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Fig. 4.— Sky distribution of GBM triggered GRBs in celestial coordinates. Crosses indicate long GRBs (T90 > 2 s); asterisks

indicate short GRBs. Also shown are the GBM GRBs simultaneously detected by Swift (red squares)
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Fig. 4.— Sky distribution of GBM triggered GRBs in celestial coordinates. Crosses indicate long GRBs (T90 > 2 s); asterisks

indicate short GRBs. Also shown are the GBM GRBs simultaneously detected by Swift (red squares)
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Fig. 5.— Distribution of GRB durations in the 50–300 keV energy range. The upper plot shows

T50 and the lower plot shows T90. Also shown are the lognormal fits separately to long and short

GRBs (see text for details).
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Fig. 8.— Classification based on the hardness-duration diagram. Here we show only GRBs with

hardness errors less than the hardness itself. Colors indicate their group membership (red: on

average short/hard, blue: on average long/soft). Ellipses show the best fitting multivariate gaussian

models. In the T90-HR case (bottom) the best model has components with equal volume and shape

(the major and minor axes of the ellipses are equal) but their orientation is not constrained. For

T50-HR (top) the best model has similar properties as for T90-HR, only the orientation of the

components is constrained to be the same (see Figure 9 for BIC values of different models).
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6×1046 erg/s 9×1047 erg 35 s 122 keV

2×1046 erg/s 4×1049 erg 2100 s 4.7 keV

5×1046 erg/s 6×1049 erg 1300 s 18 keV

GRB 980425 
SN 1998bw

GRB 060218 
SN 2006aj

GRB 100316D 
SN 2010bh

Luminosity Lγ,iso Isotropic energy Eiso Duration T90 peak energy Ep

cf. Liso~1051 erg/s, Eiso~1052-53 erg for standard GRBs

low-luminosity GRBs

e.g., 230+490-190 Gpc-3 yr-1  (Soderberg+ 2006 ), 100-1800 Gpc-3 yr-1  (Guetta&Della Valle 2007)

➡ sub-energetic class of long GRBs 

➡ only nearby events are detected, but event rate is high 

➡ They accompany broad-lined Ic SNe 

➡ Ex. GRB 980425/SN 1998bw, GRB 060218/SN 2006aj, GRB100316D/ SN2010bh



New LLGRB 171205A  @ 168Mpc
➡ Swift detection on 2017/12/05 

➡ Eiso~2.2x1049[erg], T90~190[s] 

➡ follow-up optical, radio observation 

➡ SN bump after a few days 

cf. Liso~1051 erg/s, Eiso~1052-53 erg for standard GRBs

Obs. Data provided by Swift UK Data Centre

6 x 1046 erg/s 9 x 1047 erg 35 s 122 keV

2 x 1046 erg/s 4 x 1049 erg 2100 s 4.7 keV

5 x 1046 erg/s 6 x 1049 erg 1300 s 18 keV

 1 x 1047erg/s 2.2 x 1049 erg 190 s 125keV
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(D'Elia+2017, GCN circular 22177)

(de Ugarte Postigo+2017, GCN circular 22207)
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Fig. 7. Top panel: Swift/XRT (0.3–10 keV) unfolded spectrum
and best-fit model (blackbody component in green and power-
law in blue). Bottom panel: Residuals of the fit to the data.

Fig. 8. Contour plot showing intrinsic column density vs. tem-
perature for the combined WT and late time PC spectrum. Red,
green and blue curves enclose 1�, 2� and 3� confidence con-
tours, respectively.

Let us assume ↵ = �1.2, which is still consistent with the anal-
ysis of the prompt emission at 90% confidence level. Let us also
assume that this GRB is seen o↵-axis and that � decreases by a
factor of ⇠ 500 from when this event is observed on-axis. Thus,
the estimate of Ep would decrease by ⇠ 500, while the estimate
of Eiso would decrease by ⇠ 5001+1.2 = 8.7 ⇥ 105. The on-axis
values of these parameters would thus be Ep,onaxis ⇠ 6⇥ 104 keV
and Eiso,onaxis ⇠ 2⇥1056 erg. In principle, these estimates are now
within ⇠ 2.5� variation from the best fit of the Amati relation.
However, these values are also highly problematic because they
are large compared to those of known GRBs. A GRB with such
parameters would be truly exceptional and unlikely to be found
within the relatively small volume enclosed by the redshift of
GRB 171205A. A higher value of ↵ would only exacerbate the
problem, while lower values of � would not allow the parame-
ters of this GRB to be consistent with the Amati relation. Thus,
GRB171205A seems to be an event that cannot be explained as
a typical cosmological event seen o↵-axis; instead, its emission

Fig. 9. Epeak in rest-frame versus Eiso. The Swift/BAT GRB sam-
ple (dark blue and red) is adapted from Krimm et al. (2009). The
Konus-Wind GRB sample (light blue and red) is adapted from
Tsvetkova et al. (2017). The yellow stars show GRB 171205A
and several sources defined as low-luminosity GRBs in previous
studies (Campana et al. 2006; Ghisellini et al. 2006; Starling et
al. 2011; Stanway et al. 2015). The red lines are the best fit (solid
line) and the 2.5� variation (dashed line) reported in Krimm et
al. (2009).

mechanism appears to be di↵erent from those of farther away,
very energetic GRBs.

We conclude the section with a word of caution on the out-
liers of the Amati relation. The relation below 1050 erg is not
well studied yet, and in some cases the locations of the outliers
could be due to observational biases (Martone el al. 2017). In
addition, the upper boundary of the Amati relation, as distinct
from the lower one, is strongly a↵ected by instrumental selec-
tion e↵ects (Heussa↵ et al. (2013); Tsvetkova et al. (2017)) and
could not be unequivocally treated as an intrinsic GRB property.
Thus, the problem of the upper-side outliers in the Amati rela-
tion, especially at low Eiso, is rather complicated.

