

Relaxing the Cosmological Moduli Problem by Low-scale Inflation

Shu-Yu Ho

(Tohoku University, Japan)

In collaboration with F. Takahashi (Tohoku. U.) and Y. Wen (KAIST)

Based on JHEP 1904 (2019) 149, ArXiv:1901.01240

14 May 2019, 2 day mini-workshop : Axion Cosmology Resonant instabilities in cosmology and their observational consequences

Introduction

Modulus Field

- String theory predicts many light scalar moduli fields through compactification.
- In SUSY, a modulus forms a chiral supermultiplet, X.

$$X = r + i\phi$$
 Axion

Dynamics of Modulus Field

• After inflation ends modulus is frozen $H(t) \gg m$ by Hubble friction modulus $\phi_{\rm ini} \neq 0$ $(H_{inf} \gg m)$ H(t) : Hubble parameter *m* : modulus mass

Dynamics of Modulus Field

• After inflation ends

 $ho_{
m mod} \approx m^2 M_{
m pl}^2$ or $m^2 f^2$ The energy density of modulus may dominate the Universe.

Moduli Abundance

• We consider only one (string) axion ϕ with a potential

$$V(\phi) \simeq \frac{1}{2}m_{\phi}^2\phi^2$$

• At
$$H(t_{osc}) \approx m_{\phi} \longrightarrow \rho_{\phi, ini} \simeq \frac{1}{2} m_{\phi}^2 \phi_{ini}^2$$

$$\Omega_{\phi}^{\text{stable}} h^2 \simeq 3.3 \times 10^{11} \left(\frac{g_{\star,\text{osc}}}{106.75} \right)^{-1/4} \left(\frac{m_{\phi}}{0.1 \,\text{GeV}} \right)^{1/2} \left(\frac{\phi_{\text{ini}}}{10^{16} \,\text{GeV}} \right)^2 \quad \text{for } \Gamma_{\text{inf}} > m_{\phi}$$

The axion abundance Ω_ϕ can be suppressed if $\phi_{
m ini}$ is sufficiently small.

Cosmological Moduli Problem (CMP)

- If the modulus is stable on a cosmological scale.
 - ✓ Its abundance may exceed the observed DM density.

Cosmological Moduli Problem (CMP)

- If the modulus is stable on a cosmological scale.
 - Its abundance may exceed the observed DM density.
- If the modulus is unstable and can decay into photons.
 - It may spoil the success of big bang nucleosynthesis (BBN) due to the photo-dissociation of the light elements.
 - ✓ It may overproduce X-ray or gamma-ray fluxes.

Astrophysical & Cosmological Constraints

Cosmological Moduli Problem (CMP)

- If the modulus is stable on a cosmological scale.
 - Its abundance may exceed the observed DM density.
- If the modulus is unstable and can decay into photons.
 - It may spoil the success of big bang nucleosynthesis (BBN) due to the photo-dissociation of the light elements.
 - ✓ It may overproduce X-ray or gamma-ray fluxes.

moduli problems in cosmology

Simple Solutions to Moduli Problem

Entropy production (e.g. thermal inflation)

- Yamamoto '86 Lyth & Stewart '96
- → It may also dilute pre-existing baryon asymmetry
- Adiabatic suppression -> It is not so efficient
 - Linde '96 K. Nakayama et al. 2011

Randall & Thomas '95

- Very low scale inflation with $\,H_{
 m inf} \ll \,m_{\phi}$
- Bunch-Davies (BD) distribution S.Y.H, Takahashi & Wen 2019
 - [cf. Graham & Scherlis (1805.07362) and

Takahashi, Wen & Guth (1805.08763) applied to the QCD axion

 $m_{\phi} \ll H_{\mathrm{inf}}$

What we did

Bunch-Davies Distribution

Bunch & Davies `78

- Suppose that the axion already acquires its mass (or potential) during inflation.
- The quantum diffusion prevents the axion from falling into the potential minimum.

Bunch-Davies Distribution

Bunch & Davies `78

 In order to reach the BD distribution, we also assume that the inflation lasts sufficiently long (a large number of e-folds).

Bunch-Davies Distribution

Bunch & Davies `78

- In order to reach the BD distribution, we also assume that the inflation lasts sufficiently long (a large number of e-folds).
- Such a long period of inflation can be realized by eternal inflation, a situation where the inflation never ends globally but it only ends locally.

A.D. Linde '86 A.H. Guth 2007

The Axion Abundance with the BD Distribution

The energy density of the axion with BD distribution

$$\phi_{\rm ini} \simeq \sqrt{\frac{3}{8\pi^2}} \frac{H_{\rm inf}^2}{m_{\phi}} \longrightarrow \rho_{\phi, \rm ini} \simeq \frac{3}{16\pi^2} H_{\rm inf}^4 \quad H(t_{\rm osc}) \approx m_{\phi}$$

• The axionic moduli problem is relaxed if $rac{H_{
m inf} \ll \sqrt{m_{\phi} f_{\phi}}$.

$$\Omega_{\phi}^{\text{stable}} h^2 \simeq 1.3 \times 10^{-20} \left(\frac{g_{\star,\text{osc}}}{106.75} \right)^{-1/4} \left(\frac{m_{\phi}}{0.1 \,\text{GeV}} \right)^{-3/2} \left(\frac{H_{\text{inf}}}{\text{GeV}} \right)^4 \text{ for } \Gamma_{\text{inf}} > m_{\phi}$$

One can suppress Ω_{ϕ} by low inflation scale

Upper Bound on *H***inf for Solving CMP**

Upper Bound on H_{inf} with Different f_{ϕ}

Summary

• We have shown that the CMP can be significantly relaxed by low-scale inflation even $m_{\phi} \ll H_{\text{inf}}$. This is because the value of the scalar field follows the BD distribution if the inflation lasted sufficiently long.

Back up

Upper Bound on H_{inf} for lower axion masses

