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We study the adiabatic density perturbation in the oscillating inflation model, proposed by Damour and
Mukhanov. The recent study of cosmological perturbations during reheating shows that the adiabatic fluctua-
tion behaves like a perfect fluid and no significant amplification occurs on superhorizon scales. In the oscil-
lating inflation model, however, the accelerated expansion takes place during the oscillating stage and there
might be a possibility that the parametric amplification on small scales affects the adiabatic long-wavelength
perturbation. We analytically show that the density perturbation neglecting the metric perturbation can be
amplified by the parametric resonance and the instability band becomes very broad during oscillating inflation.
We examine this issue by solving the evolution equation for perturbation numerically. We find that the
parametric resonance is strongly suppressed for the long-wave modes comparable to the Hubble horizon. The
result indicates that the metric perturbation plays a crucial role in the evolution of scalar field perturbation.
Therefore, in the single field case, there would be no significant imprint of oscillating inflation on the primor-
dial spectrum of the adiabatic perturbation. However, it could be expected that the oscillating inflation model
in the multifield system gives an enormous amplification on large scales, which may lead to the production of
primordial black holes. @S0556-2821~99!04010-2#

PACS number~s!: 98.80.Cq

I. INTRODUCTION

The dynamics of the coherently oscillating scalar field
plays an important role in the early stage of the universe and
has been studied by many authors. Specifically, the signifi-
cance of the parametric resonance is found in the recent in-
vestigation of the reheating process @1#. Because of the co-
herent oscillation of the background inflaton field, the light
boson field or the fluctuation of the inflaton itself is amplified
through the nonlinear interaction or self-interaction @2,3#.
The efficiency of the parametric resonance could have im-
portant implications for grand unified theory ~GUT! scale
baryogenesis @4#.
From the viewpoint of the large scale structure in the

early universe, several authors investigated the influence of
parametric resonance on the primordial density perturbation
during the coherently oscillating stage after inflation. In the
framework of cosmological perturbation, the single field
model is studied in Refs. @5,6#. The analysis is also extended
to the two-field model by Taruya and Nambu @7#. These
analyses are mainly focused on the long-wavelength pertur-
bation, which significantly differs from the one neglecting
the metric perturbation. Nambu and Taruya @6# investigate
the Mukhanov’s gauge-invariant variable and found that the
evolution equation for perturbation can be reduced to the
Mathieu type equation. Although the Mathieu equation itself
has the exponential instability, the instability of the pertur-
bation is very different from this and the final result is fully
consistent with Kodama and Hamazaki @5#. The important
conclusion of these analyses is that the density perturbation
on superhorizon scales behaves like as the perfect fluid un-
less the isocurvature perturbation becomes dominant. There-

fore, as far as the adiabatic perturbation is concerned, the
primordial power spectrum on large scales does not suffer
from the significant amplification by the parametric reso-
nance. However, there remains a possibility that the paramet-
ric resonance can appear well inside the Hubble horizon. For
example, consider the massless self-interacting inflaton. Ne-
glecting the metric perturbation, it is known that the fluctua-
tion of the inflaton field has the instability mode whose
wavelength is much smaller than the Hubble horizon @1,3#.
The aim of the present paper is to clarify the perturbation

on subhorizon scales taking into account the gravitational
perturbation and understand the cosmological implication of
the parametric amplification to the large scale structure. As
usual, the universe expands decelerately during the coher-
ently oscillating stage and the parametric resonance inside
the Hubble horizon cannot affect the density perturbation on
superhorizon scales. However, Damour and Mukhanov re-
cently considered the model with the nonconvex type poten-
tial @8#. In this model, taking the time average, the potential
energy of the inflaton becomes large compared to the kinetic
energy and the accelerated expansion can take place in the
oscillating stage. Liddle and Mazumdar called it oscillating
inflation and confirmed this fact numerically @9#. As was
suggested by Damour and Mukhanov, it could be expected
that the very broad parametric resonance occurs and the
quantum fluctuation is enormously amplified. This implies
that the adiabatic metric perturbation with the large ampli-
tude might be produced on superhorizon scales in the course
of the accelerated expansion, which can lead to the different
conclusion from the previous results @5,6#. Hence, there ex-
ists a possibility that the cosmological objects such as the
primordial black holes may be formed by the large amplitude
of the metric perturbation.
In this paper, to explore this possibility, we study the
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Abstract

