Gauge-field inflation and the origin of the matterantimetry

Peter Adshead

University of Illinois at Urbana-Champaign

YITP International Molecule Workshop, May 14 2019

PRL: 108,261302 (2012), with M. Wyman

PRD: 88, 021302 (2013), with E. Martinec & M. Wyman

JHEP: 09, 087 (2013), with E. Martinec & M. Wyman

JHEP: 12, 137 (2016), with E. Martinec, E. Sfakianakis & M. Wyman

JHEP: 08, 130 (2017), with E. Sfakianakis

PRD: 98, 043525 (2018), with A. Long and E. Sfakianakis

Invitation

- Another model of inflation why do I care?
 - -Rather than a new model, a new class

Replace:
$$\eta_V = M_{\rm Pl}^2 \frac{V''}{V} \ll 1$$

With:
$$M_{
m Pl}^2 {V'' \over V} \sim 1$$
 and (e.g.) $f(F_{\mu
u}, \tilde{F}_{\mu
u})$

- Definite (potentially) testable predictions!
 - e.g. Parity violation (EB, TB correlations), large-amplitude chiral gravitational waves, large tensor non-Gaussianities, gravitational leptogenesis
- Important to understand implications of potential B-mode measurements

$$\Lambda_{\rm inf} \sim \sqrt{HM_{\rm Pl}} \stackrel{?}{=} 1.04 \times 10^{16} {\rm GeV} \left(\frac{r}{0.01}\right)^{1/4}$$

Scalar-field Inflation—parametrization of ignorance

Potential of a slowly-rolling scalar drives inflation

$$\mathcal{L} = \sqrt{-g} \left[\frac{M_{\text{Pl}}^2}{2} R - \frac{(\partial \phi)^2}{2} - V(\Phi) \right]$$

Requires a flat potential

$$\epsilon = \frac{M_{\rm Pl}^2}{2} \left(\frac{V'}{V}\right)^2 \ll 1$$

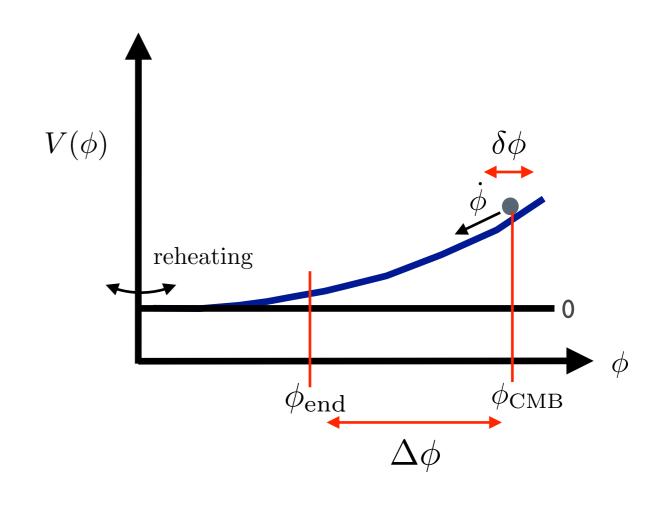
$$\eta = M_{\rm Pl}^2 \frac{V''}{V} \ll 1$$

Fluctuation spectra

$$\Delta_{\mathcal{R}}^{2} = \frac{1}{24\pi^{2} M_{\text{Pl}}^{2}} \frac{V}{\epsilon} \sim 10^{-10}$$

$$\Delta_{h}^{2} = \frac{2}{3\pi^{2} M_{\text{Pl}}^{2}} V \sim ?$$

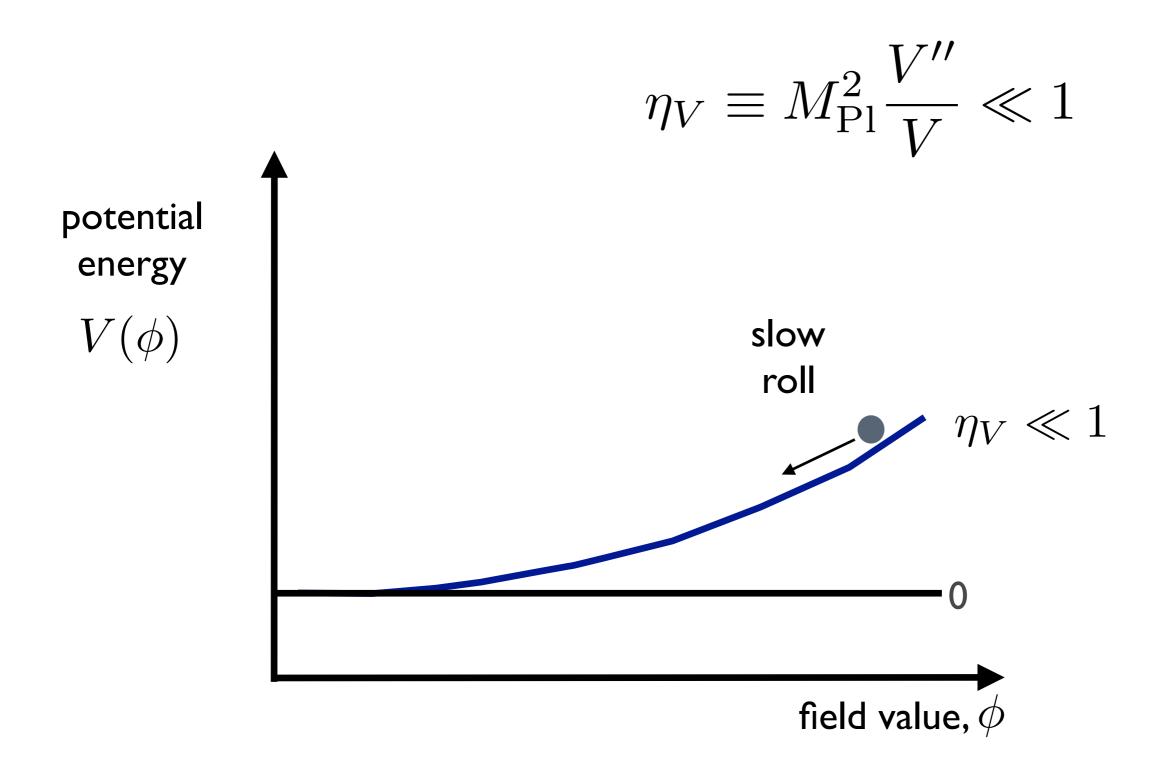
Tensor-to-scalar ratio



$$r = \frac{\Delta_h^2}{\Delta_R^2} = 16\epsilon$$

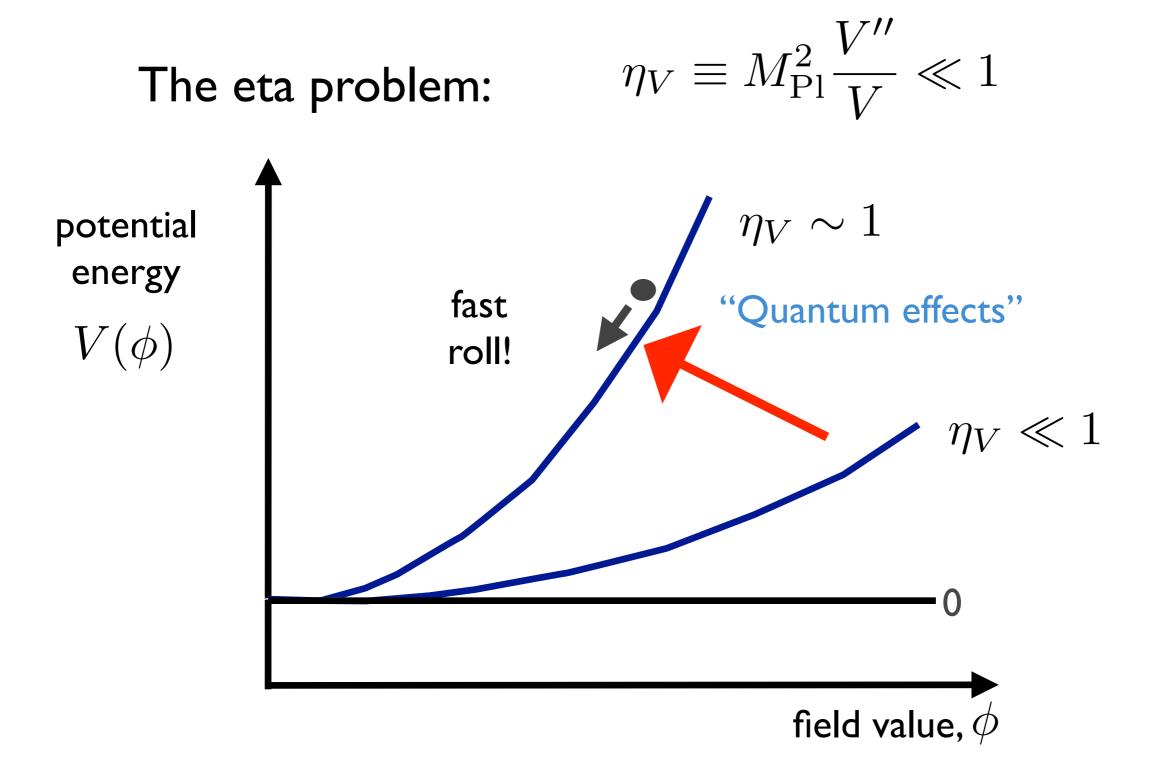
The 'eta' problem

We need a flat potential to sustain slow roll.