4.2. The UV-optical light curve

At early times, the UV-optical light curves (Fig. 6) are flat (↵1,U
= -0.11 ± 0.08), consistent with the plateau phase observed in
the X-rays, followed by a steeper decay phase (↵2,U = 1.79 ±
0.39). This behaviour has been previously observed for several
Swift GRBs (i.e., Oates et al. 2009; Melandri et al. 2014). At
late times (�t > 3 d) the signature of an emerging supernova
component is clearly visible in the UBV optical filters, and this
was also reported by independent spectroscopic observations (de
Ugarte Postigo et al. 2017a).

In Fig. 10 we fit the early u-band light curve (which is the
best sampled filter since the start of UVOT observations) with
a broken power-law in order to estimate the afterglow contri-
bution. The best fit is then rigidly shifted to the b and v-band
data. The agreement with the data is good and therefore we can
consider the UVOT afterglow to be achromatic. Then we com-
pare the observed u, b, and v light curves for SN 2017iuk with
the corresponding curves for SN 1998bw and SN 2006aj. The
best match of the SN bump is with the template light curves
of SN 2006aj, but lower in magnitude and with the peak time
shifted by ⇠2 d. A simple estimate of the peak time for the b

Eiso

(1+z)Epeak

D’Elia+2018

(D’Elia+2018)



low-luminosity GRBs

Liang+ (2007)

likely less collimated and are detectable in the nearby universe
only.

5. LL-GRBs AS A DISTINCT GRB POPULATION
FROM HL-GRBs

As discussed above, the high detection rate of the LL-GRBsmo-
tivates us to consider the LL-GRBs as a distinct GRB population
from the HL-GRBs. The conventional HL-GRBs generally have
a luminosity of L > 1049 erg s!1. We therefore take a prelimi-
nary criterion of L < 1049 erg s!1 to select our LL-GRB sample.
LL-GRBs are faint. They are only detectable in a small volume of
the local universe, and a large fraction of the population is below
the sensitivity threshold of the detector. The observable LL-GRBs
with Swift are rare events comparable to HL-GRBs. It is unlikely
that a large sample could be established with the current GRB
missions, so it is difficult to investigate !LL through fitting its
log N -log P distribution or through our 1D criteria (as is done
for the HL-population). We can only roughly constrain the !LL

and !LL
0 with a few detections and limits of LL-GRBs. GRBs

980425 and 060218 are two firm detections of LL-GRBs.5 There
are also two other marginal detections for the LL-GRBs, i.e.,
GRBs 031203 (z ¼ 0:105, L ¼ 3:5 ; 1048 erg s!1) and 020903
(z ¼ 0:25, Soderberg et al. 2002; L ¼ 8:3 ; 1048 erg s!1).

5.1. Luminosity Function and Local Rate

With the four detections and the other constraints from obser-
vations,we constrain the LF of these LL-GRBs. The luminosity of
these LL-GRBs ranges from5 ; 1046 erg s!1 to 8:3 ; 1049 erg s!1.
Assuming also a broken power law LF for the LL-population
(similar to eq. [4]), we take Lb around 10

47 erg s!1 and constrain
"1 and"2 by requiring that the 3# contour of the two-dimensional
distribution encloses these LL-GRBs. This places constraints on
both "1 and "2. In order to make the 3 # contour marginally
enclose the nearest burst, GRB 980425, but not overpredict the
detection probability at z < 0:01,"1 should be shallow. Similarly,
"2 is constrained by GRBs 031203 and 020903. Based on these
observational constraints, we search for "LL

1 and "LL
2 by taking

LLLb ¼ (1:0# 0:3) ; 1047 erg s!1. We find that "LL
1 ¼ 0# 0:5

and "LL
2 $ 3:0 4:0 can roughly reflect these constraints. We use

the same simulation method as that for HL-GRBs to derive the
distribution of !LL

0 . The parameters are taken as "LL
1 ¼ 0# 0:5,

"LL
2 ¼ 3:5# 0:5, and LLL

b
¼ (1:0# 0:3) ; 1047 erg s!1. The dis-

tribution of !LL
0 together with that of these parameters are also

shown in Figure 2.We obtain !LL
0 ¼ 325þ352

!177 at a 90% confidence
level. The two-dimensional distribution in the (log L; log z) plane
is shown in Figure 3. It is found that the LL-GRBs form a distinct
‘‘island’’ from the main ‘‘continental’’ population. The detection
rate of the LL-GRBs thus can be explained without overpredict-
ing the HL-GRBs. These results suggest that the current data are
consistent with the conjecture that LL-GRBs form a distinct pop-
ulation from HL-GRBs, with a low luminosity and a high local
rate. The constrained luminosity functions for both HL and LL
populations are displayed in Figure 5a.

5 Note that GRB 060218 shows significant hard-to-soft spectral evolution
(Campana et al. 2006; Ghisellini et al. 2006) and that the peak energy of its in-
tegrated spectrum matches the Amati relation (Amati et al. 2007). GRB 980425
significantly deviates from this relation. Ghisellini et al. (2006) argued that by con-
sidering the spectral evolution effect, GRB 980425 may be consistent with the
Amati relation.

Fig. 5.—(a) The combined LFs of both LL- and HL-GRBs, derived from a set of ordinary parameters (solid line) and from two sets of parameters that are roughly
regarded as the lower (dash-dotted line) and upper (dashed line) limits of the LFs. (b) The observedGRB event rates for both LL- andHL-GRBs as a function of ‘‘enclosing
redshift’’ zenc (i.e., the volume enclosed by this redshift) for the three parameter sets shown in panel (a). The same line styles for different models are adopted in both panels.