We investigate the cosmological perturbation of two-scalar field model during the reheating phase after inflation. Using
the exact solution of the perturbation in long-wavelength limit, which is expressed in terms of the background quantities, we
analyze the behavior of the metric perturbation. The oscillating inflaton field gives rise to the parametric resonance of the
massless scalar field and this leads to the amplification of the iso-curvature mode of the metric perturbations. q 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, a theory of reheating after inflation is
developed and importance of the oscillating scalar

w xfields is recognized 1–4 . The non-linear interaction
between the scalar fields amplifies the fluctuations of
the scalar fields by the effect of parametric reso-
nance and the energy of the oscillating field is
transfered to the fluctuation of the massless field by
catastrophic particle production. A large amount of
studies about the reheating process has been done
w x5 . From the viewpoint of the structure formation of
our universe, one of the most important question is
whether the growth of fluctuations of the matter field

1 E-mail: ataruya@allegro.phys.nagoya-u.ac.jp.
2 E-mail: nambu@allegro.phys.nagoya-u.ac.jp.

during reheating affects the large-scale inhomo-
geneities in the universe or not. To answer this
question, we must study the evolution of the metric
and the matter fluctuation in general relativistic treat-
ment.
Concerning the works on the theory of cosmologi-

cal perturbation, several authors studied a single
scalar field model in the context of the reheating
scenario and investigated a role of the coherent
oscillating field on the evolution of large-scale struc-

w xture in the universe 6–8 . Hamazaki and Kodama
analyze the metric perturbation in the model with
two-component fluid and discuss the effect of para-

w xmetric resonance 9 . They evaluate the curvature
Ž .perturbation z Bardeen parameter by replacing the

scalar fields with the perfect fluids. The effect of
parametric resonance is all included in the energy

0370-2693r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
Ž .PII: S0370-2693 98 00378-5

length of the fluctuations. The parametric amplification
works efficiently inside the horizon, however, the amplitude
Q becomes constant for the wavelength near the Hubble ho-
rizon.
We can understand these behaviors as follows. As was

described in Sec. III, there exists the exact solution for the
variable Q in the limit k!0. Ignoring the decaying mode
proportional to the coefficient c2 in Eq. ~9!, the amplitude of
the long-wavelength solution becomes nearly constant,
which can be deduced from Eq. ~6!. This behavior can also
be obtained in the case of kfi0, when the term (k/a)2 in Eq.
~8! is negligible compared to the terms Vff and
M̃22(V/H)•, which gives the condition k/a!H @6#. In the
previous subsection, we analyzed the growth factor emDt for
the short-wave mode by dropping the term M̃22(V/H)•. Fig-
ure 3 indicates that the term induced by the gravitational
perturbation plays a crucial role even for the modes compa-
rable to the Hubble horizon. This is fully consistent with the
result of the paper @5# and @6#. Therefore, the spectrum of the
curvature perturbation produced during oscillating inflation
on superhorizon scales has the rather small amplitude com-
pared with the analytic prediction.

V. CONCLUDING REMARKS

We have analyzed the cosmological perturbation in the
oscillating inflation and explored a possibility of parametric
amplification for the curvature perturbation. Neglecting the
metric perturbation, the analytic estimation shows that the
curvature perturbation could be amplified by the broad band
parametric resonance. We then numerically examined this
issue by solving the evolution equation for perturbation with-
out any approximation. The enormous amplification of the
perturbation can appear, however, we found that the presence
of the metric perturbation strongly suppresses the parametric
amplification on large scales comparable to the Hubble hori-
zon.
Now we discuss the cosmological implication of the para-

metric resonance to the density perturbation. According to
Refs. @15,19#, the physical length of the fluctuation produced
during the oscillating inflation is

lphy&10110.43a* cm, ~25!

where lphy denotes the present wavelength. The quantity a*is given by

a*5 N*1logeS
1016 GeV

V*
1/4 D . ~26!

N* denotes the e-folding number of the oscillating inflationevaluated at the Hubble crossing time. On the other hand, if
the amplitude Rc produced during the inflation becomes of
the order of unity, the fluctuations can experience the gravi-
tational collapse. Assuming that the primordial black holes
are formed at the horizon reentry time during the radiation
epoch, we can evaluate the typical mass of a black hole using
Eq. ~25!. We obtain

FIG. 3. Evolution of Q in the case of the parameters q50.1 and
fc51025M̃ pl . For each figure, we start to calculate the back-
ground equations ~1! and ~2! from the value f5q/A6 after the
slow-rolling regime. The initial conditions for the fluctuation Q are
set by Q51.0, Q850 and Eq. ~8! is solved numerically. The hori-
zontal axis denotes the cosmic time normalized by AA/M̃ pl : ~a! the
fluctuation Q for the mode k510aeHe ; ~b! the fluctuation Q for the
mode k52aeHe ; ~c! the gauge-invariant quantity Q whose wave-
length reaches the Hubble horizon size just after the oscillating
inflation ends, i.e., k5aeHe .
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Dark matter & structure formation 
 Dark matter (DM)

