低光度GRBの星周物質相互作用モデル Circumstellar medium (CSM)- interaction model for low-luminosity GRBs

Akihiro Suzuki (NAOJ)

<u>Suzuki</u>, Maeda, & Shigeyama (2017), ApJ, 832,32 <u>Suzuki</u>, Maeda, & Shigeyama (2018), in press

理論懇シンポジウム2018,京都大学基礎物理学研究所,2018/12/19

Gamma-ray bursts

bursts of gamma-ray photons: ~1 event/ day, isotropic

spectrum well represented by a "Band function" (Band et al. 1993)

classification: long-soft/short-hard

Briggs+ (1999)

(3rd Fermi GBM catalog, 2016)

Gamma-ray bursts

bursts of gamma-ray photons: ~1 event/ day, isotropic

- spectrum well represented by a "Band function" (Band et al. 1993)
- classification: long-soft/short-hard

distribution of Fermi GRBs on the celestial sphere

Briggs+ (1999)

(3rd Fermi GBM catalog, 2016)

Gamma-ray bursts

- bursts of gamma-ray photons: ~1 event/ day, isotropic
- spectrum well represented by a "Band function" (Band et al. 1993)
- classification: long-soft/short-hard

HR vs T90 plot(3rd Fermi GBM catalog, 2016)

low-luminosity GRBs

sub-energetic class of long GRBs

only nearby events are detected, but event rate is high

 e.g., 230+490-190 Gpc-3 yr-1 (Soderberg+ 2006), 100-1800 Gpc-3 yr-1 (Guetta&Della Valle 2007)

 They accompany broad-lined Ic SNe

Ex. GRB 980425/SN 1998bw, GRB 060218/SN 2006aj, GRB100316D/ SN2010bh

	Luminosity L _{γ,iso}	Isotropic energy Eiso	Duration T ₉₀	peak energy E _p
GRB 980425 SN 1998bw	6×10 ⁴⁶ erg/s	9×10 ⁴⁷ erg	35 s	122 keV
GRB 060218 SN 2006aj	2×10 ⁴⁶ erg/s	4×10 ⁴⁹ erg	2100 s	4.7 keV
GRB 100316D SN 2010bh	5×10 ⁴⁶ erg/s	6×10 ⁴⁹ erg	1300 s	18 keV

cf. Liso~10⁵¹ erg/s, Eiso~10⁵²⁻⁵³ erg for standard GRBs

New LLGRB 171205A @ 168Mpc

- Swift detection on 2017/12/05 (D'Elia+2017, GCN circular 22177)
- Eiso~2.2x10⁴⁹[erg], T₉₀~190[s] (D'Elia+2018)
- follow-up optical, radio observation
- SN bump after a few days (de Ugarte Postigo+2017, GCN circular 22207)

Obs. Data provided by Swift UK Data Centre

	Luminosity L _γ , _{iso}	Isotropic energy E _{iso}	Duration T 90	peak energy E _p
GRB 980425 SN 1998bw	6 x 10 ⁴⁶ erg/s	9 x 10 ⁴⁷ erg	35 s	122 keV
GRB 060218 SN 2006aj	2 x 10 ⁴⁶ erg/s	4 x 10 ⁴⁹ erg	2100 s	4.7 keV
GRB 100316D SN 2010bh	5 x 10 ⁴⁶ erg/s	6 x 10 ⁴⁹ erg	1300 s	18 keV
GRB 171205A SN 2017iuk	1 x 10 ⁴⁷ erg/s	2.2 x 10 ⁴⁹ erg	190 s	125keV

cf. Liso~10⁵¹ erg/s, Eiso~10⁵²⁻⁵³ erg for standard GRBs

New LLGRB 171205A @ 168Mpc

D'Elia+2018

low-luminosity GRBs

- GRB 980425/SN 1998bw, GRB 060218/SN 2006aj, GRB 100316D/SN 2010bh
- → Iow Liso, Iow Epeak
- Iuminosity function

Liang+ (2007)

New LLGRB 171205A @ 168Mpc

D'Elia+2018

Origin of low-luminosity GRBs

- central engine was a neutron star? (e.g., Mazzali+2006)
- off-axis GRB?

 relativistic shock breakout with dense CSM, off-axis/weak/failed jet, cocoon-CSM interaction(Kulkarni+1998, Tan+2001, Campana+2006, Li 2007; Toma+2007; Wang+ 2007; Waxman+ 2007, Suzuki&Shigeyama 2012, Nakar 2015, Irwin&Chevalier 2016)
 Suzuki&Shigeyama (2013)

dense CSM around massive stars?

- "Non-detection" of fast, bright shock breakout signals from type II SNe
- shock breakout emission can be smeared out or "delayed" by optically thick gas.
- SN progenitor surrounded by dense CSMs?
 - we do not know if such CSMs are ubiquitously present for all types of CCSNe

Forster, Moriya + (2018)

dense CSM around massive stars?