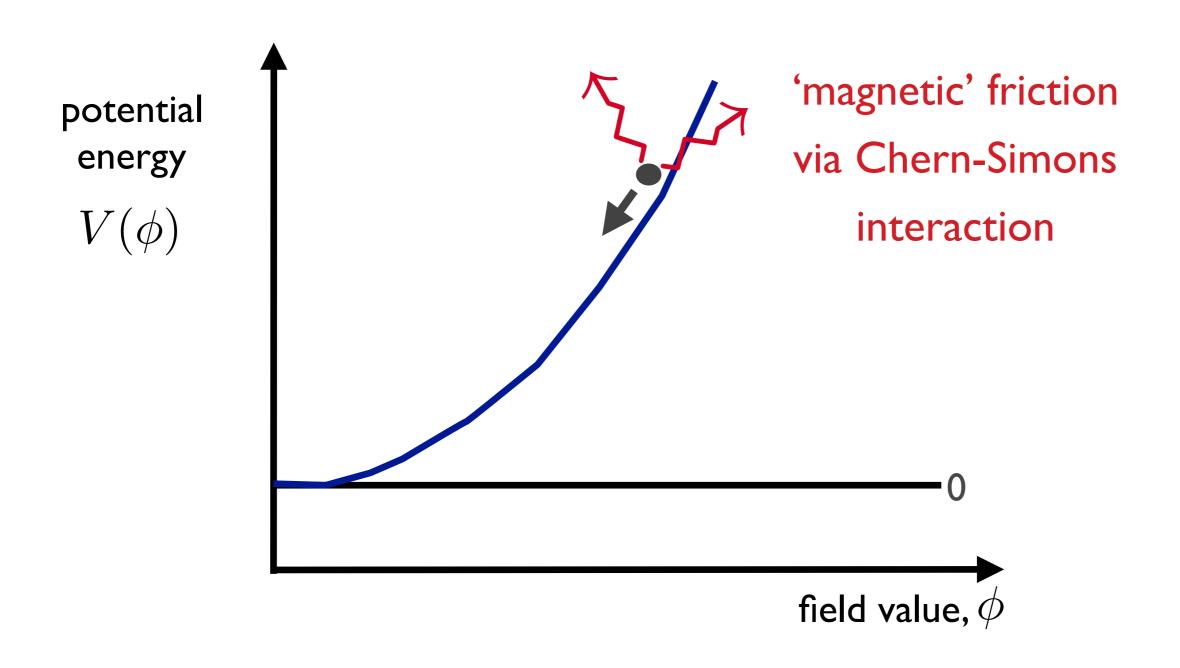


Linde; Steinhardt & Albrecht (1982)

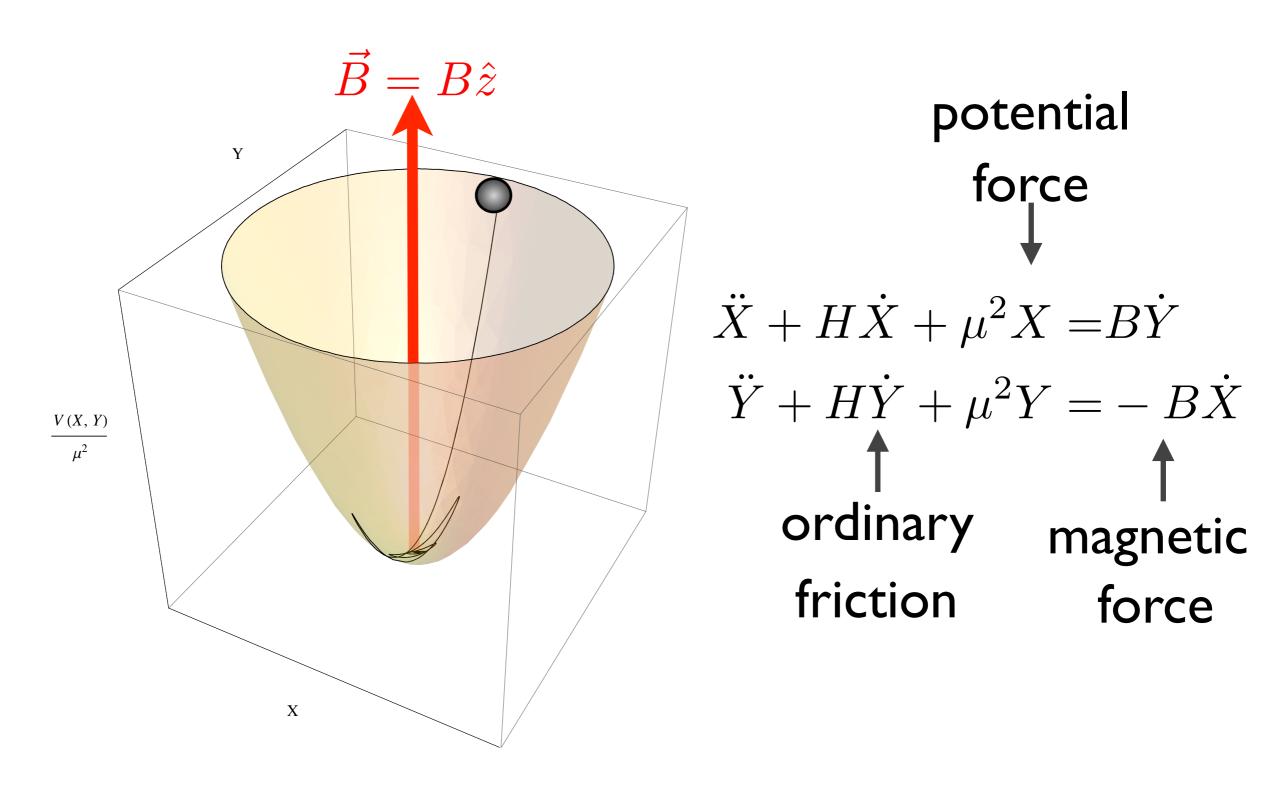
But this introduces an inflationary hierarchy problem.



Today, a way to avoid this hierarchy problem.



The new physics is analogous to the Lorentz force:



Analysis: Normal modes

 2-mode characterized by orientation of angular momentum relative to magnetic field:

$$ec{B} \parallel -ec{L}$$

$$\vec{v} \times \vec{B} \approx -\frac{v^2}{r}\hat{r}$$

$$\omega_{-} \sim B$$

$$\vec{B} \parallel \vec{L}$$

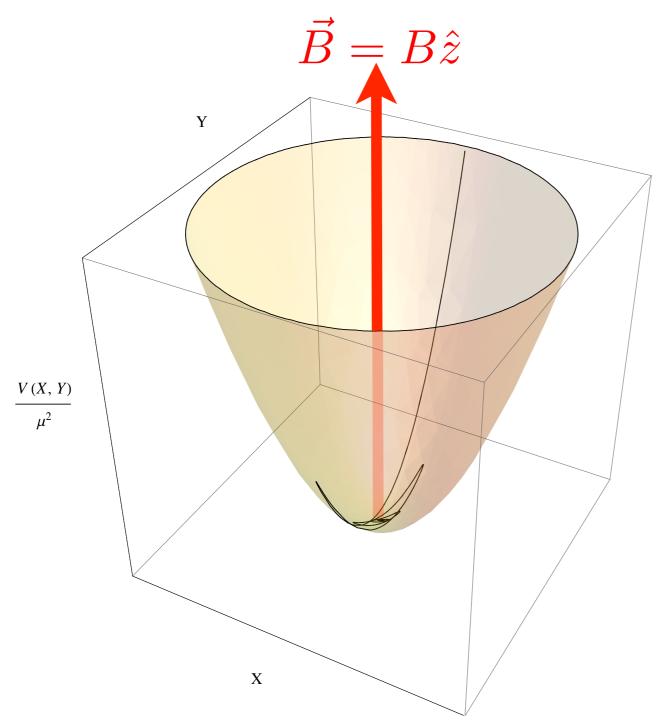
$$\vec{v} \times \vec{B} \approx -\nabla V$$

$$Bv_{+} \approx \mu^{2}r_{+}$$

$$\omega_+ \approx \mu^2/B$$

$$(v \sim r\omega)$$

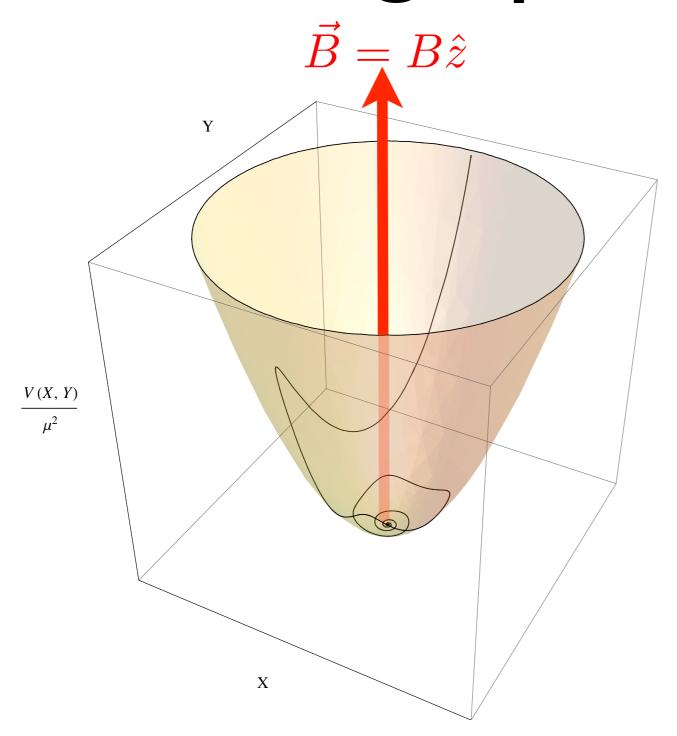
At low B field strength...



$$B = 0.1 \mu$$

$$H = \frac{\mu^2}{\sqrt{3}}$$

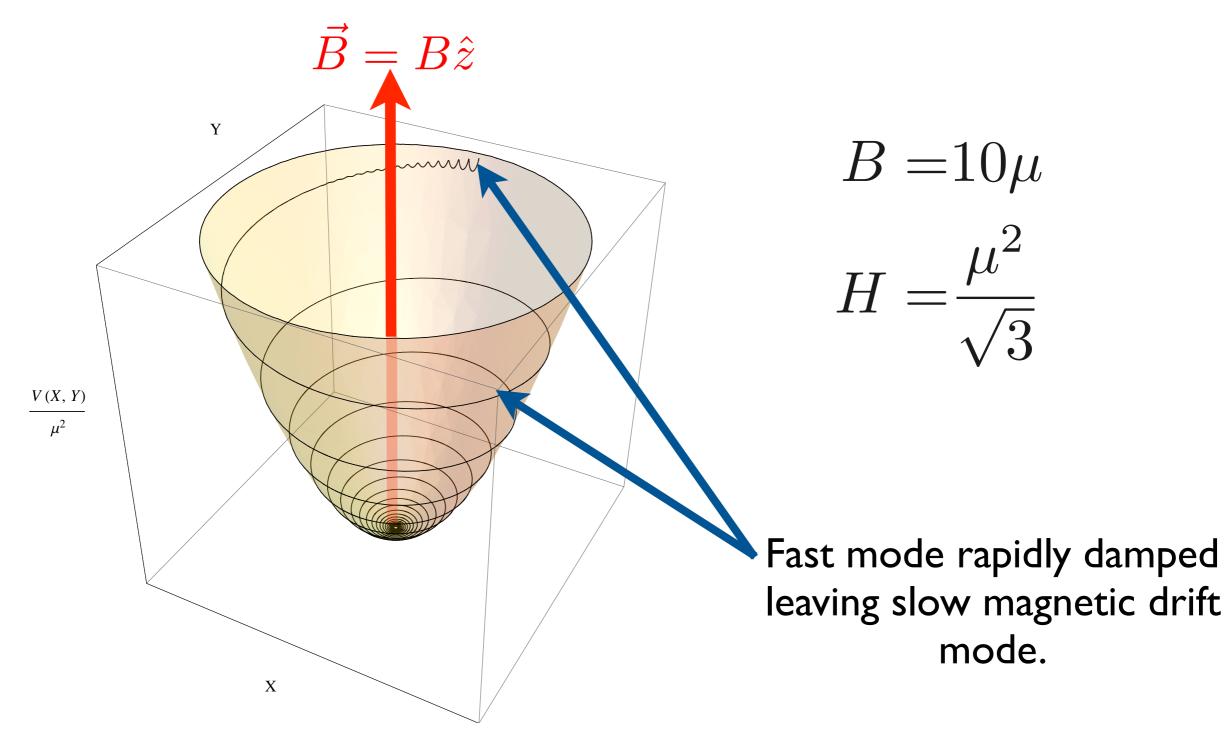
Turning up the B-field



$$B = \mu$$

$$H = \frac{\mu^2}{\sqrt{3}}$$

This is magnetic drift.