• Hypothetical invisible massive particles 

• Unknown microscopic origin (though many candidates)

• ~30 % of the energy density of the Universe

Observational evidences:

Flat rotation curves

Weak lensing observations (e.g., Bullet clusters)

CMB & large-scale structure

DM is an important building block in cosmic structure formation



Nature of dark matter

of particular importance is cold nature of DM
In structure formation, 

velocity distribution was virtually null at an early 
stage of structure formation

Baryon “catch up”

• Hierarchical clustering of structure formation

Cold dark matter (CDM)

Such a system is macroscopically described by Vlasov-Poisson 
equation starting with cold initial condition 

• Early growth of CDM fluctuations

Irrespective of microscopic origin,

e.g., Peebles (’82), Blumenthal et al. (’82), Bond et al. (’82), …

(cuspy halos / substructure)



Cosmological Vlasov-Poisson system

a(t) : scale factor of 
the Universe

Cold initial flow (or single-stream flow):

Vlasov-Poisson system in a cosmological background:

System at an early phase is reduced to pressureless fluid system

Dirac’s delta function

30CHAPTER 4. ANALYTIC APPROACHES TO NONLINEAR STRUCTURE FORMATION

perturbative solution. To do this, notice that the displacement field is the vector quan-
tity whose dynamical degree of freedom is divided to two parts: longitudinal (ψk,k) and
transverse (ϵijkψj,k) parts. While Eq. (4.13) directly leads to the evolution equation for
longitudinal mode, the equation for transverse mode is obtained by taking the rotation
to Eq. (4.11) with respect to Eulerian coordinate, i.e., ∇× (ẍ+2Hẋ) = 0. A set of basic
equations then becomes [46]
( ∂2

∂t2
+ 2H

∂

∂t
− 4πG ρm

)
ψk,k =− ϵijkϵipq ψj,p

( ∂2

∂t2
+ 2H

∂

∂t
− 2πG ρm

)
ψk,q

− 1

2
ϵijkϵpqrψi,pψj,q

( ∂2

∂t2
+ 2H

∂

∂t
− 4π

3
ρm
)
ψk,r, (4.21)

( ∂2

∂t2
+ 2H

∂

∂t

)
ϵijk ψj,k =− ϵijk ψp,j

( ∂2

∂t2
+ 2H

∂

∂t

)
ψp,k, (4.22)

where ψj,k = ∂ψj/∂qk. The right-hand-side of the above equations represent the non-linear
source terms, which have to be evaluated by order-by-order calculation. Once we get the
perturbative solutions for longitudinal and transverse modes (i.e., ψk,k and ϵijkψj,k), a
final step is to explicitly construct the displacement field itself. This is not trivial at all,
but can be systematically done in Fourier space (e.g., [46]).

4.3 (Eulerian) Perturbation theory

Collisionless Boltzmann equation (Vlasov-Poisson system)

[
∂

∂t
+

p

ma2
∂

∂x
−m

∂Ψ

∂x

∂

∂p

]
f(x,p) = 0, (4.23)

supplemented with the Poisson equation:

∇2Ψ(x) = 4πGa2
[
m

a3

∫
d3p f(x,p)− ρm

]
. (4.24)

Here, m is the mass of CDM (+baryon) particle.

Single-stream approximation

Ansatz f(x,p) = n a3 {1 + δm(x)} δD
[
p−mav(x)

]
. (4.25)

With this ansatz, taking the zeroth and first velocity moments of Eq. (4.23) yields

∂δm
∂t

+
1

a
∇ [(1 + δm)v] = 0, (4.26)

∂v

∂t
+

1

a
(v ·∇)v = −1

a

∂Ψ

∂x
, (4.27)

1

a2
∇2Ψ = 4πG ρm δm. (4.28)

Mass density field Velocity field

Collisionless 
Boltzmann eq.
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Newton potential

�

�

Distribution function

→ foundation of (Eulerian) perturbation theory

= Large-N limit (N→∞) of N-body simulation



Fate of cold initial condition
In 1D cosmology (example)
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Phase space

Single-stream Multi-stream flow

(= formation of dark halo)

Density profile

Shell crossing !

diverge ! 

Shell-crossing & multi-stream flows are natural outcome of nonlinear 
structure formation in CDM cosmology → Test for CDM paradigm



Boundary of CDM halos
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Figure 1. Top: the phase space diagram for halos from the MDR1 simulation in the mass range
M = 1− 4× 1014h−1M⊙. The colorbar shows the number of particles within each phase space pixel.
The pixel spacing is linear in both r and v, so the number is proportional to r2ρ. Bottom: the
local slope of the density of all particles (red) and particles with |vr| < 0.4 vcirc (blue), as a function
of radius r. The location of the feature in the local slope coincides with the outer caustic at the
splashback radius.