- "flash spectroscopy", right after SN discovery
- CSM illuminated by the SN shock breakout light
- centrally confined CSM with a density much larger than normal stellar wind

Ejecta with mildly relativistic speeds and CSM

- SN ejecta (with max Г ~2-10) colliding with circum-stellar medium (CSM), leading to the dissipation of the kinetic energy into the thermal energy of the shocked gas.
 - the thermal energy diffusing out through the shell is responsible for the prompt emission

How much energy can be released in ejecta-CSM interaction?

- kinetic energy of SN ejecta
- density structure
- CSM density

One-zone semi-analytical model

→ steady wind: $\rho = Ar^{-2}$, $A_{\star} = A/(5x10^{11} [g/cm])$ ($dM/dt = 10^{-4}M_{\odot}/yr$, for $v_{wind} = 1000 km/s$)

freely expanding trans-relativistic ejecta: $c\beta = r/t$,

One-zone semi-analytical model

- we approximate the shocked region as a thin shell and solve the EOM.
- shock radii R_{fs}, R_{rs}, shell mass Ms, shell momentum Sr, and so on

momentum influx from ejecta

deceleration by pressure gradient force

$$\frac{dS_r}{dt} + 4\pi R_{\rm fs}^2 F_{\rm fs} - 4\pi R_{\rm rs}^2 F_{\rm rs} = 4\pi R_{\rm fs}^2 p_{\rm rs,d} - 4\pi R_{\rm rs}^2 p_{\rm fs,d}$$

$$\frac{dM_{\rm s}}{dt} + 4\pi R_{\rm fs}^2 F_{\rm m,fs} - 4\pi R_{\rm rs}^2 F_{\rm m,rs} = 0$$

 $dR_{\rm s}$

 $=\beta_{\rm s},$

shell increases its mass by sweeping CSM/ejecta

forward/reverse shock velocity determined by shock jump condition

One-zone semi-analytical model

- we approximate the shocked region as a thin shell and solve the EOM.
- shock radii R_{fs}, R_{rs}, shell mass Ms, shell momentum Sr, and so on

Bolometric LC for prompt emission

- → fiducial model: $E_{rel,51}=0.5$, $A_{\star}=25$, n=5 (dM/dt=2.5x10⁻⁴M_☉/yr for $v_w=10^3$ km/s)
- theoretical emission model is consistent with observed prompt gamma-ray and X-ray light curves
- note: theoretical model produce bolometric light curves

Erad VS Tburst

- Erad-Tburst diagram
- Ionger bursts show larger radiated energies
- in ejecta-CSM interaction model, this trend can be explained by increasing CSM density (or mass)
- GRB 171205A is consistent with the trend.
- GRB171205A: E_{rel}~10⁵¹[erg], A★~ several 10

Suzuki, Maeda, & Shigeyama (2018)

- Afterglow emission following the prompt gamma-ray
- Swift XRT observations + radio (NOEMA, ALMA, VLA)

XRT & UVOT obs. (D'Elia+2018)

- electron distribution in momentum space
- \rightarrow parameters: p, ε_{e} , ε_{B}
 - synchrotron, inverse Compton, and adiabatic cooling

Suzuki, Maeda, & Shigeyama (2018)

$$\frac{\partial}{\partial t} \left(\frac{dN}{dp_{e}} \right) = \frac{\partial}{\partial p_{e}} \left[(\dot{p}_{syn} + \dot{p}_{ic} + \dot{p}_{ad}) \frac{dN}{dp_{e}} \right] + \left(\frac{d\dot{N}}{dp_{e}} \right)_{in} \left(\frac{d\dot{N}}{dp_{e}} \right)_{in} \propto \left\{ \begin{array}{l} p_{e}^{-p} & \text{for } p_{in} \leq p_{e} \leq p_{max} \\ 0 & \text{otherwise} \end{array} \right.$$

$$\dot{p}_{syn} = \frac{4\sigma_{T}u_{B}}{3m_{e}^{2}c^{2}} p_{e} \sqrt{m_{e}^{2}c^{2} + p_{e}^{2}},$$

$$\dot{p}_{ic} = \frac{4\sigma_{T}u_{rad}}{3m_{e}^{2}c^{2}} p_{e} \sqrt{m_{e}^{2}c^{2} + p_{e}^{2}},$$

$$\dot{p}_{ad} = \frac{p_{e}}{3V} \frac{dV}{dt}.$$

 u_{rad}: thermal photons+ synchrotron photons

→ $p=3.0, \epsilon_e=0.08, \epsilon_B=3x10^{-3}$

- Swift XRT observations + radio
 (NOEMA, ALMA, VLA)
 - A \star ,out=0.5 (normal stellar wind)

Suzuki, Maeda, & Shigeyama (2018)

→ $p=3.0, \epsilon_e=0.08, \epsilon_B=3x10^{-3}$

- Swift XRT observations + radio
 (NOEMA, ALMA, VLA)
 - A \star ,out=0.5 (normal stellar wind)

Suzuki, Maeda, & Shigeyama (2018)

Summary

 \square

- Iow-luminosity GRBs: a sub-energetic population of long GRBs
- A part of them are really a distinct population powered by CSM interaction.
 - origin of (sub-)relativistic ejecta?
- There should be more IIGRBs, but how to distinguish between off-axis GRBs and CSM-powered transients.
 - Future deep and/or wide X-ray surveys will unveil the hidden population.