Long **slow** spiral down the potential!

Magnetic Friction

$$\ddot{X} + H\dot{X} + \frac{\partial \mathcal{V}(X,Y)}{\partial X} = B\dot{Y}$$
$$\ddot{Y} + H\dot{Y} + \frac{\partial \mathcal{V}(X,Y)}{\partial Y} = -B\dot{X}$$

• In the slow roll limit, diagonalize velocities

$$(H^2 + B^2)\dot{X} = H\mathcal{V}_{,X} - B\mathcal{V}_{,Y}$$

$$(H^2 + B^2)\dot{Y} = B\mathcal{V}_{,X} + H\mathcal{V}_{,Y}$$
 Magnetic Friction

 In magnetic drift limit B >> H, gradient flow balanced by magnetic friction

Building a new theory:

$$\mathcal{L} = \sqrt{-g} \left[\frac{R}{2} - \frac{1}{2} (\partial \mathcal{X})^2 - V(\mathcal{X}) - \frac{1}{2} \text{Tr} \left[F^{\mu\nu} F_{\mu\nu} \right] - \frac{\lambda}{4f} \mathcal{X} \frac{\epsilon^{\mu\nu\alpha\beta}}{\sqrt{-g}} \text{Tr} \left[F_{\mu\nu} F_{\alpha\beta} \right] \right]$$

Start with the basics...

$$\mathcal{L} = \sqrt{-g} \left[\frac{R}{2} - \frac{1}{2} (\partial \mathcal{X})^2 - V(\mathcal{X}) - \frac{1}{2} \text{Tr} \left[F^{\mu\nu} F_{\mu\nu} \right] - \frac{\lambda}{4f} \mathcal{X} \frac{\epsilon^{\mu\nu\alpha\beta}}{\sqrt{-g}} \text{Tr} \left[F_{\mu\nu} F_{\alpha\beta} \right] \right]$$

Usual inflationary action.

with something like

$$V(\mathcal{X}) = \mu^4 \left(1 + \cos \left(\frac{\mathcal{X}}{f} \right) \right)$$

"Natural Inflation" - Freese, Frieman and Olinto '90

add gauge fields,

$$\mathcal{L} = \sqrt{-g} \left[\frac{R}{2} - \frac{1}{2} (\partial \mathcal{X})^2 - V(\mathcal{X}) - \frac{1}{2} \text{Tr} \left[F^{\mu\nu} F_{\mu\nu} \right] - \frac{\lambda}{4f} \mathcal{X} \frac{\epsilon^{\mu\nu\alpha\beta}}{\sqrt{-g}} \text{Tr} \left[F_{\mu\nu} F_{\alpha\beta} \right] \right]$$

Action for a vector (gauge) field theory.

e.g. Maxwell's E&M: U(1)

Weak: SU(2)_L

QCD: SU(3)

and let them interact.

$$\mathcal{L} = \sqrt{-g} \left[\frac{R}{2} - \frac{1}{2} (\partial \mathcal{X})^2 - V(\mathcal{X}) - \frac{1}{2} \text{Tr} \left[F^{\mu\nu} F_{\mu\nu} \right] - \frac{\lambda}{4f} \mathcal{X} \frac{\epsilon^{\mu\nu\alpha\beta}}{\sqrt{-g}} \text{Tr} \left[F_{\mu\nu} F_{\alpha\beta} \right] \right]$$

Interaction

$$\mathcal{X}\epsilon^{\mu\nu\alpha\beta}\operatorname{Tr}\left[F_{\mu\nu}F_{\alpha\beta}\right] = \mathcal{X}\operatorname{Tr}\left[\vec{E}\cdot\vec{B}\right]$$

- Dimension 5 operator
- Chern-Simons term
- Topological

Key: a single time derivative.

Chern-Simons terms are total derivatives,

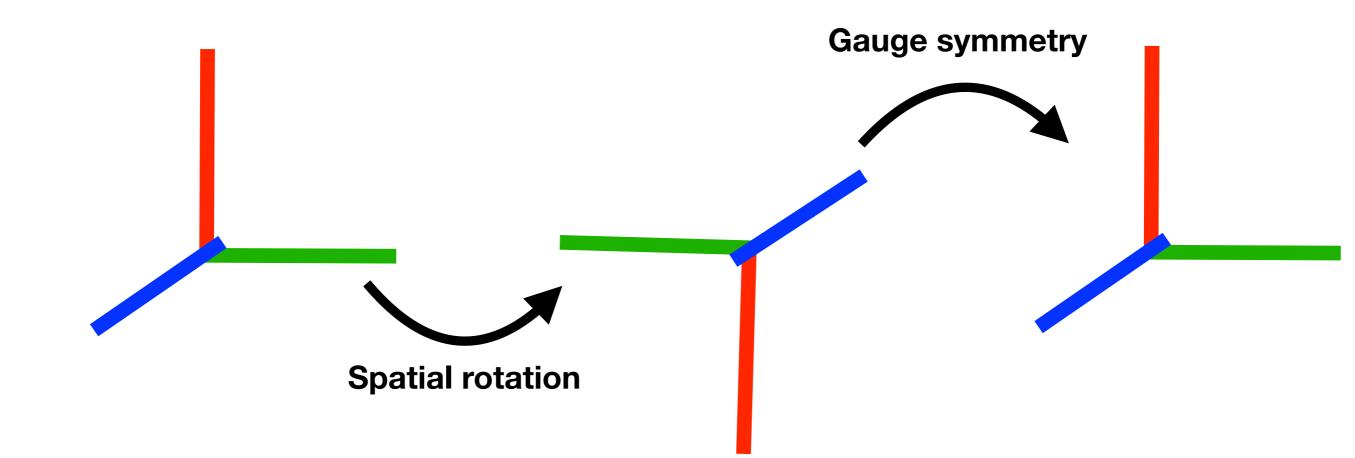
$$\mathcal{X}\epsilon^{\alpha\beta\mu\nu}\mathrm{Tr}\left[F_{\alpha\beta}F_{\mu\nu}\right] = \mathcal{X}\epsilon^{\alpha\beta\mu\nu}\mathrm{Tr}\left[\partial_{\alpha}\left(A_{\beta}\partial_{\mu}A_{\nu} + \frac{1}{2}A_{\beta}A_{\mu}A_{\nu}\right)\right]$$

$$\mathcal{L} \supset \dot{\mathcal{X}} \epsilon^{ijk} \operatorname{Tr} \left[\left(A_i \partial_j A_k + \frac{1}{2} A_i A_j A_k \right) \right]$$

Like Lorentz force! $(\dot{x} \times B)$

Cosmological Gauge fields

- Homogeneity and isotropy of FRW at first appear to prohibit cosmological vector fields
- On second thought, need at least three fields with an additional (gauge) symmetry
- Rotations map to gauge-equivalent configurations



Isotropic, homogeneous vector fields?

Flavor-space locked configuration:

$$A_0^a = 0, \quad A_i^a = a(t)\psi(t)\delta_i^a \quad \psi \sim 10^{-2}M_{\rm Pl}$$

- How can a classical vector field be consistent with the symmetries of FRW?
 - Under rotations:

$$A_i^a \to R_{ij}(\vec{\theta})A_j^a = (\delta_{ij} + \epsilon_{ijk}\theta^k)A_j^a$$

Residual (large) gauge transformations

$$A_i^a \to (U(\lambda)A_iU^{-1}(\lambda))^a = (\delta_b^a + \epsilon_{bc}^a \lambda^c)A_j^b$$

Rotations map to gauge-equivalent configurations

We call this Chromo-Natural Inflation.

potential

• Equations of motion:
$$\ddot{\mathcal{X}} + 3H\dot{\mathcal{X}} + V'(\mathcal{X}) = \begin{bmatrix} -3\tilde{g}\frac{\lambda}{f}\psi^2(\dot{\psi} + H\psi) \\ -3\tilde{g}\frac{\lambda}{f}\psi^2(\dot{\psi} + H\psi) \end{bmatrix}$$
 ordinary magnetic λ $\ddot{\psi} + 3H\dot{\psi} + (\dot{H} + 2H^2)\psi + 2\tilde{g}^2\psi^3 \equiv \tilde{g}\frac{\lambda}{f}\psi^2\dot{\mathcal{X}},$ friction

PA and M. Wyman, PRL: 108,261302 (2012), PRD 86, 043530 (2012)

Magnetic drift leads to slow roll.

