through many resonance bands

$$
\begin{gathered}
q=\frac{g^{2} \phi_{i}^{2}}{4 m^{2}} \\
\chi_{k}^{\prime \prime}+\left[A_{k}(z)-2 q_{\mathrm{eff}}(z) \cos 2 z\right] \chi_{k}=0 \\
q_{\mathrm{eff}}(z)=\frac{q}{a^{3}}
\end{gathered}
$$

1.2. Parametric resonance in $m^{2} \varphi^{2}$

1.2. Parametric resonance in $m^{2} \varphi^{2}$

1.2. Parametric resonance in $m^{2} \varphi^{2}$

The inflaton slowly recovers the energy transferred to the daughter field (the stronger the interaction, the slower the recovery)

CONTENTS

1. Fitting parametric resonance

JCAP 1702 (2017) 001 (with D. Figueroa)
2. Fitting GWs from parametric resonance

JCAP 1710 (2017) 057 (with D. Figueroa)
3. Lifetime of oscillons in hilltop potentials

In preparation (with S. Antusch, F. Cefala)

2. Fitting GWs from (p)reheating

- Gravitational waves are spatial perturbations of the FLRW metric:

> Gradients of all field species contribute to GWs:
- GW spectra:

$$
h^{2} \Omega_{\mathrm{GW}} \equiv \frac{h^{2}}{\rho_{c}} \frac{d \rho_{\mathrm{GW}}}{d \log k}=\frac{h^{2}}{\rho_{c}} \frac{k^{3} m_{p}^{2}}{8 \pi^{2} a^{2}} \mathscr{P}_{h^{\prime}}(k, \tau)
$$

$$
\left\langle h^{\prime}(\mathbf{k}, \tau) h^{* \prime}\left(\mathbf{k}^{\prime}, \tau\right)\right\rangle=(2 \pi)^{3} \mathscr{P}_{h^{\prime}}(\kappa, \tau) \delta^{(3)}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)
$$

2. Fitting GWs from (p)reheating

> GWs from preheating (parametric resonance):

$$
\ddot{h}_{i j}+2 \mathscr{H} \dot{h}_{i j}-\nabla^{2} h_{i j}=\frac{2}{m_{p}^{2}}\left\{\partial_{i} X \partial_{j} X+\partial_{i} \phi \partial_{j} \phi\right\}^{\mathrm{TT}}
$$

2. Fitting GWs from (p)reheating

2. Fitting GWs from (p)reheating

2. Fitting GWs from (p)reheating

Figueroa and F.T. (2017)
> Analytical prediction for peaks in GW spectra from preheating:

$$
\frac{\Omega_{\mathrm{GW}}^{(\mathrm{f})}\left(\kappa_{p}\right)=\frac{C}{8 \pi^{4}} \frac{\omega_{*}^{6}}{\rho_{i} m_{p}^{2}} q^{-\frac{1}{2}+\delta}}{} \quad(\eta, \delta \ll 1 ?)
$$

Frequency increases with q. Amplitude decreases with q

- Parameters C, δ, η : fixed with lattice simulations

2.1. GWs from (p)reheating in $\lambda \varphi^{4}$

Peaks frequency:

$$
q=\frac{g^{2}}{\lambda}
$$

Separation of scales

Frequency today:

$$
\begin{gathered}
f_{1} \approx 1.5 \cdot 10^{7} \mathrm{~Hz} \\
f_{2} \approx 2.8 \cdot 10^{7} \mathrm{~Hz} \\
f_{3} \approx 4.5 \cdot 10^{7} \mathrm{~Hz} \\
f_{\mathrm{hb}} \approx\left(\frac{q}{100}\right)^{0.54} \times 5.3 \cdot 10^{7} \mathrm{~Hz}
\end{gathered}
$$

2.1. GWs from (p)reheating in $\lambda \varphi^{4}$

Peaks amplitude in $\lambda \varphi^{4}$:

$$
q=\frac{g^{2}}{\lambda}
$$

GW amplitude today:

$$
\begin{aligned}
& 3.4 \cdot 10^{-12}\left(\frac{q}{100}\right)^{-0.68} \lesssim h^{2} \Omega_{\mathrm{GW}}\left(f_{\mathrm{hb}}\right) \lesssim 1.6 \cdot 10^{-11}\left(\frac{q}{100}\right)^{-0.94} \\
& 3.4 \cdot 10^{-12}\left(\frac{q}{100}\right)^{-0.42} \lesssim h^{2} \Omega_{\mathrm{GW}}\left(f_{1,2}\right) \lesssim 2.4 \cdot 10^{-11}\left(\frac{q}{100}\right)^{-0.56}
\end{aligned}
$$