LOW-LUMINOSITY GAMMA-RAY BURSTS 1115

Fig. 3.—Jointed contours of the logarithmic GRB detection rate [log (dN /dt)] distribution in a two-dimensional (2D) [ log L, log (z)]-plane, as compared with
observational data ( panel a), assuming that the HL- and LL-GRBs are two distinct populations. The two firm LL-GRBs are denoted by stars, and the SwiftHL-GRBs are
denoted by filled circles. The cross-hatched region marks the limitation of the Swift/BAT detectability, where the threshold is derived by using the Swift/BATsensitivity
in the 50–150 keV band for a standard GRB with Ep ¼ 200 keV in the GRB local frame. The bold solid curve in panel (a) marks the 3 ! confidence level of the 2D
distributions for the HL- and LL-GRBs. The comparisons of the observed 1D distributions of log L and log zwith the model predictions are presented in panels (b) and
(c), respectively. The dashed curve in panel (a) and the dashed lines in panels (b) and (c) are, respectively, the 3 ! contour of the 2D distribution and the corresponding
1D distributions derived from a LF with "HL

1 ¼ 1:05, "HL
2 ¼ 3, and LHLb ¼ 6 ; 1052 erg s"1, which gives a 3 ! contour that can enclose all the HL-GRBs observed by

Swift and pre-Swift missions (see x 7 in the text). [See the electronic edition of the Journal for a color version of this figure.]

Fig. 4.—Same as Fig. 3, but for the case in which the HL- and LL-GRBs are assumed to belong to the same population. [See the electronic edition of the Journal for a
color version of this figure.]
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Fig. 7. Top panel: Swift/XRT (0.3–10 keV) unfolded spectrum
and best-fit model (blackbody component in green and power-
law in blue). Bottom panel: Residuals of the fit to the data.

Fig. 8. Contour plot showing intrinsic column density vs. tem-
perature for the combined WT and late time PC spectrum. Red,
green and blue curves enclose 1�, 2� and 3� confidence con-
tours, respectively.

Let us assume ↵ = �1.2, which is still consistent with the anal-
ysis of the prompt emission at 90% confidence level. Let us also
assume that this GRB is seen o↵-axis and that � decreases by a
factor of ⇠ 500 from when this event is observed on-axis. Thus,
the estimate of Ep would decrease by ⇠ 500, while the estimate
of Eiso would decrease by ⇠ 5001+1.2 = 8.7 ⇥ 105. The on-axis
values of these parameters would thus be Ep,onaxis ⇠ 6⇥ 104 keV
and Eiso,onaxis ⇠ 2⇥1056 erg. In principle, these estimates are now
within ⇠ 2.5� variation from the best fit of the Amati relation.
However, these values are also highly problematic because they
are large compared to those of known GRBs. A GRB with such
parameters would be truly exceptional and unlikely to be found
within the relatively small volume enclosed by the redshift of
GRB 171205A. A higher value of ↵ would only exacerbate the
problem, while lower values of � would not allow the parame-
ters of this GRB to be consistent with the Amati relation. Thus,
GRB171205A seems to be an event that cannot be explained as
a typical cosmological event seen o↵-axis; instead, its emission

Fig. 9. Epeak in rest-frame versus Eiso. The Swift/BAT GRB sam-
ple (dark blue and red) is adapted from Krimm et al. (2009). The
Konus-Wind GRB sample (light blue and red) is adapted from
Tsvetkova et al. (2017). The yellow stars show GRB 171205A
and several sources defined as low-luminosity GRBs in previous
studies (Campana et al. 2006; Ghisellini et al. 2006; Starling et
al. 2011; Stanway et al. 2015). The red lines are the best fit (solid
line) and the 2.5� variation (dashed line) reported in Krimm et
al. (2009).

mechanism appears to be di↵erent from those of farther away,
very energetic GRBs.

We conclude the section with a word of caution on the out-
liers of the Amati relation. The relation below 1050 erg is not
well studied yet, and in some cases the locations of the outliers
could be due to observational biases (Martone el al. 2017). In
addition, the upper boundary of the Amati relation, as distinct
from the lower one, is strongly a↵ected by instrumental selec-
tion e↵ects (Heussa↵ et al. (2013); Tsvetkova et al. (2017)) and
could not be unequivocally treated as an intrinsic GRB property.
Thus, the problem of the upper-side outliers in the Amati rela-
tion, especially at low Eiso, is rather complicated.

4.2. The UV-optical light curve

At early times, the UV-optical light curves (Fig. 6) are flat (↵1,U
= -0.11 ± 0.08), consistent with the plateau phase observed in
the X-rays, followed by a steeper decay phase (↵2,U = 1.79 ±
0.39). This behaviour has been previously observed for several
Swift GRBs (i.e., Oates et al. 2009; Melandri et al. 2014). At
late times (�t > 3 d) the signature of an emerging supernova
component is clearly visible in the UBV optical filters, and this
was also reported by independent spectroscopic observations (de
Ugarte Postigo et al. 2017a).

In Fig. 10 we fit the early u-band light curve (which is the
best sampled filter since the start of UVOT observations) with
a broken power-law in order to estimate the afterglow contri-
bution. The best fit is then rigidly shifted to the b and v-band
data. The agreement with the data is good and therefore we can
consider the UVOT afterglow to be achromatic. Then we com-
pare the observed u, b, and v light curves for SN 2017iuk with
the corresponding curves for SN 1998bw and SN 2006aj. The
best match of the SN bump is with the template light curves
of SN 2006aj, but lower in magnitude and with the peak time
shifted by ⇠2 d. A simple estimate of the peak time for the b
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(1+z)Epeak
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Origin of low-luminosity GRBs
➡ central engine was a neutron star? (e.g., Mazzali+2006) 

➡ off-axis GRB? 