• In the slow-roll, large λ limit, system simplifies.

$$\frac{\dot{\mathcal{X}}}{H} = \frac{2f}{\lambda} \left(\frac{g\psi}{H} + \frac{H}{g\psi} \right)$$

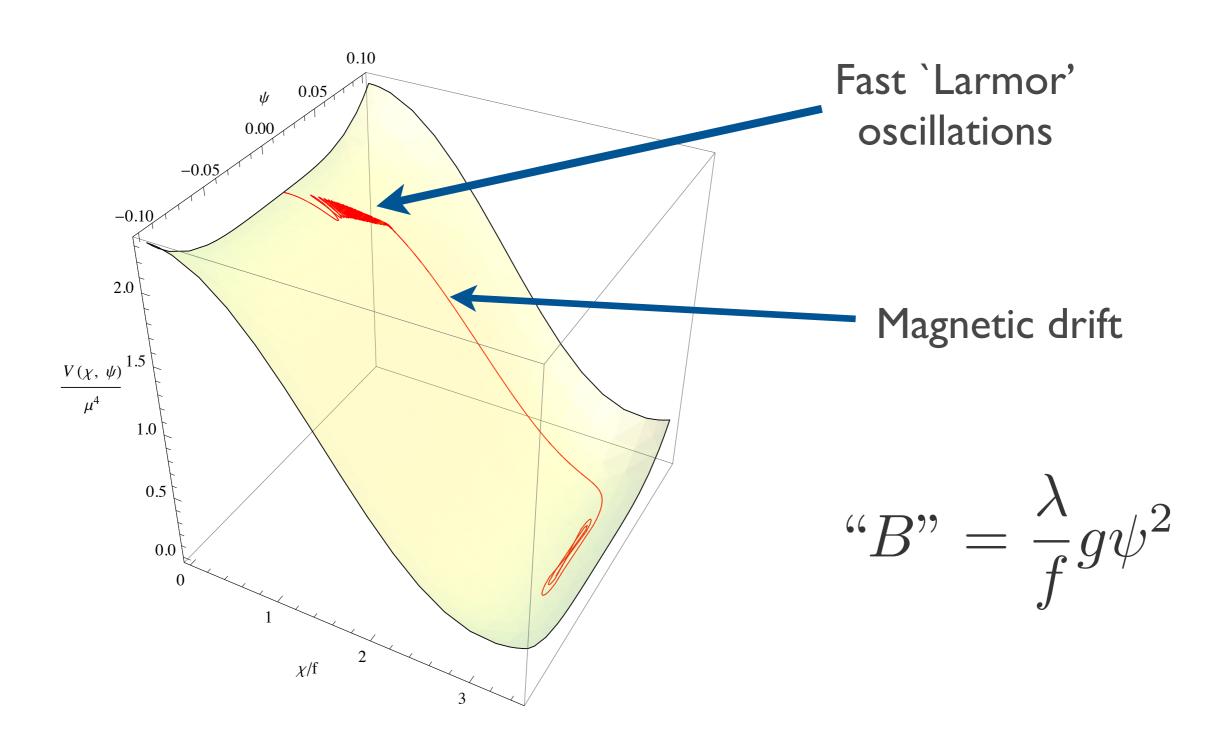
$$\dot{\psi} = -H\psi + \frac{f}{3g\lambda} \frac{V'(\mathcal{X})}{\psi^2}$$

- Axion equation of motion independent of V'!
- Gauge field evolves to (approximate) fixed-point

$$\frac{\dot{\psi}}{H\psi} \ll 1$$
 $\psi \approx \left(\frac{fV'(\mathcal{X})}{3g\lambda H}\right)^{1/3}$

- Axion drives slow-roll inflation independent of V
- Inflation duration: $N \propto \lambda \Rightarrow \lambda \gtrsim \mathcal{O}(10^2 10^3)$

Chromo-Natural Drift



The axion is not required....

Can integrate out the axion—get Gauge-flation

$$\mathcal{L} = \sqrt{-g} \left[\frac{M_{\text{Pl}}^2}{2} R - \frac{1}{4} \text{Tr} \left[F_{\mu\nu} F^{\mu\nu} \right] + \frac{\kappa}{192} \left(\text{Tr} \left[F_{\mu\nu} \tilde{F}^{\mu\nu} \right] \right)^2 \right]$$

(Maleknejad and Sheikh-Jabbari, 2011)

$$P_{\rm YM} = \frac{1}{3}\rho_{\rm YM}$$

$$P_{\kappa} = -\rho_{\kappa}$$

Inflation requires

$$\rho_{\rm YM} \ll \rho_{\kappa}$$

Inflation without a scalar field*

Fluctuations

Fluctuations are... complicated

 Gravitation introduces 10 degrees of freedom subject to 8 constraints

 SU(2) gauge field introduces 12 degrees of freedom subject to 6 constraints

10-dof

-8-dof

12-dof

-6-dof

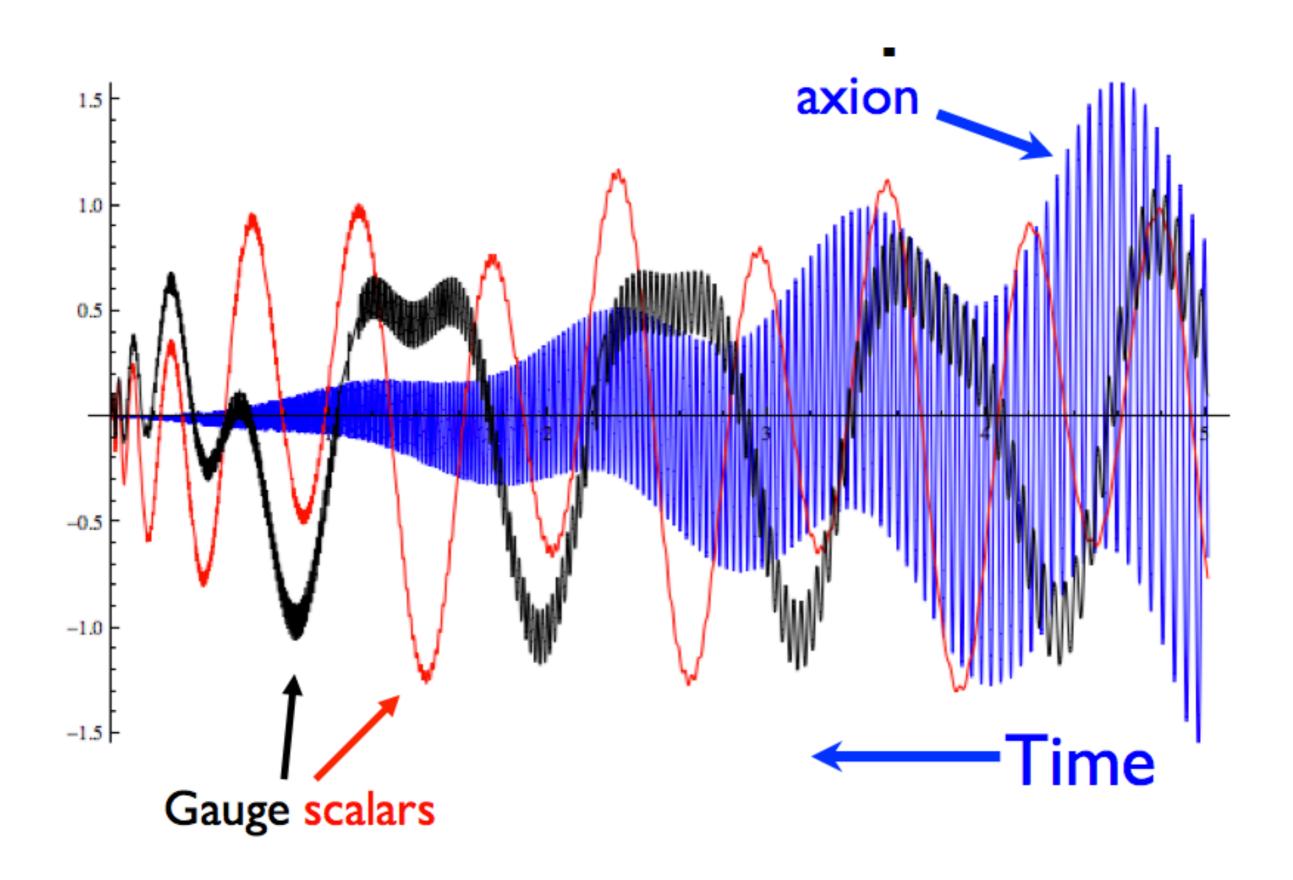
1-dof

9-physical dof

Physical fluctuations decompose as usual:

3 scalar, 2 vector, 4 tensor

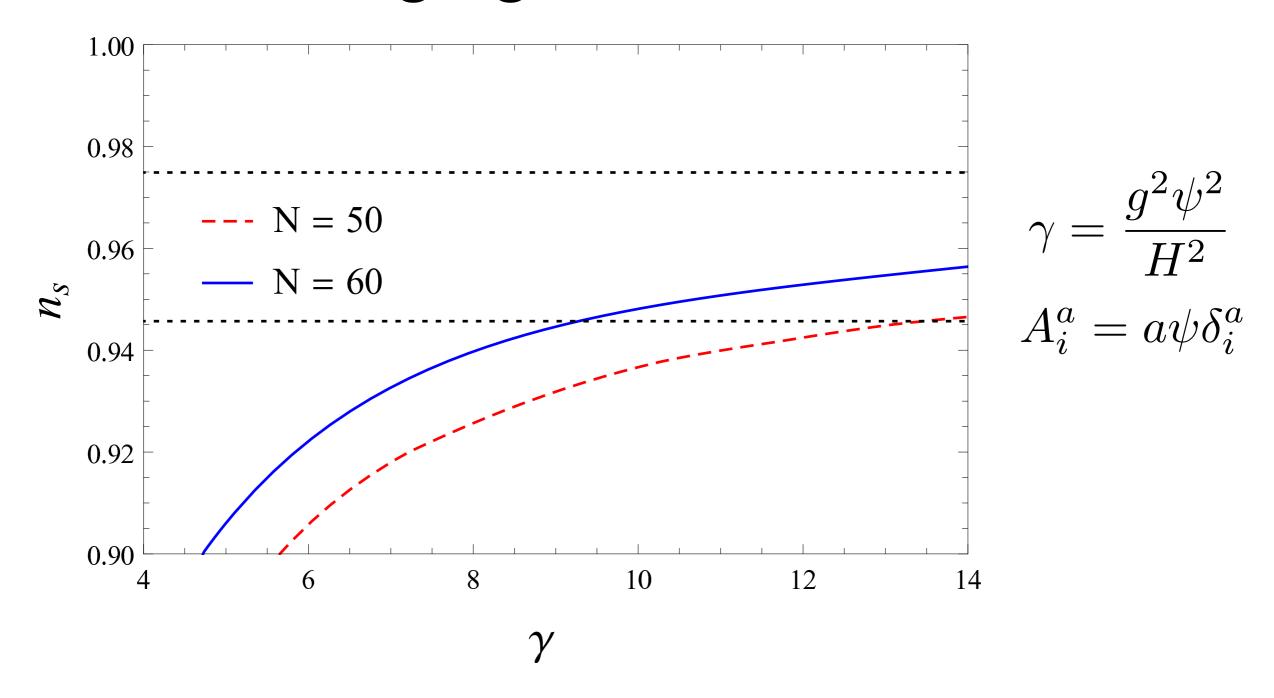
Even though it looks very complicated...



...we can isolate the adiabatic curvature mode:



Scalar spectral index is a strong function of gauge field effective mass.