Figure 1 illustrates that the local steepening discussed by [9] coincides with the splashback
radius. The figure plots the phase space structure of the particles near dark matter halos
taken from the publicly available MultiDark Simulation [17], along with the radial depen-
dence of the local logarithmic slope of the density d(log ρ)/d(log r). The location where
d(log ρ)/d(log r) < −3 coincides with splashback, the outermost radius attained by particles
following their collapse into halos. As the phase-space diagram illustrates, the splashback ra-
dius is near the location of a radial caustic, where the slope of the phase space sheet becomes
vertical. To further illustrate this point, the figure plots the density slope of only the par-
ticles near splashback, i.e. those with |vr| < 0.4 vcirc. Among the particles near splashback,
the steepening of the density slope becomes even more pronounced.

The steepening feature in the outer profile is therefore determined by the splashback
radius of recently accreted material. Since splashback occurs only half an orbit after collapse,
a relatively simple treatment of the orbital dynamics should suffice to capture the physics
setting the splashback radius. In this paper, we show that this is indeed the case. We
construct an extremely simple model for splashback, based largely on the spherical collapse
model of [1]. We then compare the predictions of our model with N-body simulations, and
show that it accurately predicts the location of the steepening feature for a variety of halos
with different mass, redshift, and accretion rate.

– 2 –

Adhikari et al. (’14)
Diemer & Kravtsov (’14)

Phase spase

Density 
slope

Outskirt of density profile is found to 
significantly deviate from NFW profile:

(Navarro et al.  ’97)

�halo(r) �
1

(r/rs)(1 + r/rs)2
⟶ r−3r → ∞

→ splashback radius

This exactly happens at the boundary of 
single-/multi-stream flow (≠viral radius)



Detection of splashback signature

Chang et al. (’18)

• DES Y1 photo-z gals & weak lensing

More et al. (’16), Baxter et al. (’17)

• SDSS DR8 phot-z gals

Clusters identified with 
redMaPPer algorithm

• Planck SZ clusters
 + Pan-STARRS photo-z galaxies

Zurcher & More (’18)

12

steeper than an NFW profile of similar mass at rsp (as
we discuss in more detail below). This is consistent with
the expectation for a splashback feature.

An alternative is to look at the logarithmic slope of
the collapsed profile, which is also the approach taken by
B17. This approach includes our model for the profile of
the infalling material, which is assumed to be a power
law. In the bottom panel of Fig. 4 we show the loga-
rithmic slope of the collapsed profile inferred from the
galaxy density and lensing measurements. We find that
at rsp, the inferred collapsed profile from both galaxy
and lensing profiles exhibit rapid steepening, achieving
values much steeper than the slope of an NFW profile at
scales around rsp and beyond. This again is consistent
with the picture that a splashback feature exists at the
outskirts of these clusters.

The posterior distributions of rsp and the slope of the
total profile and the collapsed profile in Fig. 4 are shown
in Fig. 5. Here we clearly see that the galaxy and lens-
ing measurements of rsp and the slopes of the profiles
are consistent with each other, with the lensing mea-
surements having larger uncertainties. The measured
logarithmic slope of the total profile at rsp is �3.6 ± 0.3
and �3.5 ± 0.4 for the galaxy density and lensing pro-
files, respectively. The measured logarithmic slope of
the collapsed profile is �5.9± 0.7 and �5.3± 0.9 for the
galaxy density and lensing profiles, respectively. These
measured slopes can be compared to the expectation
for an NFW profile. For the NFW profile predicted by
the mass-richness relation of Melchior et al. (2016), the
logarithmic slope at rsp is ⇠ �2.7, while the maximum
possible slope is -3. The slope of the total profile is there-
fore steeper than NFW at roughly 3.0� for the galaxy
density measurements, and 2.0� for the lensing measure-
ments. However, the NFW profile does not fully capture
the contribution from infalling material near the clus-
ter, which generically makes the profile less steep at rsp.
Comparing the slope of only the collapsed component to
that of the NFW profile, we find that it is steeper than
NFW by 4.6� for the galaxy density profile and 2.9� for
the lensing profile. The values of rsp derived from the
MCMC, as well as the model parameters are listed in
Table 3.