➡ relativistic shock breakout with dense CSM, off-axis/weak/failed jet, cocoon-
CSM interaction(Kulkarni+1998, Tan+2001, Campana+2006, Li 2007; 
Toma+2007; Wang+ 2007; Waxman+ 2007,Suzuki&Shigeyama 2012, Nakar 
2015, Irwin&Chevalier 2016 ) Suzuki&Shigeyama (2013)

3

lower limit:

Rext ! 1013
( vext

0.2 c

)−2
cm (2)

This is consistent with the lack of color evolution at
t < tp and the model prediction that temperature
is dropping with time, reaching at the peak T (tp) ≈
50, 000(Rext/1013 cm)1/4 K (Nakar & Piro 2014). Thus,
the optical/UV light curve of SN 2006aj indicates that its
progenitor had a relatively compact core of several solar
masses, surrounded by ∼ 0.01 M⊙ which is extended to
a radius of a supergiant. This structure is very different
than the typically expected structure of a fully H stripped
progenitor, based on stellar evolution models, yet it must
be very common in GRB progenitors given that llGRBs
are more common than LGRBs. This progenitor struc-
ture has several far reaching implications for the physics
of llGRBs and their associated SNe, which are discussed
in the following sections.

3. SHOCK BREAKOUT ORIGIN FOR llGRBs

The Thomson optical depth of the extended material is
high, ∼ 3, 000(Rext/1013 cm)−2. As a result, the break-
out of the shock driven by the explosion takes place at
Rext. Radio observations show that the leading edge of
the outflow is mildly relativistic (Soderberg et al. 2006),
implying that the breakout must be at least at a mildly
relativistic velocity, i.e., vbo ! 0.5 c. Since rate con-
siderations indicate that the gamma-rays in llGRBs are
not strongly beamed (Soderberg et al. 2006) and late
SN spectroscopy and polarimetry show no signs of ejecta
a-sphericity (Mazzali et al. 2007), the breakout is not
expect to strongly deviate from a spherical symmetry. In
that case the main characteristics of a mildly relativistic
shock breakout signal, its luminosity, duration and typ-
ical photon energy, depend only on the breakout radius
(Nakar & Sari 2012):

Lbo ∼ 2 · 1046
Rext

3 · 1013 cm
erg s−1

tbo ∼ 1000
Rext

3 · 1013 cm
s (3)

Tbo ∼ 50 keV

This is similar to the actual gamma-ray signal of llGRB
060218 where Lbo,obs ≈ 3 · 1046 erg s−1, tbo,obs ≈ 1, 000
s and Tbo,obs ≈ 40 keV (Kaneko et al. 2007) and it
fits very well to a breakout radius Rext ∼ 3 · 1013
cm. Thus, the combination of optical/UV and radio
observations imply that a shock breakout signal is in-
evitable and that its properties are similar to the ob-
served llGRB . As shock breakout also explains a large
range of properties of the high energy emission from
llGRBs (e.g., smooth profile, spectral evolution, low
beaming; Nakar & Sari 2012), this result practically im-
plies that the entire gamma-ray signal in llGRB 060218 is
generated by a mildly relativistic shock breakout, with-
out any significant contribution from a relativistic jet.
It also lends a very strong support for the suggestion
that all llGRBs are shock breakouts (Kulkarni et al.
1998; Tan, Matzner & McKee 2001; Campana et al.
2006; Waxman, Mészáros & Campana 2007; Li 2007;
Katz, Budnik & Waxman 2010; Nakar & Sari 2012).

Core 
Extended 
mass 

1013-1014 cm ~1011 cm 

Core 

An Ultra-Relativistic jet 
Penetrates the core – choked in the extended material 

A mildly relativistic 
shock 

Shock 
breakout  

Gamma-rays/Hard X-rays 
(low-luminosity, un-collimated, soft, non-variable) 

Low-Luminosity GRB Long GRB 

Core 

An Ultra-Relativistic jet 
Penetrates the core 

Gamma-rays 
(luminous, collimated, hard, variable) 

~1011 cm 

Fig. 2.— A schematic sketch illustrating the similarity and dif-
ferences between llGRBs and LGRBs. Both explosions go through
a collapse of a similar core which leads to the formation of a sim-
ilar GRB engine and to a similar SN explosion. In both types
the GRB engine launches ultra-relativistic narrowly collimated jet,
which penetrates through the core. In LGRBs the jet is free to ex-
pand as soon as it is out of the core where it produces a luminous,
hard, narrowly collimated beam of gamma-rays which can vary in
time on short time scales. In llGRB the jet emerges from the core
into the low-mass extended material where it is choked and any
radiation that it produces is absorbed and cannot reach to the ob-
server. The jet energy is deposited in the extended material driving
a strong shock into it. The shock is much less relativistic than the
jet (most likely Newtonian) and it accelerates before breakout (of-
ten to a mildly relativistic velocity). Upon breakout it produces
low-luminosity soft gamma-rays which show no significant variabil-
ity with time and are not narrowly beamed.