— (Catastrophic) Instability for $\gamma = \frac{g^2\psi^2}{H^2} \le 2$

The tensor sector has new features.

$$ds^2 = -dt^2 + a^2 e^{\gamma_{ij}} dx^i dx^j$$

$$A_{\mu} = (0, a(t)\psi(t)\delta_i^a + t_i^a(t, \mathbf{x})) \frac{\sigma_a}{2}$$

Gauge and gravity tensors mix

usual equation

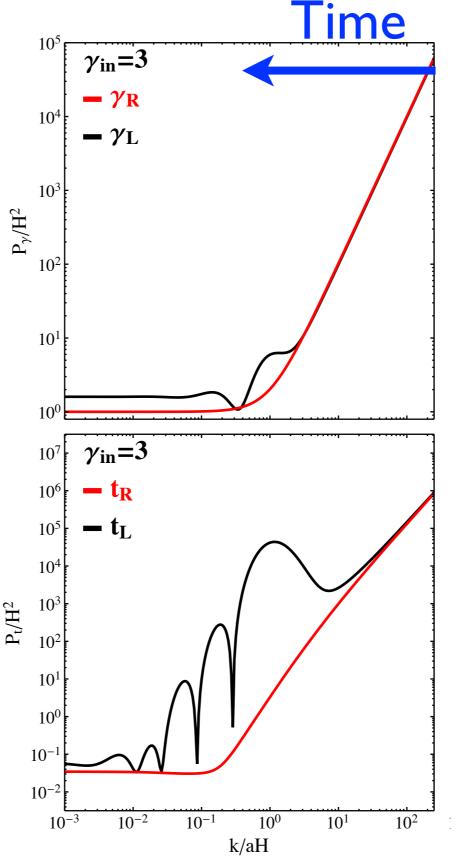
$$\hat{\gamma}^{\pm "} + \left(k^2 - \frac{2}{\tau^2}\right)\hat{\gamma}^{\pm} = \mathcal{O}(\sqrt{\epsilon})\hat{t}^{\pm}$$

$$\hat{t}^{\pm "} + \left(k^2 + \frac{2+2\gamma}{\tau^2}\right)\hat{t}^{\pm \frac{k}{\tau}} \left(\frac{1+2\gamma}{\sqrt{\gamma}}\right)\hat{t}^{\pm} = \mathcal{O}(\sqrt{\epsilon})\gamma^{\pm}$$

Gauge tensors split; one is amplified.

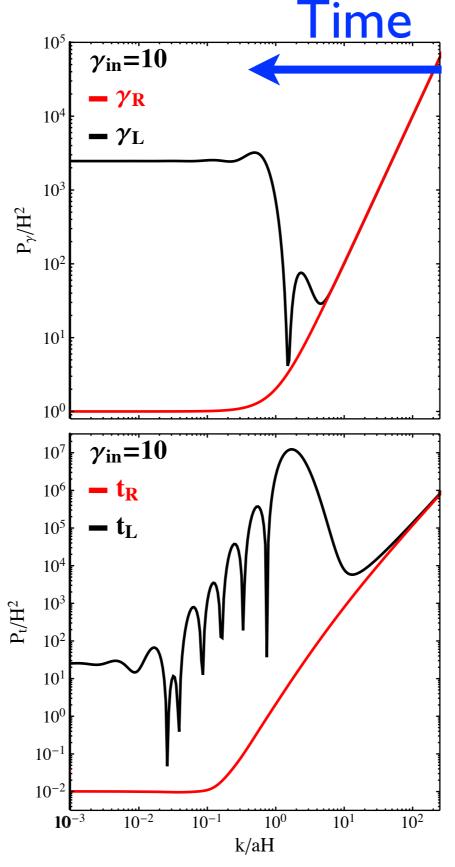
Parity is spontaneously broken by the background.

The gauge field sources gravitational waves



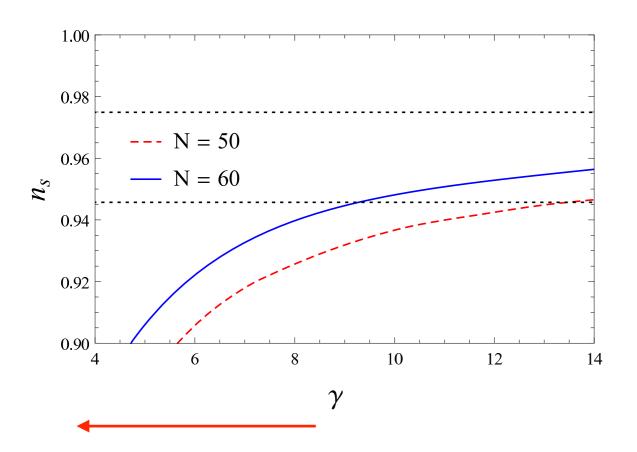
GWs are chiral, strongly amplified by linear mixing

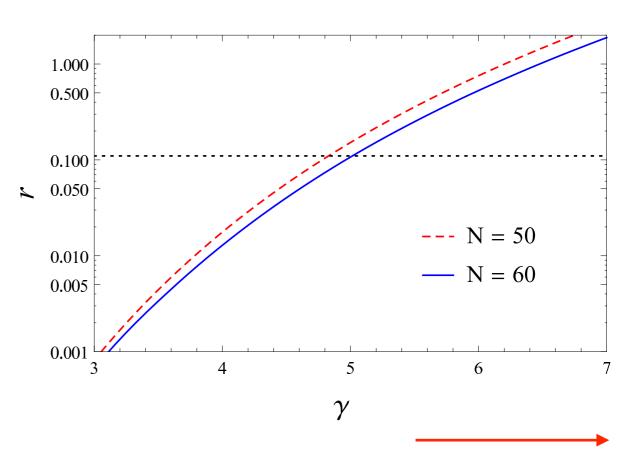
The gauge field sources gravitational waves



GWs are chiral, strongly amplified by linear mixing

But this is incompatible with the scalars...





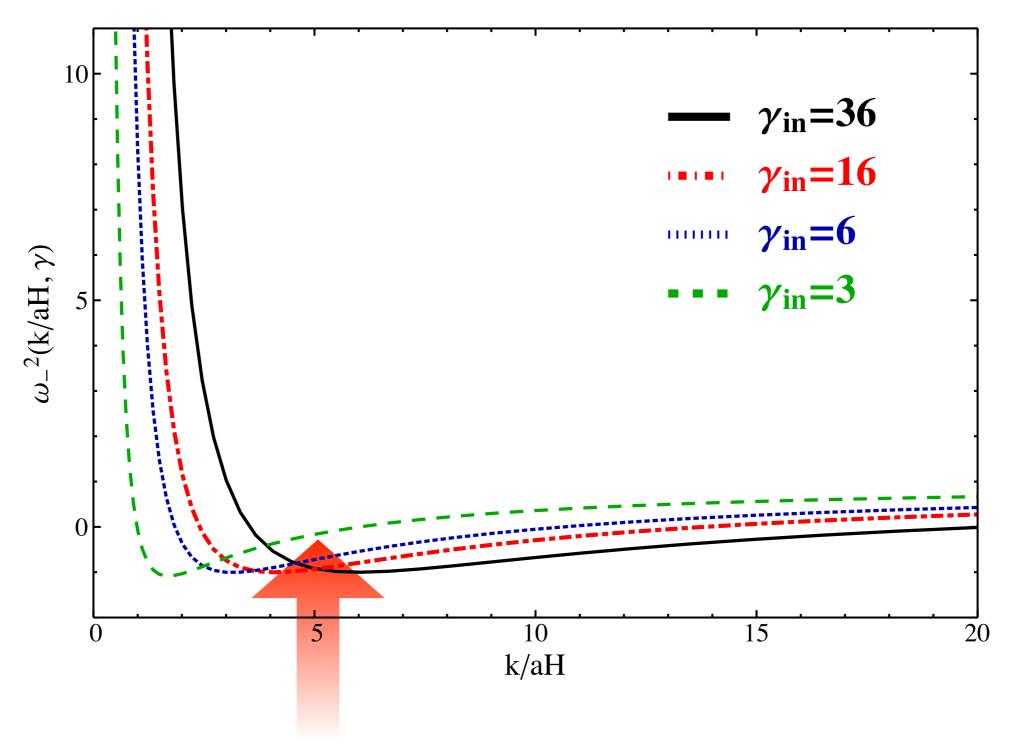
Scalar spectrum reddens due to instability at

GW spectrum grows due to t^{\pm} instability

$$\gamma = \frac{g^2 \psi^2}{H^2} \le 2$$

CNI is incompatible with data

A positive mass for the gauge field could help...



Higgs mechanism gives positive gauge-field mass!

Massive Gauge-field inflation

Add a Higgs sector:

$$\mathcal{L}_{\text{Higgs}} = -\frac{1}{2}|D_{\mu}\Phi|^2 - V(\Phi)$$

Stueckelberg limit:

$$-\frac{1}{2}|D_{\mu}\Phi|^{2} \to -g^{2}Z_{0}^{2}\operatorname{Tr}\left[A_{\mu} - \frac{i}{g}U^{-1}\partial_{\mu}U\right]^{2}$$

$$\rho_{Z_{0}} = \frac{3}{2}g^{2}Z_{0}^{2}\psi^{2}, \quad p_{Z_{0}} = -\frac{\rho}{3}$$

• Inflation can occur provided $ho_{Z_0} \ll M_{\rm Pl}^2 H^2$

$$\epsilon \simeq \frac{\psi^2}{M_{\rm Pl}^2} \left(1 + \gamma + \frac{M^2}{2} \right), \quad \eta \simeq \frac{\psi^2}{M_{\rm Pl}^2}, \quad \gamma = \frac{g^2 \psi^2}{H^2}, \quad M = \frac{g Z_0}{H}$$

Gauge field masses end inflation sooner

Fluctuations are more complicated...

 Goldstone's theorem: 1 massless mode for each broken continuous symmetry

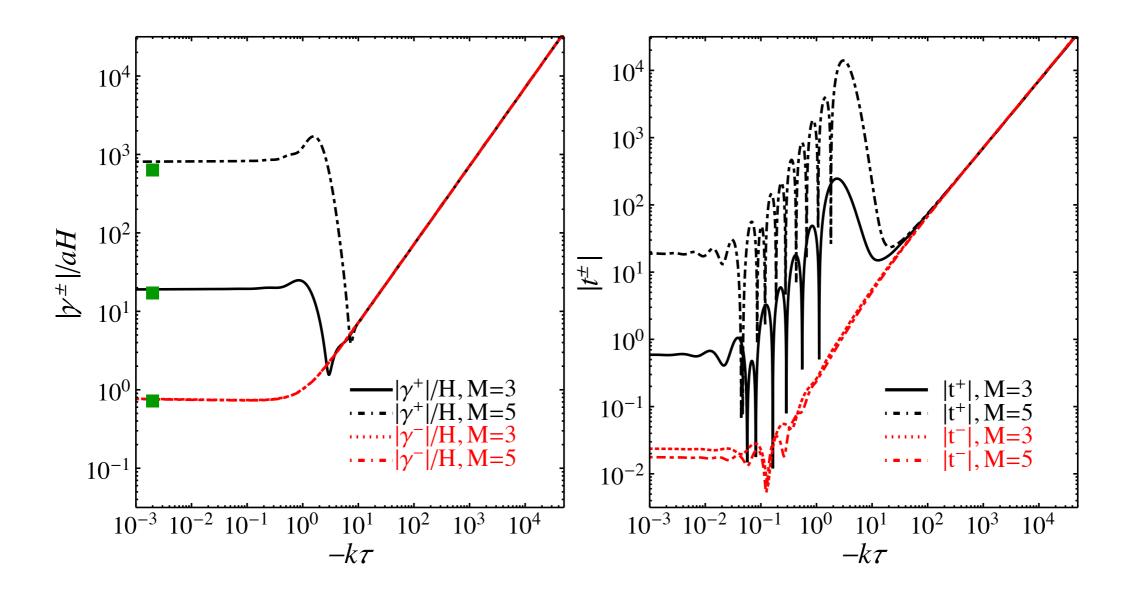
Parameterize fluctuations along vacuum manifold:

$$U = \exp\left(ig\xi^a \frac{\sigma_a}{2}\right)$$

- Decompose: $\xi^a = \delta^a_i(\partial_i \xi + \xi^i_V)$
- 1 new scalar, 1 new vector mode