As discussed in §4.3, the parameters � and � are
important for determining the behavior of the profile
around the splashback feature. These parameters are
degenerate, and the priors that we place on them are
informative. To test how relaxing these priors would af-
fect the splashback measurement from lensing, we com-
pletely relax the � priors, and examine the constraints
on the slope of the profiles. We find the slope of the total
(collapsed) profile at rsp to be �3.7±0.6 (�6.2±2.0) for
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Figure 4. Comparison of model-fit results from galaxy den-

sity ⌃g (grey) and weak lensing �⌃ (red). Top: fraction of

the density profile for the collapsed material over the total

density profile. Middle: logarithmic derivative of the total

density profile compared to the logarithmic derivative of an

NFW profile (dashed curve). Bottom: logarithmic deriva-

tive of the profile for the collapsed material compared to

the logarithmic derivative of an NFW profile. The vertical

lines mark the mean rsp inferred from the model fits for both

galaxy and lensing measurements, while the horizontal bars

in the middle panel indicate the uncertainties on rsp.

the lensing measurement. This corresponds to a roughly
1.6� (1.8�) steeper profile compared to the NFW pro-
file at rsp. We also perform an additional check to see
whether the priors are wide enough to span a range of
profiles with and without a splashback feature “detec-
tion”. That is, we check that the priors are not driv-
ing us to falsely detect a splashback-like steepening. To
check this, we sample the priors of ↵, �, �, and rt (the
most relevant parameters for the splashback feature),
generate model profiles and measure the slope of the
profile at rsp. The resulting slope distribution is shown
in Fig. 6. Noting that the minimum logarithmic slope
achieved by an NFW profile is -3, we see that the pri-
ors allow profiles with slope both shallower and steeper
than NFW.
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steeper than an NFW profile of similar mass at rsp (as
we discuss in more detail below). This is consistent with
the expectation for a splashback feature.

An alternative is to look at the logarithmic slope of
the collapsed profile, which is also the approach taken by
B17. This approach includes our model for the profile of
the infalling material, which is assumed to be a power
law. In the bottom panel of Fig. 4 we show the loga-
rithmic slope of the collapsed profile inferred from the
galaxy density and lensing measurements. We find that
at rsp, the inferred collapsed profile from both galaxy
and lensing profiles exhibit rapid steepening, achieving
values much steeper than the slope of an NFW profile at
scales around rsp and beyond. This again is consistent
with the picture that a splashback feature exists at the
outskirts of these clusters.

The posterior distributions of rsp and the slope of the
total profile and the collapsed profile in Fig. 4 are shown
in Fig. 5. Here we clearly see that the galaxy and lens-
ing measurements of rsp and the slopes of the profiles
are consistent with each other, with the lensing mea-
surements having larger uncertainties. The measured
logarithmic slope of the total profile at rsp is �3.6 ± 0.3
and �3.5 ± 0.4 for the galaxy density and lensing pro-
files, respectively. The measured logarithmic slope of
the collapsed profile is �5.9± 0.7 and �5.3± 0.9 for the
galaxy density and lensing profiles, respectively. These
measured slopes can be compared to the expectation
for an NFW profile. For the NFW profile predicted by
the mass-richness relation of Melchior et al. (2016), the
logarithmic slope at rsp is ⇠ �2.7, while the maximum
possible slope is -3. The slope of the total profile is there-
fore steeper than NFW at roughly 3.0� for the galaxy
density measurements, and 2.0� for the lensing measure-
ments. However, the NFW profile does not fully capture
the contribution from infalling material near the clus-
ter, which generically makes the profile less steep at rsp.
Comparing the slope of only the collapsed component to
that of the NFW profile, we find that it is steeper than
NFW by 4.6� for the galaxy density profile and 2.9� for
the lensing profile. The values of rsp derived from the
MCMC, as well as the model parameters are listed in
Table 3.

As discussed in §4.3, the parameters � and � are
important for determining the behavior of the profile
around the splashback feature. These parameters are
degenerate, and the priors that we place on them are
informative. To test how relaxing these priors would af-
fect the splashback measurement from lensing, we com-
pletely relax the � priors, and examine the constraints
on the slope of the profiles. We find the slope of the total
(collapsed) profile at rsp to be �3.7±0.6 (�6.2±2.0) for
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the lensing measurement. This corresponds to a roughly
1.6� (1.8�) steeper profile compared to the NFW pro-
file at rsp. We also perform an additional check to see
whether the priors are wide enough to span a range of
profiles with and without a splashback feature “detec-
tion”. That is, we check that the priors are not driv-
ing us to falsely detect a splashback-like steepening. To
check this, we sample the priors of ↵, �, �, and rt (the
most relevant parameters for the splashback feature),
generate model profiles and measure the slope of the
profile at rsp. The resulting slope distribution is shown
in Fig. 6. Noting that the minimum logarithmic slope
achieved by an NFW profile is -3, we see that the pri-
ors allow profiles with slope both shallower and steeper
than NFW.