2.2. GWs from (p)reheating in $m^{2} \varphi^{2}$

PEAKS FREQUENCY

PEAKS AMPLITUDE

GW signal today:

$$
\begin{aligned}
& f_{p}=\epsilon_{\mathrm{f}}^{1 / 4}\left(\frac{q}{10^{4}}\right)^{0.67} \times 2.0 \cdot 10^{8} \mathrm{~Hz} \\
& h^{2} \Omega_{\mathrm{GW}}\left(f_{p}\right)=\epsilon_{\mathrm{f}}\left(\frac{q}{10^{4}}\right)^{-0.43} \times 1.5 \cdot 10^{-11}
\end{aligned}
$$

$$
\epsilon_{\mathrm{f}} \equiv\left(\frac{a_{\mathrm{f}}}{a_{\mathrm{RD}}}\right) \text { Redshift factor }
$$

2.3. GWs from par. res.: other cases

- GW from parametric resonance of spectator fields:

> GW from parametric resonance of other species:
- BOSONS
> FERMIONS
- GAUGE BOSONS

$$
\mathscr{L} \in g^{2} \chi^{2} \phi^{2}
$$

$$
\Omega_{\mathrm{GW}} \propto q^{-1 / 2}
$$

$$
\mathscr{L} \in g \bar{\psi} \psi \phi
$$

$$
\mathscr{L} \in\left(D_{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right)
$$

$$
D_{\mu} \varphi=\partial_{\mu} \phi-i e A_{\mu}
$$

$\Omega_{\mathrm{GW}} \propto q^{3 / 2}$
$\Omega_{\mathrm{GW}} \propto q^{3 / 2}$
Figueroa, Garcia-Bellido, F.T. (2015 + ongoing work)

CONTENTS

1. Fitting parametric resonance

JCAP 1702 (2017) 001 (with D. Figueroa)
2. Fitting GWs from parametric resonance

JCAP 1710 (2017) 057 (with D. Figueroa)
3. Lifetime of oscillons in hilltop potentials

In preparation (with S. Antusch, F. Cefala)

3. Lifetime of oscillons in hilltop potentials

Potentials with flat regions give rise to oscillons: localised strong fluctuations of a scalar field.
(see Mustafa talk)

They continuously lose energy through the emission of scalar waves...
...but they are extremely long-lived: impossible to capture with full 3D lattice simulations!

Some references:

Amin, Easther, Finkel, Flauger, Hertzberg (2011)
Zhou, Copeland, Easther, Finkel, Mou, Saffin (2013)
Achilleos et al (2013)
Amin (2013)
Gleiser, Graham (2014)
Bond, Braden, Mersini-Houghton (2015)

Antusch, Cefala, Orani $(\mathbf{2 0 1 5}, \mathbf{2 0 1 6}, 2017)$ Antusch et al (2017)
Hong, Kawasaki, Yamazaki (2017)
Liu, Guo, Cai, Shiu $(2017,2018)$
Gleiser, Stephens, Sowinski (2018)
Lozanov, Amin (2019)...

3. Lifetime of oscillons in hilltop potentials

Hilltop potentials: $V(\phi)=V_{0}\left(1-\frac{\phi^{p}}{v^{p}}\right)^{2}$

3. Lifetime of oscillons in hilltop potentials

> Oscillons properties in hilltop potentials studied in:
Antusch, Cefala, Orani (2016)

Antusch, Cefala, F.T. (in preparation):

We study the lifetime of oscillons in hilltop potentials:
> Part 1: Full $(3+1)$ classical lattice simulations: fitting oscillon shapes
> Part 2: Radially symmetric simulations: we observe the oscillon decay

- Single oscillon
- Truncation technique
> 4th order spatial derivatives

3. Lifetime of oscillons in hilltop potentials

FIELD AMPLITUDE

OVERDENSITY REGIONS

3. Lifetime of oscillons in hilltop potentials

Oscillons in hilltop models are approximately spherically symmetric with Gaussian shape

We fit the amplitude an radius of the oscillons with the full (3+1)-dim lattice simulations

$$
\Phi \equiv \frac{\phi}{v}=1-A e^{-\frac{1}{2}\left(\frac{r}{R}\right)^{2}}
$$

3. Lifetime of oscillons in hilltop potentials

3. Lifetime of oscillons in hilltop potentials

Oscillons form along lines

 of equal energy
3. Lifetime of oscillons in hilltop potentials

3. Lifetime of oscillons in hilltop potentials

From radially symmetric simulations

3. Lifetime of oscillons in hilltop potentials

Oscillons live approximately 5 e-folds in hilltop models

3. Lifetime of oscillons in hilltop potentials

3. Lifetime of oscillons in hilltop potentials

Oscillons with same initial amplitude ($\mathrm{A}=0.46$):

THANK YOU