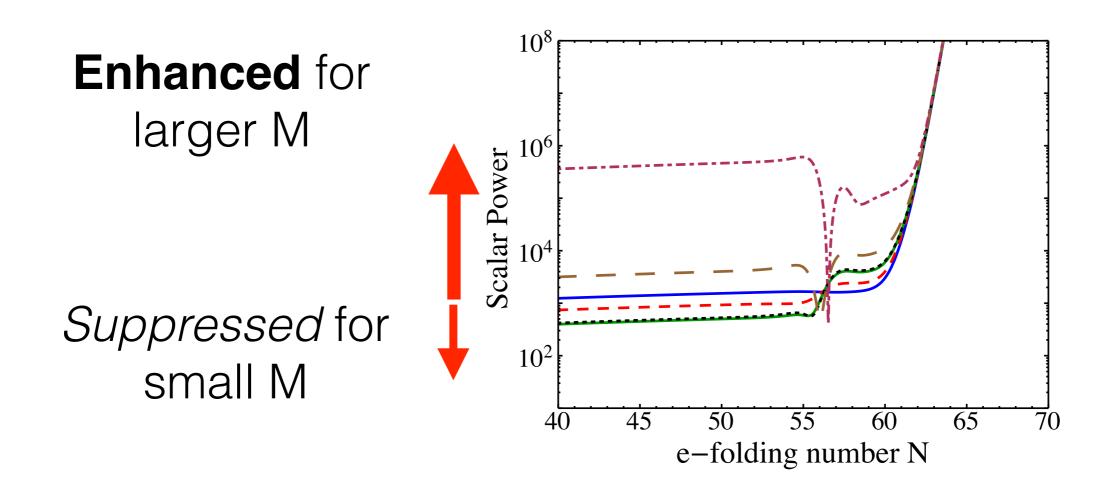
The additional mass makes the tensor instability worse

$$\hat{t}^{\pm "} + \left(k^2 + \frac{2 + 2\gamma + M^2}{\tau^2}\right)\hat{t}^{\pm} \pm \frac{k}{\tau} \left(\frac{1 + 2\gamma + M^2}{\sqrt{\gamma}}\right)\hat{t}^{\pm} = \mathcal{O}(\sqrt{\epsilon})\gamma^{\pm}$$



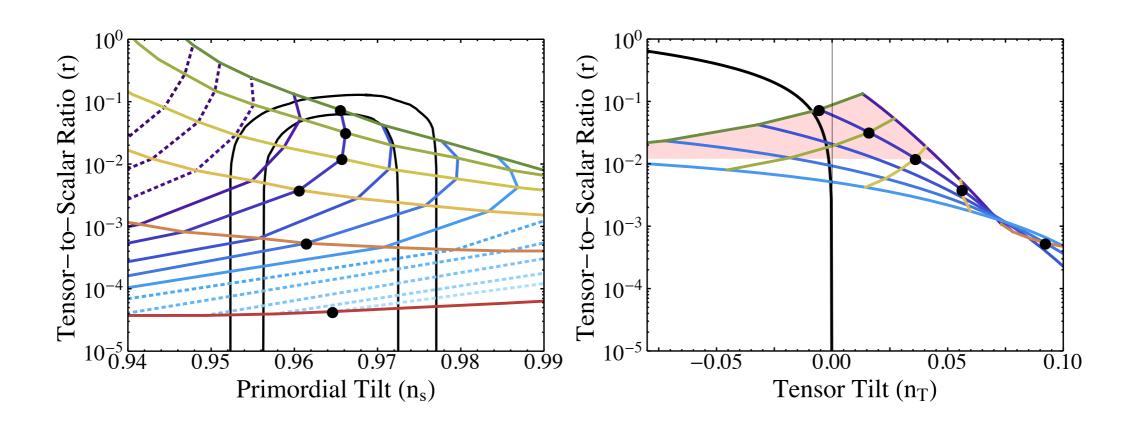
What about the scalar power?

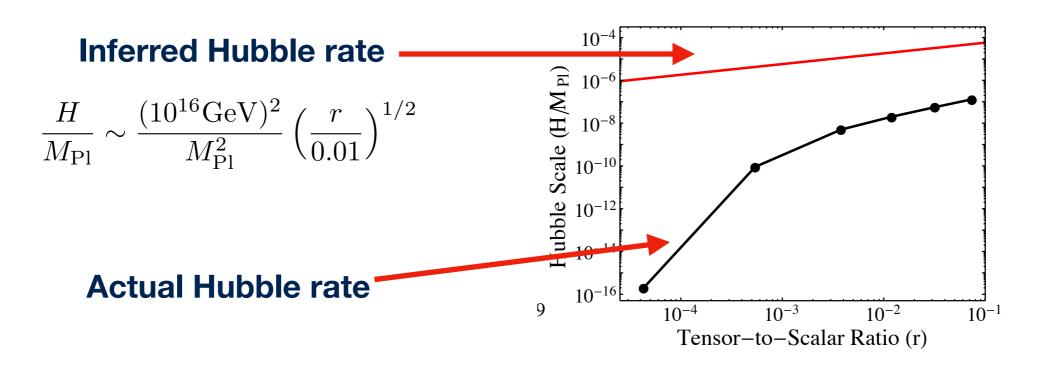
Goldstone modes contribute additional dof



Dynamics alter the amplitude of scalar power

E.g. Massive Gauge-flation





One does not simply read off H from r

Implications for B-mode searches

- Observation of B-modes does not imply
 - Inflation happened at the GUT scale
 - The inflaton moved over a Planck sized region in field space
 - Gravity is quantized

GWs and the energy scale of inflation

The standard arguments are based on the graviton eqn

$$\Box h_{ij} = 8\pi G_N \Pi_{ij}$$

formal solution:

$$h_{ij}(x) = h_{ij}^{(h)}(x) + \int d^4y G_{ij}^{lm}(x - y) \frac{\pi_{lm}(y)}{M_{\rm Pl}^2}$$

Homogeneous soln.

Particular soln.

GWs and the energy scale of inflation

The standard arguments are based on the graviton eqn

$$\Box h_{ij} = 8\pi G_N \Pi_{ij}$$

$$\Box h_{ij} = 8\pi G_N \Pi_{ij}$$

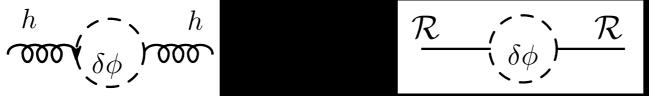
$$h_{ij}(x) = h_{ij}^{(h)}(x) + \int d^4 y G_{ij}^{lm}(x - y) \frac{\pi_{lm}(y)}{M_{\text{Pl}}^2}$$

Anisotropic stress appears at higher order in perturbations

$$\pi_{ij} \sim \partial_i \delta \phi \partial_j \delta \phi$$

GWs *and* scalars sourced at one-loop

$$\frac{h}{\cos(\delta\phi)\cos}$$

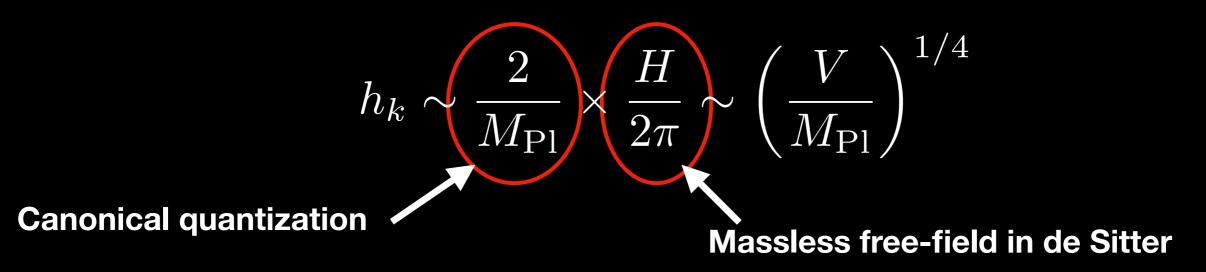


Generically:

$$r_{\rm sourced} \sim \epsilon^2 < r_{\rm vac} \sim \epsilon$$

(Mirbabayi, Silverstein, Senatore, Zaldarriaga)

Gravitational Waves from Inflation



$$\Lambda_{\rm inf} \sim 10^{16} {\rm GeV} \left(\frac{r}{0.01}\right)^{1/4}$$

Tilt inherited from evolution of H, quaranteed to be red!