Detection is at high-stat. significance, 
but the results are still controversial
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Figure 7. Dependence of the slope profiles on the mass accretion rate and
occurrence of a recent major merger. In both panels, the red line shows the
median density profile of all halos in the peak height range 1.5 < ν < 2 at
z = 0, previously shown in Figure 5. In the top panel, the sample is further
split by accretion rate, measured as the logarithmic change in halo mass,
Γ ≡ ∆ log(Mvir)/∆ log(a), with differences evaluated for the main progenitor
and descendant halo at z = 0.5 and z = 0. Halos with high mass accretion
rates exhibit very different median profiles compared to their slowly accreting
counterparts. The bottom panel shows the same samples, but with the additional
condition that the halos have not undergone a major merger since z = 0.5.
The profiles are very similar to those in the top panel, which demonstrates that
systematic deviations in the shape of the outer profile correlate with the overall
mass accretion rate rather than a sharp increase of mass due to a recent major
merger.
(A color version of this figure is available in the online journal.)

The figure shows a strikingly clear correlation between mass
accretion rate and the steepness of the median outer profile:
rapidly accreting halos exhibit the steepest slopes, as steep as
those observed in the highest-ν bin in Figure 5, whereas slowly
accreting halos reach slopes comparable to those of the median
profile of the overall ν sample. We can also see that the radius
at which the steepest slope is reached decreases with increasing
accretion rate, although the variation occurs in a rather narrow
range around R200m. These differences demonstrate that the
median profiles for a given range of ν are not representative
of all halos in that range. Instead, the outer profiles depend on

Figure 8. Mean mass accretion rate, Γ, as a function of peak height, ν. The
shaded contour indicates the uncertainty on the mean, whereas the dashed lines
show the 68% interval. The median Γ is slightly lower than the mean at all
ν. The dependence of Γ on ν explains why high-ν halo samples have similar
profiles as samples selected by a high accretion rate (Figures 5 and 7).
(A color version of this figure is available in the online journal.)

the mass accretion rate. The correlation of the profile shape
with ν is secondary and arises because higher-ν halos tend to
dominate their environment and thus generally have larger mass
accretion rates, as shown in Figure 8.

Furthermore, the bottom panel of Figure 7 shows the same
halo samples as the top panel but excluding halos that underwent
a major merger after z = 0.5. We have checked that only
excluding major mergers after z = 0.25 leads to very similar
results. A major merger here is defined as a merger of halos
with mass ratio larger than 0.3. It is clear that the profiles in the
two panels are very similar. In fact, the profiles of halos without
major mergers reach somewhat steeper slopes at r ≈ R200m,
which may be due to variations in the outer profiles produced
by mergers that smooth out features in the median profile.
The similarity of the samples with and without major mergers
implies that the primary factor in defining the shape of the outer
profiles is mass accretion rate, rather than major mergers. In an
additional experiment, we verified that selecting halos by the
time of their last major merger does not preferentially select
profiles with steep outer slopes.

These results highlight an important point: significant growth
of halos, in particular in observational analyses of groups
and clusters, is often identified with apparent disturbances,
such as asymmetries, substructure, deviations from hydrostatic
equilibrium, etc. However, real halos grow by a combination of
major mergers and the accretion of many low-mass halos. The
latter mode of accretion actually dominates at most epochs. An
object that appears quite relaxed in its inner regions can thus still
be in the process of accreting mass at a high rate because the
accretion of many small halos from different directions will not
produce strong disturbances typically associated with unrelaxed
clusters, for example.

Additional evidence for the connection between the mass
accretion rate and the shape of the outer density profiles is
provided by the infall velocity profiles of halos. The top panel of
Figure 9 shows the median radial velocity profiles of the same ν
bins as in Figure 5, rescaled by v200m ≡ (GM200m/R200m)1/2. As
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FIG. 6. The effect of gravity theories on dynamical fric-
tion and splashback. The profile of subhalos with mass
Mpeak > 8 × 1012M⊙h

−1 around clusters is shown for four
different modified gravity models (vertical lines correspond
to the splashback radius as in earlier figures). The signature
is largest for the f(R) model shown in Figure 5.

attempted to quantify this signal. Future spectroscopic

surveys like DESI [88] will help constrain the relationship
between stellar mass and halo mass better, helping with
the interpretation of any trend of splashback with galaxy
magnitudes.
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FIG. 1. The logarithmic slope of the local density as a func-
tion of r/r200 for stacked N-body halos at z = 0 with virial
mass Mvir = 1− 4× 1014h−1M⊙ and accretion rate Γ = 1.5.
Different colors correspond to different values of the equation
of state parameter, w. Blue, red and green correspond to
w = −0.5,−1, and −2 respectively. The vertical dashed lines
show the expected position of splashback from the analytical
model of [46].