4. A UNIFIED PICTURE FOR LGRBS AND llGRBs

If all llGRB progenitors have a similar structure to
that of llGRB 060218 then it provides a natural solution
to the puzzle why two explosions with similar inner
workings produce such different gamma-ray signals.
According to the standard model for LGRBs the burst
is powered by a central engine that launches a highly
collimated ultra-relativistic bipolar jet. In order to pro-
duce a LGRB the jet must first punch its way through
the star and then expand freely at ultra-relativistic
velocities to radii where generated gamma-rays can be
seen by the observer. While the jet drills through the
dense stellar matter its energy is dissipated and the
engine must continue to supply power into the jet if it is
to succeed punching through the star and produce the
observed LGRB (Zhang, Woosley & MacFadyen 2003;
Morsony, Lazzati & Begelman 2007; Mizuta & Aloy
2009; Bromberg et al. 2011). Thus, a necessary condi-
tion for the production of a LGRB is that the engine
working time is long enough to allow the jet to drill
through the star. Observations indicate that a typical
LGRB engine launches a jet at a typical isotropic
equivalent luminosity of Liso ∼ 1051 erg/s and a typical
opening angle θj ∼ 10o over a typical duration of ∼ 20 s
(Piran 2004). The total energy carried by the jet, after
correction for beaming, is ∼ 1051 erg. If the progenitor
is a bare H stripped star of several solar masses and
several solar radii it takes ∼ 10 s for the jet to penetrate
through the star (see appendix B; Bromberg et al.
2011), implying that the jet can successfully emerge
from the star and that the collapse of such a progenitor
can lead to a LGRB.
The picture, however, is very different if there is an

additional extended envelope surrounding the massive

Nakar (2015)



dense CSM around massive stars?
➡ “Non-detection” of fast, bright shock breakout signals from type II SNe 

➡ shock breakout emission can be smeared out or “delayed” by optically thick gas. 

➡ SN progenitor surrounded by dense CSMs? 

➡ we do not know if such CSMs are ubiquitously present for all types of CCSNe 

credit: NAOJForster, Moriya + (2018)



dense CSM around massive stars?
➡ “flash spectroscopy”, right after SN discovery 

➡ CSM illuminated by the SN shock breakout light 

➡ centrally confined CSM with a density much larger than normal stellar wind

SN 2013fs(=iPTF13dqy)  Yaron + (2017)

radius1015cm1014cm

density

dM/dt=10-3M◉/yr?



Ejecta with mildly relativistic speeds and CSM
➡  SN ejecta (with max Γ~2-10) colliding with circum-stellar medium (CSM), 

leading to the dissipation of the kinetic energy into the thermal energy of the 

shocked gas.  

➡ the thermal energy diffusing out through the shell is responsible for the 

prompt emission2 A. Suzuki, K. Maeda, and T. Shigeyama

(Campana et al. 2006; Starling et al. 2011). The unusually
long gamma-ray emission and the large blackbody radii in-
ferred by the thermal component indicate that a hot ejecta
component with a photospheric radius larger than typical
radii of compact stars play a vital role in producing high-
energy emission.

Radio observations of SNe are another tool for prob-
ing highly energetic explosions through the presence of
fast shock waves propagating in the circumstellar medium
(CSM) of the exploding star. Follow-up radio observations of
GRB-SNe have also been conducted in great detail. GRB-
SNe are indeed known to be a bright radio emitter, e.g.,
SN 1998bw (Kulkarni et al. 1998; Weiler et al. 2002), which
is likely caused by synchrotron emission produced by the
forward shock sweeping the ambient gas. Furthermore, the
discovery of radio-loud SNe Ic-BL without any gamma-ray
signature, e.g., SN 2009bb and SN 2012ap, have revealed a
population of relativistic SNe, whose radio emission strongly
indicate the presence of ejecta traveling at (mildly) relativis-
tic speeds (Soderberg et al. 2010; Milisavljevic et al. 2015;
Chakraborti et al. 2015). Light curve modelings of radio
emission from GRB-SNe and relativistic SNe have also been
attempted by several authors (e.g., Barniol Duran et al.
2015; Nakauchi et al. 2015).

Despite these multi-wavelength observations and inten-
sive discussion, the progenitor system of llGRBs and the ori-
gin of their gamma-ray emission are still debated (see, e.g.,
Li 2007; Toma et al. 2007; Wang et al. 2007; Waxman et al.
2007; Bromberg et al. 2011). One of the plausible scenarios
for the gamma-ray emission is the emergence of a mildly
relativistic shock from a CSM in which the progenitor
star is embedded (e.g., Campana et al. 2006; Waxman et al.
2007; Nakar & Sari 2012; see also Matzner & McKee 1999;
Woosley et al. 1999; Tan et al. 2001). In this scenario,
the CSM should be sufficiently dense so that the pho-
tosphere in the CSM is well above the surface of the
star so as to prolong the prompt gamma-ray emission.
The mildly relativistic shock can be driven by either a
weak jet (Irwin & Chevalier 2016), the cocoon associated
with a jet (Ramirez-Ruiz et al. 2002; Lazzati & Begelman
2005; Suzuki & Shigeyama 2013), or a jet choked in a star
(Bromberg et al. 2011; Lazzati et al. 2012) or an extended
stellar envelope (Nakar 2015). The hydrodynamic interac-
tion of the relativistic flow and the CSM dissipates the ki-
netic energy of the flow and gives rise to bright high-energy
emission.

