Fitting resonances in the early universe: parametric resonance and oscillons

Francisco Torrentí

University of Basel (Switzerland)

Resonant Instabilities in cosmology and their observational consequences YITP, Kyoto, 17th May 2019

Where am I?

1. Fitting parametric resonance

JCAP 1702 (2017) 001 (with D. Figueroa)

2. Fitting GWs from parametric resonance

JCAP 1710 (2017) 057 (with D. Figueroa)

3. Lifetime of oscillons in hilltop potentials

In preparation (with S. Antusch, F. Cefala)

1. Fitting parametric resonance

JCAP 1702 (2017) 001 (with D. Figueroa)

2. Fitting GWs from parametric resonance JCAP 1710 (2017) 057 (with D. Figueroa)

3. Lifetime of oscillons in hilltop potentials In preparation (with S. Antusch, F. Cefala)

Introduction

$$\mathscr{L} = \mathscr{L}(\phi, \varphi_i, \psi_j, A_\mu, h_{\mu\nu}, \dots)$$
??

- Poor understanding of reheating: details depend on high-energy physics model.
- > Non-linear, non-perturbative, out-of-equilibrium physics.
- First stage is normally PREHEATING: an explosive production of particles due to non-perturbative effects.
- Resonant effects (e.g. parametric resonance, self-resonance, tachyonic resonance, flipping resonance...)

1. Fitting parametric resonance

1. Fitting parametric resonance

PARAMETRIC RESONANCE after inflation:

power-law potential + quadratic interaction term $g^2\phi^2X^2$

> Two scalar fields $\begin{cases} \phi & \text{mother field (inflaton)} \\ X & \text{daughter field} \end{cases}$

Action: \blacktriangleright

$$S = -\int d^4x \sqrt{-g} \left\{ \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \frac{1}{2} \partial_\mu X \partial^\mu X + \frac{1}{2} g^2 \phi^2 X^2 + V_{\text{inf}}(\phi) \right\}$$

Equations of motion: \succ

$$\begin{vmatrix} \ddot{\phi} - \frac{1}{a^2} \nabla^2 \phi + 3H\dot{\phi} + g^2 X^2 \phi + \lambda M^{4-n} \phi^{n-1} = 0 \\ \ddot{X} - \frac{1}{a^2} \nabla^2 X + 3H\dot{X} + g^2 \phi^2 X = 0 \end{vmatrix}$$

DAUGHTER EOM:

For some values of (k,q,a), Re[µ_k]>0, and there is PARTICLE CREATION

Kofman et al (1994, 1997)

1. Fitting parametric resonance

> Previously on (p)reheating...:

- Analytical calculations: for wide ranges of q, but valid only at initial times (linear regime)
- Lattice simulations: valid at later times, but only for very specific q.

Kofman et al (1994, 1997), Greene et al (1997), ...

Khlebnikov & Tkachev (1996), Prokopec & Ross (1996), ...

► Figueroa and F.T. (2017):

With classical lattice simulations, we parametrize the dynamics of parametric resonance from the initial resonance until the later stationary regime.

► Power-law potentials:
$$V(\phi) = \begin{cases} \frac{1}{4}\lambda\phi^4\\ \frac{1}{2}m^2\phi^2 \end{cases}$$

> Related questions:

- Is energy efficiently transferred from the inflationary sector to preheated species?
- > Do we need perturbative decay channels?
- ➤ Equation-of-state evolution? (MD → RD → MD). Effect on inflationary constraints? (see Kaloian talk)

1. Fitting parametric resonance

 $\frac{g^2}{\lambda}$

Resonance instabilities in the Early Universe (YITP Kyoto, May 2019)

Francisco Torrentí (U. Basel) 17

Approximately **40% of the energy** remains on the inflaton. This result is independent on **q**

$$q = \frac{g^2 \phi_i^2}{4m^2}$$

$$\chi_k'' + [A_k(z) - 2q_{\text{eff}}(z) \cos 2z]\chi_k = 0$$

$$q_{\rm eff}(z) = \frac{q}{a^3}$$

Due to the expansion of the Universe, a given mode redshifts through many resonance bands

The inflaton slowly recovers the energy transferred to the daughter field (the stronger the interaction, the slower the recovery)

1. Fitting parametric resonance JCAP 1702 (2017) 001 (with D. Figueroa)

2. Fitting GWs from parametric resonance JCAP 1710 (2017) 057 (with D. Figueroa)

3. Lifetime of oscillons in hilltop potentials In preparation (with S. Antusch, F. Cefala)

Gravitational waves are spatial perturbations of the FLRW metric:

$$ds^{2} = a^{2}(\tau) \left(-d\tau^{2} + \delta_{ij} + h_{ij} \right) dx^{i} dx^{j}$$

$$\downarrow$$

$$\ddot{h}_{ij} + 2\mathcal{H}\dot{h}_{ij} - \nabla^{2}h_{ij} = \frac{2}{m_{p}^{2}}\Pi_{ij}^{TT}$$