- Therefore observation of B-modes implies:
 - > Inflation happened at the GUT scale
 - Gravity is quantized
 - > (The inflaton moved over a Planck sized region in field space Lyth-Turner bound)

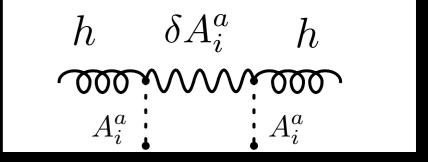
Gauge-field inflation loophole

 Background vector field sidesteps this by allowing

$$\pi_{ij} \sim \frac{A_i^a \delta A_j^a}{M_{\rm Pl}^2} \qquad A_i^a = a\psi \delta_i^a, \quad \psi \sim 10^{-2} M_{\rm Pl}$$

Linear sourcing of gravitational waves:

$$h_{ij}^{(p)}(x) \sim \int d^4y \, G_{ij}^{lm}(x-y) \frac{A_l^a \delta A_m^a(y)}{M_{\rm Pl}^2}$$



- Analogous linear sourcing of scalars prohibited by decomposition theorem
- Gauge field fluctuations 'oscillate' into GWs
- GW spectra (can be) set by gauge-field tensor fluctuations

Chiral GWs — observational impact

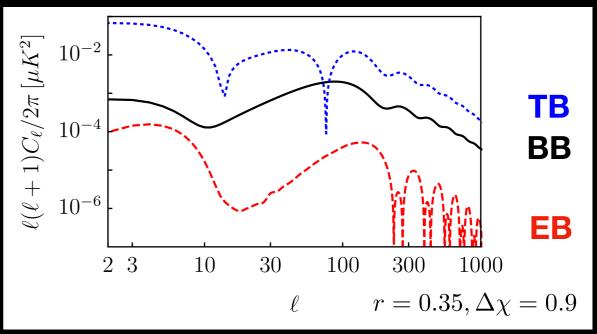
 Parity violating GWs generate TB, EB spectra

 GW helicity potentially observable

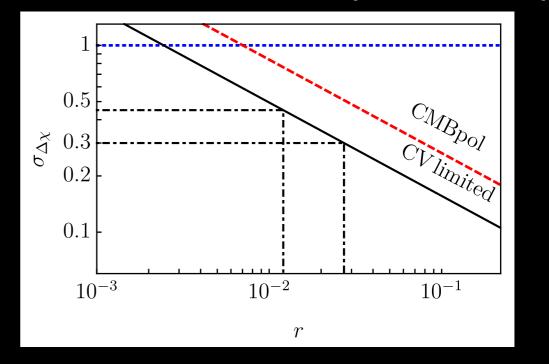
$$\chi = \frac{\Delta_R^2 - \Delta_L^2}{\Delta_R^2 + \Delta_L^2}$$

Typically

$$|\chi| \gtrsim 0.9$$



(Caldwell 2017)



(Gluscevic and Kamionkowski 2010)

Tensor non-G

$$\langle h(\mathbf{k}_1)h(\mathbf{k}_2)h(\mathbf{k}_3)\rangle = (2\pi)^3 \delta^3 \left(\sum_{i=1}^3 \mathbf{k}_i\right) B_{hhh}(k_1, k_2, k_3)$$

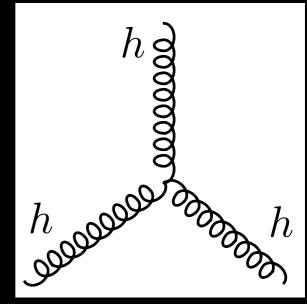
3-pt function from vacuum modes

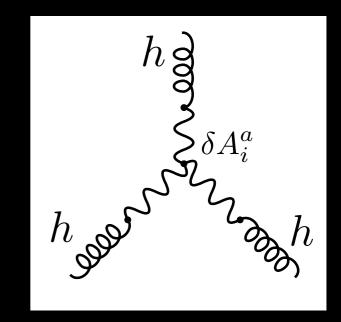
$$rac{B_{hhh}(k,k,k)}{P^2(k)} \sim \mathcal{O}(1)$$
 (Maldacena 2003)

$$\frac{B_{hhh}(k,k,k)}{P^{2}(k)} \sim \mathcal{O}\left(\frac{10}{\Omega_{A}}\right) \gg 1$$

$$\Omega_{A} = \frac{1}{2} \left(E_{i}^{a} E_{i}^{a} + B_{i}^{a} B_{i}^{a}\right)$$

(Agrawal, Fujita, Komatsu 2017)





Summary I

- Classical non-Abelian gauge fields allow for the construction of novel inflationary scenarios
- Symmetry breaking in models of inflation with non-Abelian gauge fields can bring them into agreement with data
- Requires very weakly coupled gauge fields
- Chiral, possibly blue-tilted GW spectra
- Observable GW spectra at sub-GUT energies

$$\Lambda_{\rm inf} \sim \sqrt{HM_{\rm Pl}} \neq 1.04 \times 10^{16} {\rm GeV} \left(\frac{r}{0.01}\right)^{1/4}$$

Implications for B-mode searches

- Observation of B-modes does not imply
 - Inflation happened at the GUT scale
 - The inflaton moved over a Planck sized region in field space
 - Gravity is quantized

Unless:

- Small Tensor Gaussianity
- Vanishing of parity odd correlators (TB, EB)
- Scale invariance

...and the origin of the matter-antimatter asymmetry

> Why is there stuff?

Andrew Long

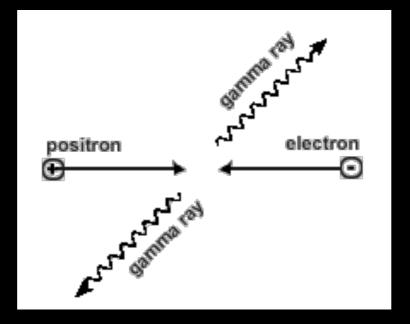
Evangelos Sfakianakis

PRD: 98, 043525 (2018), with A. Long and E. Sfakianakis

There is a matter-antimatter asymmetry

How do we know there are not vast anti-matter domains in the

Universe?

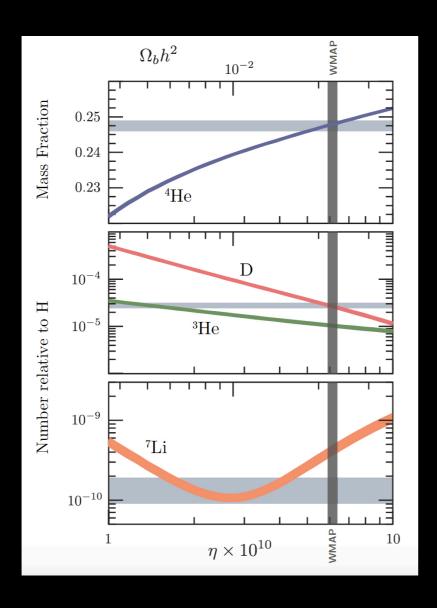


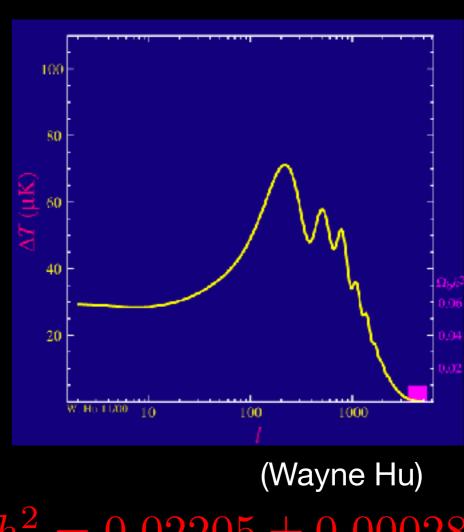
 Non-observation of gamma-ray emission excludes antimatter domains from within our horizon

[Steigman (1976); Cohen, De Rujula, & Glashow (1998)]

 If global universe is symmetric, our matter pocket is larger than ~100 Gly

Quantitatively





$$\Omega_{\rm b}h^2 = 0.02205 \pm 0.00028$$

$$\longrightarrow Y_B = \frac{n_B}{s} = (0.861 \pm 0.008) \times 10^{-10}$$

For every 10¹⁰ anti-protons there are ~ 10¹⁰ +1 protons

Inflation requires Baryogenesis!

- Inflation dilutes relics to unobservable small densities
 - > Same is true of baryon density
- Baryon asymmetry must be generated dynamically after inflation
 - > Sakharov conditions:
 - > Baryon number violation
 - > CP violation
 - > Out of equilibrium

(Sakharov, 1967)

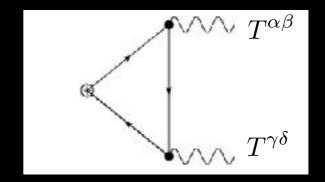
(history.aip.org)

Can we baryogenesis happen during inflation?

Cosmological non-conservation of fermions

- Fermion number is not conserved cosmologically
- Chiral fermion currents are anomalous

$$\nabla_{\mu} j_{L,R}^{\mu} = \pm \frac{1}{24} \frac{R\tilde{R}}{16\pi^2}$$



Eguchi, Gilkey, Hanson (1980)

Standard model lepton-current is anomalous

$$\nabla_{\mu} j_{\ell}^{\mu} = \sum_{i=1}^{3} \nabla_{\mu} \left(j_{e_{L}^{i}}^{\mu} + j_{\nu_{L}^{i}}^{\mu} + j_{e_{R}^{i}}^{\mu} \right) = \frac{3}{24} \frac{R\tilde{R}}{16\pi^{2}}$$

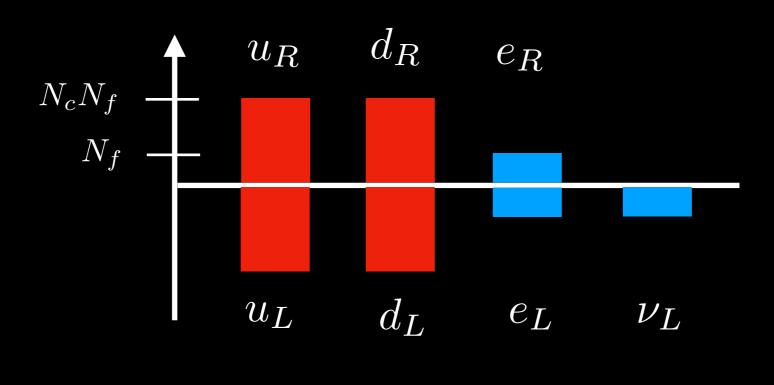
• Whenever $R\tilde{R}$ is non-zero, the lepton current changes

Gravitational Leptogenesis

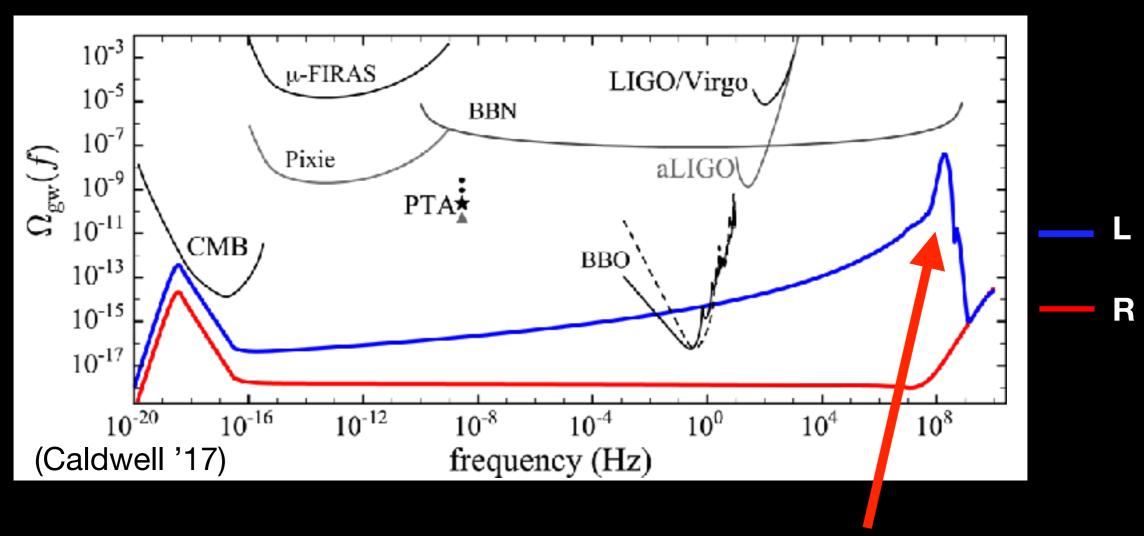
Chiral gravitational waves generates asymmetries in chiral leptons

$$N_{L,R} - N_{\bar{L},\bar{R}} = \pm \frac{1}{24(16\pi^2)} \int d^4x \sqrt{-g} R\tilde{R}$$