Recently, the new GRB 171205A was detected by the
Swift satellite (D’Elia et al. 2017). The reported T90 dura-
tion and the 15–50 keV fluence of the burst were T90 = 189.4
s and 3.6 ± 0.3 × 10−6 erg cm−2. The optical afterglow was
soon identified and found associated with a spiral galaxy at
z = 0.0368 (Izzo et al. 2017). Assuming the distance of 168
Mpc, the isotropic equivalent energy of the prompt gamma-
ray emission is 1.2 × 1049 erg, which is much smaller than
those of standard GRBs. From these gamma-ray proper-
ties, GRB 171205A is unambiguously classified as an ll-
GRB. Observations in other wavelengths have also been
carried out by several groups. Follow-up optical photomet-
ric and spectroscopic observations identified an SN com-
ponent in the optical afterglow at only 2.4 days after the
discovery (de Ugarte Postigo et al. 2017a). The early spec-
tra of the SN component showed SN 1998bw-like spectral
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Figure 1. Schematic view of the emission model. The upper and
lower panels correspond to the stages where the shocked gas is
optically thick and thin.

features. Radio observations were initiated about 20 hours
after the trigger and reported the detection of a bright
radio source (de Ugarte Postigo et al. 2017b). The prompt
Swift detection and the multi-wavelength follow-up cam-
paigns have made GRB 171205A one of the most densely
observed nearby GRB-SNe.

Developing theoretical light curve models self-
consistently explaining the multi-wavelength light curves
of GRB 171205A would greatly help us constraining
the progenitor scenario for llGRBs and the mechanism
responsible for the high-energy emission. In this work, we
perform light curve modeling of GRB 171205A based on
the relativistic ejecta-CSM interaction model developed by
our previous work (Suzuki et al. 2017, hereafter SMS17).
We found that the relativistic ejecta-CSM interaction
model can successfully explain the multi-wavelength light
curves of GRB 171205A. From the light curve modeling,
we obtain some requirements on the dynamical properties
of the ejecta produced by the stellar explosion associated
with GRB 171205A and the density structure of the CSM
surrounding the progenitor star. Then, we further discuss
the population of llGRBs and other X-ray transients in the
framework of the CSM interaction scenario.

This paper is organized as follows. In Section 2, we de-
scribe our emission model. Results of the light curve model-
ing are presented in Section 3. We discuss the implications
of the results and the origin of llGRBs in Section 4. Finally,
Section 5 concludes this paper.

2 EMISSION MODEL

The emission model is based on our previous work (two sep-
arated papers; SMS17 and Suzuki & Maeda 2018, hereafter
SM18) with some updates. Figure 1 schematically represents
the situation considered here. A massive star explodes in the
surrounding CSM and creates expanding spherical ejecta. As
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How much energy can be 
released in ejecta-CSM 

interaction?

• kinetic energy of SN ejecta 
• density structure 
• CSM density 



➡ steady wind: ρ=Ar-2,  A★=A/(5x1011 [g/cm]) 

➡ freely expanding trans-relativistic ejecta: cβ=r/t,                         　　　　　　　

(dM/dt=10-4M◉/yr, for vwind=1000km/s)
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One-zone semi-analytical model



One-zone semi-analytical model
➡ we approximate the shocked region as a thin shell and solve the EOM. 

➡ shock radii Rfs,Rrs, shell mass Ms, shell momentum Sr, and so on4 SUZUKI, MAEDA, & SHIGEYAMA

TABLE 1
Total mass of trans-relativistic ejecta for Erel,51 = 1

�max n = 1 n = 2 n = 3 n = 4 n = 5
10 3.78⇥ 10�4M� 5.47⇥ 10�4M� 6.98⇥ 10�4M� 8.14⇥ 10�4M� 9.00⇥ 10�4M�
5 4.64⇥ 10�4M� 5.90⇥ 10�4M� 7.13⇥ 10�4M� 8.19⇥ 10�4M� 9.02⇥ 10�4M�
3 6.06⇥ 10�4M� 6.87⇥ 10�4M� 7.69⇥ 10�4M� 8.46⇥ 10�4M� 9.14⇥ 10�4M�

which governs the temporal evolution of the velocity of
the shell.
The position Rs of the shell evolves according to the

following equation,

dRs

dt
= �s, (20)

i.e., the definition of the velocity of the shell. This equa-
tion is integrated along with Equations (16) and (19) to
determine the position of the shell at time t.

2.4. Shock conditions

For the integration of the equations introduced in the
previous subsection, the shock velocities �rs and �fs and
the hydrodynamical variables at the post-shock gas, ⇢rs,
prs, ⇢fs, and pfs at the forward and reverse shock should
be given as functions of the velocity of the shell �s, or
the corresponding Lorentz factor �s. These variables are
obtained from the Rankine-Hugoniot conditions at the
shock fronts. The derivation of the Rankine-Hutoniot
condition is described in elsewhere (see Appendix of the
previous paper Suzuki & Shigeyama (2014), some text-
books, or review papers, such as, Landau & Lifshitz
(1987); Mart́ı & Müller (2003)). Thus, we will not repeat
the derivation in this paper.
The shock velocity �sh is generally expressed as a func-

tion of the velocity and the Lorentz factor of the gas in
the upstream, �u and �u, and in the downstream, �d and
�d, as follows,

�sh(�u,�d) =
��u�2

d(�u � �d)�d � (� � 1)(�u � �d)

��u�2
d(�u � �d)� (� � 1)(�u�u � �d�d)

,

(21)
when the pressure in the upstream is negligible. Once the
shock velocity �sh ( or the corresponding Lorentz factor
�sh) is obtained, the post-shock density ⇢d and pressure
pd are found from the following relations,

⇢d = ⇢u
�d(�2

u � �2
sh)

�u(�2
d � �2

sh)
, (22)

and

pd =
⇢u�2

u(�u � �d)(�u � �sh)

1� �d�sh
. (23)

2.4.1. Forward Shock

For the forward shock, the pre-shock velocity �fs,u is
equal to zero and the pre-shock density ⇢fs,u is obtained
by substituting the shock position Rs into the CSM den-
sity profile, Equation (11),

⇢fs,u = AR�2
s . (24)