The overdensity at splashback increases with increas-
ing w. This behavior can be understood by considering
again the rate at which the universe expands between
turnaround and splashback. If ΩDE = 0.7 today and
−1 < w ≤ −1/3, then dark energy domination begins
at an earlier time than for a w = −1 universe. However
at the time of turn around ΩDE is higher than what it
would have been for a ΛCDM universe, and therefore the
background universe diluted faster than it would have
for a w = −1 universe between turnaround and splash-
back, making the overdensity larger at splashback. The
opposite is true for w < −1.

As is seen in Fig. 1, the splashback radius is sensi-
tive to the equation of state parameter. However, to
get differences in splashback larger than 10%, we need
large deviations from ΛCDM that are already ruled out
by observations. Percent level uncertainties on splash-
back measurement would be required to constrain dark
energy at a level competitive with current bounds. Sta-
tistical errors on the splashback radius using the galaxy
profile are already quite small, but systematic uncer-
tainties are regarded as being significantly larger due to
the cluster finder algorithm and other issues. Lensing
measurements and the use of cluster finders that trace
the mass distribution more closely are clear avenues for
progress, but for these approaches statistical uncertain-
ties will only reach the percent level in the next decade,
with upcoming galaxy surveys (from LSST [59], Euclid

[60] and WFIRST [61]) and CMB surveys (the Simons
Observatory [62] and CMB-S4 [63]).

III. SPLASHBACK IN MODIFIED GRAVITY
MODELS

Modified gravity models have been invoked as an al-
ternatives to dark energy to understand the large scale
accelerated expansion of the universe. In these models,
gravity is modified on large scales but on small scales, in
higher density environments, general relativity must be
restored to be consistent with the stringent observational
tests of GR in the solar system. Most theories of inter-
est therefore invoke screening mechanisms to suppress
these modifications in high density regions. Here we focus
on the Hu-Sawicki f(R) [36] and the Dvali-Gabadadze-
Porrati (DGP) model [64] that utilize two different classes
of screening mechanisms, chameleon screening and Vain-
shtein screening, and see how they affect the splashback
feature.

The modifications to GR can be parametrized by an
enhancement of the gravitational constant in the un-
screened region. The transition regions between the two
regimes, screened and unscreened, often provide inter-
esting scales for testing these theories. If the transition
region lies in the outskirts of a halo, then accreted objects
are in a region of enhanced gravity during the first infall
but they may subsequently enter the screened region of
the halo. We might expect that the varying gravitational
field during the orbit of a particle may induce significant
displacement of the splashback radius.

In the following sections we briefly discuss the two
main classes of model we choose to study the effect of
modifications to GR on splashback.

A. Chameleon screening f(R)

One viable and well-studied model of modified gravity
is the Hu-Sawicki f(R) model [36]. f(R) modifications
replace the Ricci curvature R in the Einstein-Hilbert ac-
tion with a generic function thereof:

S =

∫

d4x
√
−g

R+ f(R)

16πG
. (3)

This gives dynamics to a third scalar polarization of the
metric as well as the two tensor modes of GR. For this
reason, f(R) models can be recast as scalar-tensor theo-
ries with a fifth-force mediated by a scalar [65]. Screening
in these models is achieved by a nonlinear coupling be-
tween the scalar field and matter, making the mass of
the scalar field very high in dense regions thus reducing
its Compton wavelength. This mechanism is known as
chameleon screening. In terms of the f(R) formalism, the
additional degree of freedom is fR = df/dR. The Comp-
ton wavelength of the field is given by λ2

C = 3dfR/dR
and, in the absence of screening, the strength of gravity
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mass Mvir = 1− 4× 1014h−1M⊙ and accretion rate Γ = 1.5.
Different colors correspond to different values of the equation
of state parameter, w. Blue, red and green correspond to
w = −0.5,−1, and −2 respectively. The vertical dashed lines
show the expected position of splashback from the analytical
model of [46].
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regimes, screened and unscreened, often provide inter-
esting scales for testing these theories. If the transition
region lies in the outskirts of a halo, then accreted objects
are in a region of enhanced gravity during the first infall
but they may subsequently enter the screened region of
the halo. We might expect that the varying gravitational
field during the orbit of a particle may induce significant
displacement of the splashback radius.

In the following sections we briefly discuss the two
main classes of model we choose to study the effect of
modifications to GR on splashback.