Gradients of all field species contribute to GWs:

$$\Pi_{ij} = T_{ij} - pg_{ij} \qquad \Pi_{ij}^{\text{TT}} \equiv \left\{ \begin{array}{l} \partial_i \phi \ \partial_j \phi + \Re e[(D_i \varphi)^*(D_j \varphi)] + \frac{4}{g^2 a^2(t)} F_i^{\alpha} F_{j\alpha} + \dots \right\}^{\text{TT}} \\ \begin{array}{l} \text{Real} & \text{Complex} \\ \text{scalars} & \text{scalars} \end{array} \right. \qquad \text{Gauge fields} \end{array}$$

► GW spectra:

$$h^2 \Omega_{\rm GW} \equiv \frac{h^2}{\rho_c} \frac{d\rho_{\rm GW}}{d \log k} = \frac{h^2}{\rho_c} \frac{k^3 m_p^2}{8\pi^2 a^2} \mathscr{P}_{h'}(k,\tau)$$

$$\langle h'(\mathbf{k},\tau)h^{*'}(\mathbf{k}',\tau)\rangle = (2\pi)^3 \mathscr{P}_{h'}(\kappa,\tau)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

► GWs from preheating (parametric resonance):

$$\ddot{h}_{ij} + 2\mathcal{H}\dot{h}_{ij} - \nabla^2 h_{ij} = \frac{2}{m_p^2} \left\{ \partial_i X \partial_j X + \partial_i \phi \partial_j \phi \right\}^{\mathrm{TT}}$$

Figueroa and F.T. (2017)

> Analytical prediction for peaks in GW spectra from preheating:

$$\Omega_{\rm GW}^{\rm (f)}(\kappa_p) = \frac{C}{8\pi^4} \frac{\omega_*^6}{\rho_i m_p^2} q^{-\frac{1}{2} + \delta} \qquad (\eta, \delta \ll 1?)$$

$$f_p \simeq 8 \cdot 10^9 \left(\frac{\omega_*}{\rho_i^{1/4}}\right) \epsilon_i^{\frac{1}{4}} q^{\frac{1}{4}+\eta} \operatorname{Hz} \times \begin{cases} 1 & , V(\phi) \propto \phi^4 \\ \left(\frac{a_{\mathrm{f}}}{a_{\mathrm{i}}}\right)^{\frac{1}{4}} & , V(\phi) \propto \phi^2 \end{cases} \quad \epsilon_i \equiv \left(\frac{a_i}{a_{\mathrm{RD}}}\right)^{1-3w}$$

Frequency increases with q. Amplitude decreases with q

> Parameters C, δ , η : fixed with lattice simulations

2.1. GWs from (p)reheating in $\lambda \phi^4$

2.1. GWs from (p)reheating in $\lambda \phi^4$

Peaks amplitude in $\lambda \phi^4$:

2.2. GWs from (p)reheating in $m^2\phi^2$

PEAKS FREQUENCY

2.3. GWs from par. res.: other cases

► GW from parametric resonance of **spectator fields**:

► GW from parametric resonance of **other species**:

1. Fitting parametric resonance

JCAP 1702 (2017) 001 (with D. Figueroa)

2. Fitting GWs from parametric resonance JCAP 1710 (2017) 057 (with D. Figueroa)

3. Lifetime of oscillons in hilltop potentials

In preparation (with S. Antusch, F. Cefala)

(see Mustafa talk)

They continuously lose energy through the emission of scalar waves...

...but they are extremely long-lived: impossible to capture with full 3D lattice simulations!

Some references:

Amin, Easther, Finkel, Flauger, Hertzberg (2011) Zhou, Copeland, Easther, Finkel, Mou, Saffin (2013) Achilleos et al (2013) Amin (2013) Gleiser, Graham (2014) Bond, Braden, Mersini-Houghton (2015) Antusch, Cefala, Orani (2015,2016, 2017) Antusch et al (2017) Hong, Kawasaki, Yamazaki (2017) Liu, Guo, Cai, Shiu (2017, 2018) Gleiser, Stephens, Sowinski (2018) Lozanov, Amin (2019)...

Hilltop potentials: $V(\phi) = V_0 \left(1 - \frac{\phi^p}{v^p}\right)^2$

Socillons properties in hilltop potentials studied in:

Antusch, Nolde, Orani (2015) Antusch, Orani (2015) Antusch, Cefala, Orani (2016)

Antusch, Cefala, F.T. (in preparation):

We study the **lifetime of oscillons** in *hilltop* potentials:

- > Part 1: Full (3+1) classical lattice simulations: fitting oscillon shapes
- > Part 2: Radially symmetric simulations: we observe the oscillon decay
 - ► Single oscillon
 - Truncation technique
 - ► 4th order spatial derivatives

Oscillons in hilltop models are approximately spherically symmetric with Gaussian shape

Francisco Torrentí (U. Basel)

Oscillons live approximately 5 e-folds in hilltop models

Resonance instabilities in the Early Universe (YITP Kyoto, May 2019)

Francisco Torrentí (U. Basel) 43

Oscillons with same initial amplitude (A=0.46):

THANK YOU