arXiv:1901.06809

Thermal Sunyaev-Zel'dovich anisotropy due to Primordial black holes

Katsuya Abe

in collaboration with Hiroyuki Tashiro (Nagoya Univ.) Toshiyuki Tanaka (Nagoya Univ.)

We detected primordial black holes !?

PRL 116, 061102 (2016)

Selected for a Viewpoint in Physics
PHYSICAL REVIEW LETTERS

week ending 12 FEBRUARY 2016

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration)

(Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1σ . The source lies at a luminosity distance of 4.0^{+360}_{-180} Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+4}_{-4}M_{\odot}$ and $29^{+4}_{-4}M_{\odot}$, and the final black hole mass is $62^{+4}_{-4}M_{\odot}$, with $3.0^{+0.5}_{-0.5}M_{\odot}c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

DOI: 10.1103/PhysRevLett.116.061102

Primordial black hole?

How?

Conclusion

- Primordial black hole
- ThermalSunyaev-Zel'dovich effect
- Method
- Set up

- Anisotropy spectrum
- PBH abundance

How?

Conclusion

- Primordial black hole
- ThermalSunyaev-Zel'dovich effect
- Method
- Set up

- Anisotropy spectrum
- PBH abundance

What's primordial black holes (PBH)?

BH which forms from collapse of the cosmic fluid in the early universe

BTW this fluctuation is...

Event Horizon Telescope M87

Event Horizon Telescope M87

What's happening around a PBH?

PBH is at some point

Release of gravitational energy

PBH

gas

Release of gravitational energy

gas

What's happening around a PBH?

Heat up and emit UV, X-ray, etc.

9/26

What's thermal Sunyaev-Zel'dovich (tSZ)?

Scattering CMB photons and electron in hot plasma

distortion of CMB energy spectrum

10

What is thermal Sunyaev-Zel'dovich (tSZ)?

Scattering CMB photons and electron in hot plasma

distortion of CMB energy spectrum

The extent of the shift

→Compton y-parameter

$$y = \frac{c\sigma_{\rm T}}{m_{\rm e}c^2} \int dt \ n_{\rm H} x_{\rm e} k_{\rm B} T_{\rm gas}$$

- Primordial black hole
- ThermalSunyaev-Zel'dovich effect
- Method
- Set up

- Anisotropy spectrum
- PBH abundance

How does the anisotropy yield?

How does the anisotropy yield?

Calculation set up

Time: z=[10,200]

Initial condition: the profiles of Intergalactic

medium at z=200

Parametrize the luminosity from (around) PBH as a free parameter "epsilon", $L_{\mathrm{PBH}} = \epsilon L_{\mathrm{Edd}}$

Equations:

Ionized rate Recombination rate
$$\frac{dx_{\rm HI}}{dt} = -k_{\rm HI,\gamma} + \alpha_{\rm B} n_{\rm H} x_{\rm e} x_{\rm HII} \\ \frac{dT}{dt} = (\gamma - 1) \frac{\mu m_{\rm p}}{k_{\rm B} \rho} \left(\frac{k_{\rm B} T}{\mu m_{\rm p}} \, \frac{d\rho}{dt} + \Gamma - \Lambda \right) \\ \text{Cooling rate} \\ y = \frac{c\sigma_{\rm T}}{m_{\rm e} c^2} \int dt \,\, n_{\rm H} x_{\rm e} k_{\rm B} T_{\rm gas}$$

The profiles of gas around a PBH

$$M_{\rm PBH} = 10 [{\rm M}_{\odot}]$$

 $\epsilon = 10^{-4}$

The profiles of gas around a PBH

tSZ angular power spectrum

Sunyaev & Zel'dovich 1969 Cole & Kaiser 1988 Komatsu & Kitayama 1999

$$C_l^{TT} = g(x)^2 C_l^{yy} = g(x)^2 (C_l^{yy(1P)} + C_l^{yy(2P)})$$

One-PBH term

$$C_l^{yy(1P)} = \int dz \frac{dV}{dz d\Omega} n_{\text{PBH}}(M, z) \times (y_l(M, z))^2$$

Two-PBH term

$$C_l^{yy(2P)} = \int dz \frac{dV}{dz d\Omega} P(k = \frac{l}{d_{\rm M}(z)}) \times (n_{\rm PBH}(M, z) y_l(M, z))^2$$

y_l : Fourier component of $\,y$

$$\frac{\Delta T}{T_{\rm cmb}} \simeq \left(\frac{x}{\tanh(x/2)} - 4\right) y \equiv g(x)y$$
 $x = cp/k_{\rm B}T_{\rm e}$

tSZ angular power spectrum

Sunyaev & Zel'dovich 1969 Cole & Kaiser 1988 Komatsu & Kitayama 1999

$$C_l^{TT} = g(x)^2 C_l^{yy} = g(x)^2 (C_l^{yy(1P)} + C_l^{yy(2P)})$$

One-PBH term

$$C_l^{yy(1P)} = \int dz \frac{dV}{dz d\Omega} n_{\text{PBH}}(M, z) \times (y_l(M, z))^2$$

Two-PBH term

$$C_l^{yy(2P)} = \int dz \frac{dV}{dz d\Omega} P(k = \frac{l}{d_{\rm M}(z)}) \times (n_{\rm PBH}(M, z) y_l(M, z))^2$$

y_l : Fourier component of y

$$\frac{\Delta T}{T_{\rm cmb}} \simeq \left(\frac{x}{\tanh(x/2)} - 4\right) y \equiv g(x)y$$
 $x = cp/k_{\rm B}T_{\rm e}$

How?

Conclusion

- Primordial black hole
- ThermalSunyaev-Zel'dovich effect
- Method
- Set up

- Anisotropy spectrum
- PBH abundance

tSZ angular power spectrum

c.f. tSZ anisotropy by clusters tSZ angular power sp Different Core Evolution Models 10-10 Primary $(\Delta T_l)^2$ Self-Similar $1(1+1)C_{p}^{yy(P,C)}/2\pi$ 10-11 Entropy-Driven $(\epsilon = -1)$ $(M_{\mathrm{PBH}}[\mathrm{M}_{\odot}], \epsilon, f_{\mathrm{PBH}}) = (10)$ 50 10-12 Poisson 10-13 Clustering 10-14 **CMB** 0.1 $\Omega_0 = 0.3$ $\lambda_0 = 0.7$ $\Omega_b = 0.05$ h = 0.7 $\sigma_8 = 1$ 1000 Komatsu & Kitayama 1999 Flat spectrum 2000 6000 4000 ~10^5

→the suggestion of the existence of PBHs

Constraint of PBH abundance from this work

Compared this signal to the SPT data, we can get...

$$f_{\rm PBH} < 10^{-3} \left(\frac{\epsilon}{10^{-2}}\right)^{-1}$$

However, in the previous work about the CMB optical depth induced by PBHs,

$$f_{\text{PBH}} < 10^{-9} \left(\frac{\epsilon}{10^{-2}}\right)^{-1}$$

The unfortunate constraint of PBH abundance

→This work does not give a new constraint on the PBH abundance

Future work (Discussion)

• In axion cosmology, Are there some mechanisms to change the thermal history of Universe like this work?

 Let's discuss the relation between PBH and axion.

Summary

We calculate the tSZ angular power spectrum of CMB temperature induced by PBHs.

In future SZ anisotropy measurements, the detection or non-detection of the flat spectrum gives useful information about the existence of PBHs.

Unfortunately, tSZ anisotropy induced by PBHs does not give a new constraint on the PBH abundance.

Fin.