A. Chameleon screening f(R)

One viable and well-studied model of modified gravity
is the Hu-Sawicki f(R) model [36]. f(R) modifications
replace the Ricci curvature R in the Einstein-Hilbert ac-
tion with a generic function thereof:

S =

∫

d4x
√
−g

R+ f(R)

16πG
. (3)

This gives dynamics to a third scalar polarization of the
metric as well as the two tensor modes of GR. For this
reason, f(R) models can be recast as scalar-tensor theo-
ries with a fifth-force mediated by a scalar [65]. Screening
in these models is achieved by a nonlinear coupling be-
tween the scalar field and matter, making the mass of
the scalar field very high in dense regions thus reducing
its Compton wavelength. This mechanism is known as
chameleon screening. In terms of the f(R) formalism, the
additional degree of freedom is fR = df/dR. The Comp-
ton wavelength of the field is given by λ2

C = 3dfR/dR
and, in the absence of screening, the strength of gravity

GR
f(R)

Sub-halos

Adhikari et al. ’18



Beyond splashback radius
Splashback radius is just one of the rich CDM characteristics

Beyond splashback radius,

How can we look at multi-stream ?

Alternative probe of dark matter
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Multi-stream structure is supposed to be developed



Tracing multi-stream flow with particle 
trajectories in N-body simulation

(Diemer’17; Diemer et al.’17)

= SPARTA algorithm + α

Keeping track of apocenter passage(s) for particle trajectories, 

• 60 snapshots at 0<z<1.43

• L=316Mpc/h, N=512^3

number of apocenter passages, p, is stored for each particle

N-body simulation

• Einstein-de Sitter universe

Tiling phase-space 
streams with p

(⌦m = 1,⌦⇤ = 0)
by Y. Rasera

 (Observatoire de Paris)
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Multi-stream flow in CDM halo

Halo center
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p=4

Are these really multi-stream flow ?

Phase-space distribution of particles 
classified by # of apocenter passage, p

H. Sugiura, AT, Yann & Nishimichi (in prep.)



Comparing self-similar solution

• Extension of top-hat spherical model
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# of  parameter : 3  

• Mass acrretion rate：s

• Scaling parameters of 
velocity & radius
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• Describe motion of collisionless dark 
matter shell under stationary accretion 

(see also Bertschinger ’85)



Comparison with self-similar solution

Using particles with p=1~5 (# of apocenter passage) to fit: 

r/r200

v r
/v

20
0

An example

to show a good agreement

p=1 p=2 p=3 p=4 p=5
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
Self-similar Self-similar Self-similar Self-similar Self-similar

Preliminary

Sugiura et al. (in prep.)



Comparison with self-similar solution

Using particles with p=1~5 (# of apocenter passage) to fit: 

r/r200

v r
/v

20
0

An example

to show a good agreement

p=1 p=2 p=3 p=4 p=5
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
Self-similar Self-similar Self-similar Self-similar Self-similar

Preliminary

Sugiura et al. (in prep.)

2.4

U = 0.99+0.20
−0.19

2.0

1.6

1.2

0.8

10

8

6

4

2

5 10 15 20 25 2 4 6 8 100.8 1.2 1.6 2.0 2.4

C = 8.65+4.52
−3.20

s = 4.50+1.55
−1.53

C/r200 U/v200 s

s
U

/v
20

0

Preliminary



Density map

Radial phase space

All p=0 p=1 p=2 p=3 p=4

p=1 p=2 p=3 p=4 p=5

Example of good fit

Comparison with self-similar solution
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Density map

Radial phase space
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Density map

Radial phase space

Example of bad fit
All p=0 p=1 p=2 p=3 p=4

p=1 p=2 p=3 p=4 p=5

Comparison with self-similar solution
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Statistical properties
図 Ry s のエラーバーX パラメータ決定精度が良いかは微妙だが- sbest と k8W- d8W 区間が強い相関を

持っているので- sbest がハローの自己相似解フィットを特徴づける指標として意味があることを示してい
ると思われるX
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図 RR (議論用, 論文として整形するときにこのグラフを消すX 図 Rkで十分だしそっちのがわかりやすいX)

Ry

• Massive halos tend to give a better fit to self-similar solution
• A large scatter between fitting parameter s and �200
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に関する依存性と逆センスに見える U5VX
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~40% of halos are found to be better fitted to self-similar solution
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Summary
Dark matter halo as cosmological probe of dark matter 

& fresh look at its phase-space properties

• Distinctive feature of cold dark matter in phase space

{ • Multi-stream structure
• Sharp divergence in density（shell-crossing）

Outskirts of halo → Splashback radius

··· comparison with self-similar solution

• Tracing multis-dream flow with particle trajectories

Investigation of phase-space properties of dark matter are 
fun, and would help clarifying the origin of dark matter 

~40% of halos are better fitted to self-similar solution