At the end of inflation, we have in SM (for left-chiral GWs)



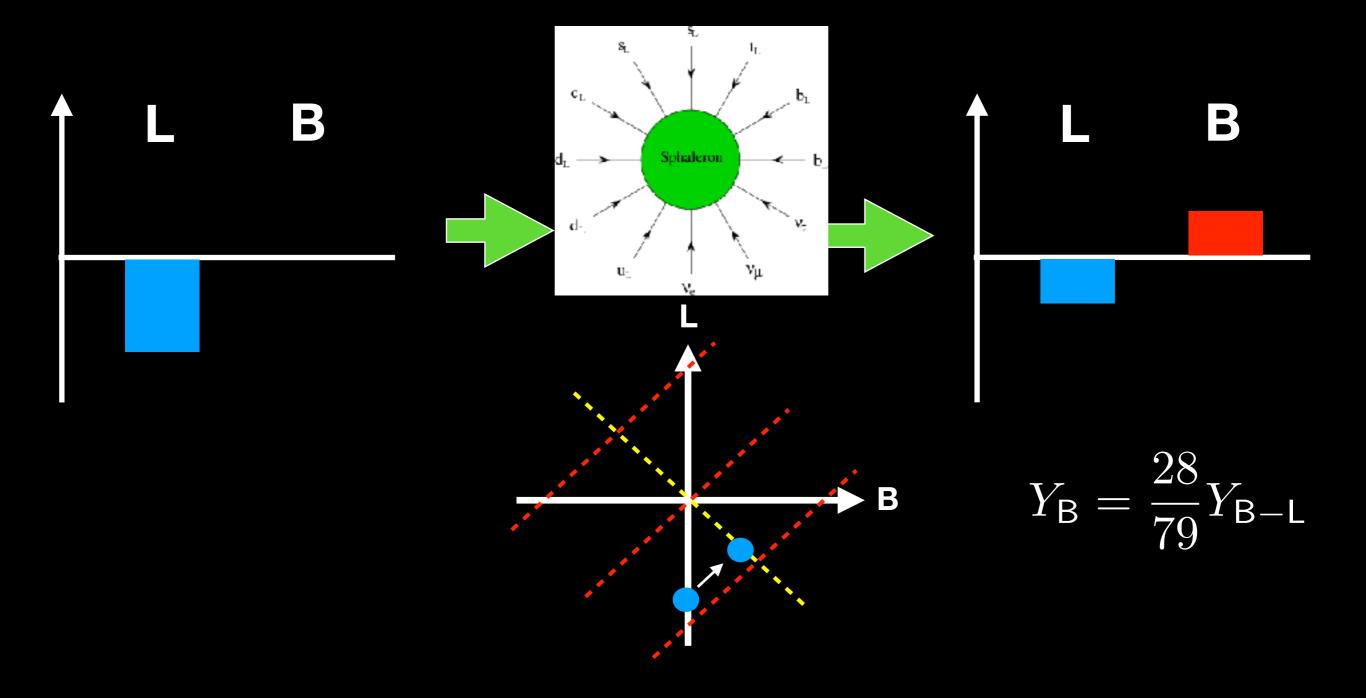
Small scale chiral GWs



- Blue-tilted spectra generates large gravitational wave density on small scales
- Fairly easy to generate sufficient net lepton number

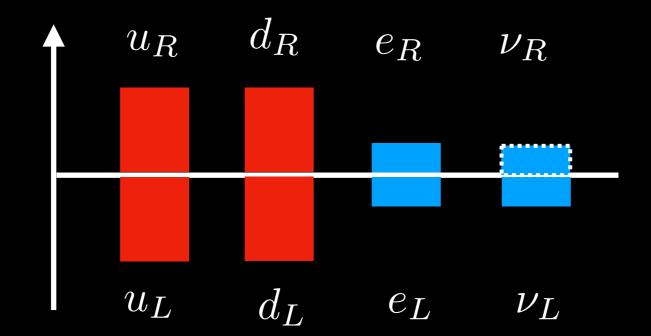
How do (net) leptons get turned into (net) baryons?

Hot electroweak sphaleron violates B+L, conserves B-L



but neutrino mass...

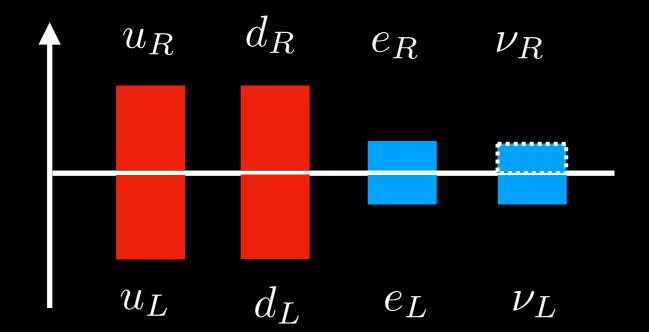
- But neutrinos are massive...
- Requires adding new degrees of freedom to SM



- Neutrinos are Dirac:
 - RH neutrinos are sterile, sequester lepton number

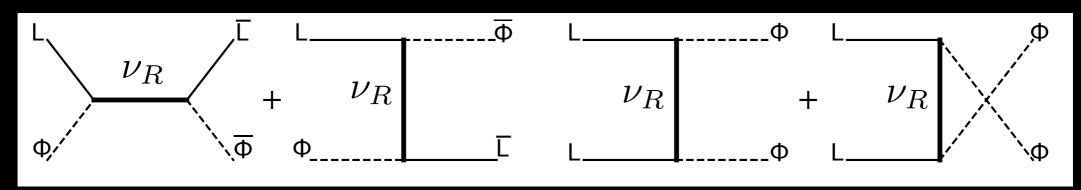
but neutrino mass...

- But neutrinos are massive...
- Requires adding new degrees of freedom to SM

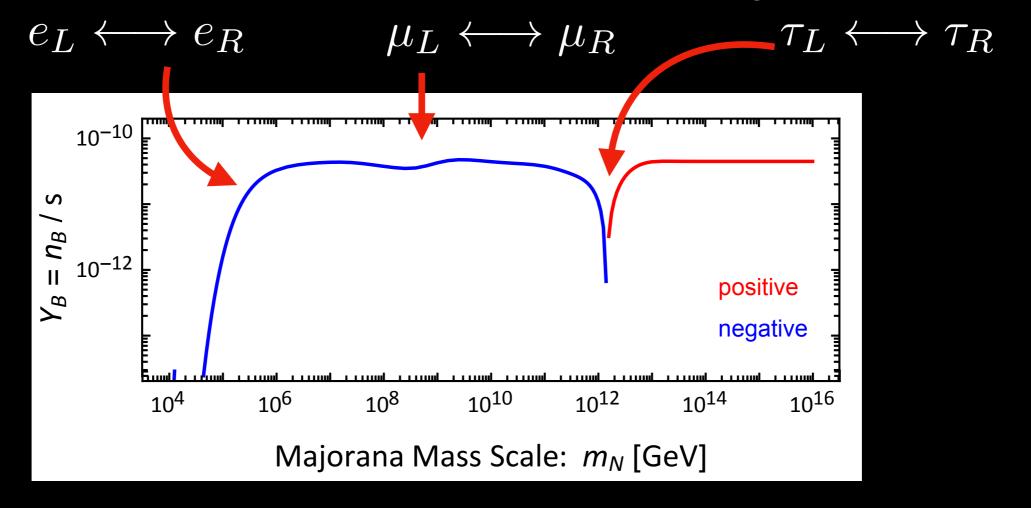


- Neutrinos are Majorana:
 - Theory contains explicit lepton number violation

- Neutrinos are Majorana:
 - Theory contains explicit lepton number violation...

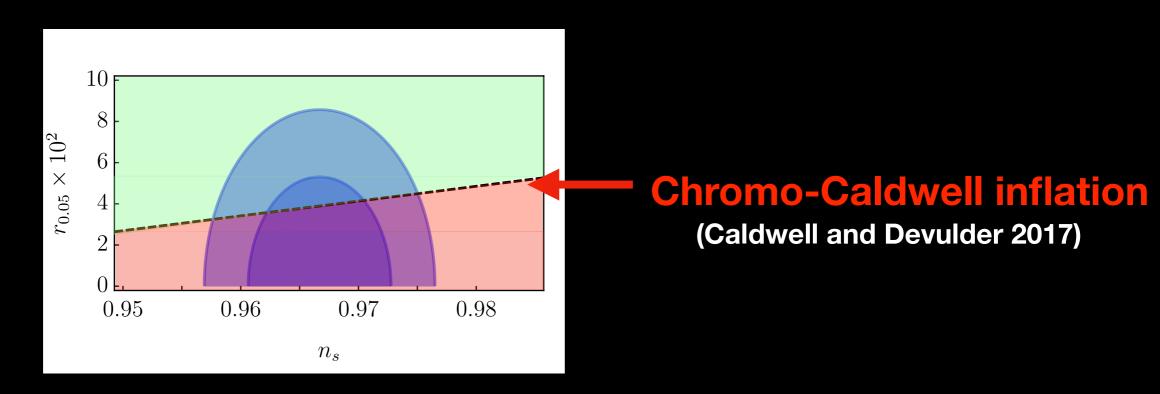


BUT! Small Yukawas sequester lepton number in right chiral leptons



A lower bound on r?

 Generating a sufficient lepton number puts (so far, model dependent) lower bounds on r:



Can a more general lower bound be imposed?

Summary II

- Observation of chiral GWs could imply
 - Inflationary origin of baryon asymmetry
 - Left Chiral GW implies Dirac v, or high-scale see-saw
 - Right Chiral GW implies Majorana mass scale

$$10^6 \text{GeV} < m_N < 10^{12} \text{GeV}$$

 Non-observation of B-modes likely rules out inflation as origin of baryon asymmetry

Summary

- Slow roll inflation is in excellent agreement for scalars:
 - Super-Horizon, isotropic, adiabatic, and red-tilted
- But, "extraordinary claims require extraordinary evidence"

We seek gravitational waves with wavelengths of billions of light years

Summary I

- Observation of B-modes does not imply
 - Inflation happened at the GUT scale
 - The inflaton moved over a Planck sized region in field space
 - Gravity is quantized

Unless:

- Small Tensor Gaussianity
- Vanishing of parity odd correlators (TB, EB)
- Scale invariance

Thanks!