Thus, the evaluation of the forward shock velocity �fs is
straightforward,

�fs = �sh(0,�s), (25)

where the velocity of the shell �s is assumed to be the
post-shock velocity. Using the shock velocity, one obtains
the forward shock Lorentz factor �fs, the post-shock den-
sity ⇢fs,d, and the post-shock pressure pfs,d, as follows,

�fs =
1p

1� �2
fs

, (26)

⇢fs,d = ⇢fs,u
�s(1� �2

fs)

�u(�2
s � �2

fs)
, (27)

and

pfs,d =
⇢fs,u�s�fs

1� �s�fs
. (28)

2.4.2. Reverse shock

The reverse shock propagates in the freely expanding
ejecta. Thus, the pre-shock values, �rs,u and ⇢rs,u, of the
velocity and the density are given by

�rs,u =
Rs

t
, (29)

and
⇢rs,u = ⇢ej(t, Rs). (30)

The reverse shock velocity is determined in a similar way
to the forward shock,

�rs = �sh(�rs,u,�s). (31)

Once the reverse shock velocity is obtained, the reverse
shock Lorentz factor �rs, the post-shock density ⇢rs,d,
and the post-shock pressure prs,d are evaluated,

�rs =
1p

1� �2
rs

, (32)

⇢rs,d = ⇢fs,u
�s(�2

rs,u � �2
rs)

�u(�2
s � �2

rs)
, (33)

and

prs,d =
⇢rs,u�2

rs,u(�rs,u � �s)(�rs,u � �s)

1� �rs,d�rs
. (34)

2.5. Non-relativistic and Ultra-relativistic Limits

When the velocity of the shell is much smaller than the
speed of light (“non-relativistic regime”) or the Lorentz
factor of the shell is much larger than unity (“ultra-
relativistic regime”), self-similar solutions describing the
flow are known (Chevalier 1982; Nakamura & Shigeyama
2006). The time dependence of physical variables of the
flow can be obtained by imposing the condition that the
pressure in the downstream of the forward and reverse
shocks on time t should be identical with each other,
pfs,d / prs,d. In the following, we reproduce the tempo-
ral behavior of the shell in the two limits.
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Here �min is set to 1/
p
2, which gives the 4-velocity of

unity, �� = 1. We denote the total kinetic energy in
units of 1051 erg by Erel,51. In a similar way, the mass of
the relativistic ejecta can be calculated as follows,

Mrel = 4⇡

Z �maxt

�mint
⇢ej�r

2dr, (10)

which is proportional to the kinetic energy Erel.
Several studies (Tan et al. 2001) investigated the value

of the exponent n corresponding to di↵erent regimes,
such as, non-relativistic, trans-relativistic, and ultra-
relativistic regimes. These studies focus on the emer-
gence of a strong shock wave from a stellar atmosphere
with spherical symmetry. Recent two-dimensional spe-
cial relativistic hydrodynamic simulations Suzuki et al.
(2015) revealed that the cocoon component associated
with an ultra-relativistic jet can produce quasi-spherical
ejecta. While failed jet cases create ejecta with the ex-
ponent n similar to those expected in earlier works (Tan
et al. 2001), the kinetic energy distribution of the cocoon
component exhibits a steeper slope. In this work, we con-
sider ejecta with various values of the exponent n = 1, 2,
3, 4, and 5. Furthermore, three values of the maximum
Lorentz factor, �max = 10, 5 and 3, are treated. The
values of the mass of the ejecta with Erel,51 = 1 for these
parameters are summarized in Table 1.
The ejecta collide with a CSM with a power-law density

profile with an exponent �k,

⇢CSM(r) = Ar�k. (11)

We especially consider a steady wind at a constant mass-
loss rate and thus set the exponent k to k = 2 throughout
this paper. For a given set of the mass-loss rate Ṁ and
the wind velocity vw, one can express the coe�cient A
as follows,

A =
Ṁ

4⇡vw
= 5.0⇥ 1011Ṁ�5v

�1
w,3 g cm�1, (12)

where Ṁ = 10�5Ṁ�5 M� yr�1 and vw =
103 vw,3 km s�1. Hereafter, A? stands for the param-
eter A in units of 5⇥ 1011 g cm�1.
When the hydrodynamical interaction between the

ejecta and the CSM starts at t = t0, the ejecta fill a
region from r = 0 to r = �maxt0 and the outermost layer
is adjacent to the CSM at r = �maxt0.

2.2. Thin Shell Approximation

After the ejecta start expanding and interacting with
the CSM at t > t0, the hydrodynamical interaction of
the two media leads to the formation of the forward and
reverse shocks, when the pressure is su�ciently low at the
interface between the two components. We treat cases
where both forward and reverse shocks form and consider
the dynamical evolution of the shocked gas.
As we have mentioned in Section 1, a self-similar solu-

tion describes the dynamical evolution of the shocked gas
in non-relativistic and ultra-relativistic regimes. How-
ever, we cannot expect any analytical solution for the
trans-relativistic case, because the Rankine-Hugoniot
condition at the two shocks cannot be simplified into a
convenient form. In other words, the characteristic vari-
ables of the shocked gas cannot be expressed as power-

law functions of time unlike non-relativistic and ultra-
relativistic cases. Despite the di�culty, the shocked gas
can be regarded as a geometrically thin shell at earlier
stages of the evolution as we will see below. Thus, we
approximate the width of the shell to be negligibly small
(referred to as a “thin shell approximation”) and solve
the equation of motion of the shell. We further assume
that the rest-mass energy of the shell dominates over the
internal energy, p/⇢ ⌧ 1. The validity of these approxi-
mations will be checked in Section 3, where approximated
solutions are compared with results of numerical calcu-
lations.

2.3. Temporal Evolution of the Shell

The dynamical evolution of the shell is determined by
the following two competing e↵ects, (1) the deceleration
by loading mass and (2) the acceleration by the pressure
gradient. We denote the mass, the Lorentz factor, the
velocity and the position of the shell by Ms, �s, �s, and
Rs. The integration of Equation (2) over the volume of
the shell leads to

d

dt
(Ms�s�s)+4⇡R2

s (Ffs�Frs) = 4⇡R2
s (prs,d�pfs,d), (13)

Since the shocked gas is in between the forward and the
reverse shocks, the shell is accelerated by the di↵erence
of the post-shock pressure at the forward and the reverse
shocks, pfs,d and prs,d. The R.H.S. of Equation (13) rep-
resents this e↵ect. The quantities Ffs and �Frs in the
L.H.S. of Equation (13) denote the momentum fluxes of
gas flowing into the shocked gas through the forward and
the reverse shocks. They also contribute to the temporal
evolution of the momentum of the shell and expressed in
terms of the velocities, �fs and �rs, of the forward and
reverse shocks and the post-shock densities ⇢fs and ⇢rs at
the forward and the reverse shocks as follows,

Ffs = ⇢fs�
2
s�s(�fs � �s), (14)

and
Frs = ⇢rs�

2
s�s(�rs � �s). (15)

Next, the integration of Equation (1) gives the following
equation governing the temporal evolution of the mass
of the shell,

dMs

dt
+ 4⇡R2

fsFm,fs � 4⇡R2
rsFm,rs = 0 (16)

The mass fluxes Fm,fs and �Fm,rs flowing into the
shocked gas through the forward and reverse shocks are
expressed as follows,

Fm,fs = ⇢fs�s(�fs � �s), (17)

and
Fm,rs = ⇢rs�s(�rs � �s). (18)

Solving Equation (16), one finds the temporal evolution
of the mass of the shell, which increases with time by
sweeping the pre-shock gas in the ejecta and the CSM.
Furthermore, one can eliminate the flux terms in Equa-
tions (13) and (16) and obtain

Ms
d(�s�s)

dt
= 4⇡R2

s (prs,d � pfs,d), (19)
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Here �min is set to 1/
p
2, which gives the 4-velocity of

unity, �� = 1. We denote the total kinetic energy in
units of 1051 erg by Erel,51. In a similar way, the mass of
the relativistic ejecta can be calculated as follows,

Mrel = 4⇡

Z �maxt

�mint
⇢ej�r

2dr, (10)

which is proportional to the kinetic energy Erel.
Several studies (Tan et al. 2001) investigated the value

of the exponent n corresponding to di↵erent regimes,
such as, non-relativistic, trans-relativistic, and ultra-
relativistic regimes. These studies focus on the emer-
gence of a strong shock wave from a stellar atmosphere
with spherical symmetry. Recent two-dimensional spe-
cial relativistic hydrodynamic simulations Suzuki et al.
(2015) revealed that the cocoon component associated
with an ultra-relativistic jet can produce quasi-spherical
ejecta. While failed jet cases create ejecta with the ex-
ponent n similar to those expected in earlier works (Tan
et al. 2001), the kinetic energy distribution of the cocoon
component exhibits a steeper slope. In this work, we con-
sider ejecta with various values of the exponent n = 1, 2,
3, 4, and 5. Furthermore, three values of the maximum
Lorentz factor, �max = 10, 5 and 3, are treated. The
values of the mass of the ejecta with Erel,51 = 1 for these
parameters are summarized in Table 1.
The ejecta collide with a CSM with a power-law density

profile with an exponent �k,

⇢CSM(r) = Ar�k. (11)

We especially consider a steady wind at a constant mass-
loss rate and thus set the exponent k to k = 2 throughout
this paper. For a given set of the mass-loss rate Ṁ and
the wind velocity vw, one can express the coe�cient A
as follows,

A =
Ṁ

4⇡vw
= 5.0⇥ 1011Ṁ�5v

�1
w,3 g cm�1, (12)

where Ṁ = 10�5Ṁ�5 M� yr�1 and vw =
103 vw,3 km s�1. Hereafter, A? stands for the param-
eter A in units of 5⇥ 1011 g cm�1.
When the hydrodynamical interaction between the

ejecta and the CSM starts at t = t0, the ejecta fill a
region from r = 0 to r = �maxt0 and the outermost layer
is adjacent to the CSM at r = �maxt0.

2.2. Thin Shell Approximation

After the ejecta start expanding and interacting with
the CSM at t > t0, the hydrodynamical interaction of
the two media leads to the formation of the forward and
reverse shocks, when the pressure is su�ciently low at the
interface between the two components. We treat cases
where both forward and reverse shocks form and consider
the dynamical evolution of the shocked gas.
As we have mentioned in Section 1, a self-similar solu-

tion describes the dynamical evolution of the shocked gas
in non-relativistic and ultra-relativistic regimes. How-
ever, we cannot expect any analytical solution for the
trans-relativistic case, because the Rankine-Hugoniot
condition at the two shocks cannot be simplified into a
convenient form. In other words, the characteristic vari-
ables of the shocked gas cannot be expressed as power-

law functions of time unlike non-relativistic and ultra-
relativistic cases. Despite the di�culty, the shocked gas
can be regarded as a geometrically thin shell at earlier
stages of the evolution as we will see below. Thus, we
approximate the width of the shell to be negligibly small
(referred to as a “thin shell approximation”) and solve
the equation of motion of the shell. We further assume
that the rest-mass energy of the shell dominates over the
internal energy, p/⇢ ⌧ 1. The validity of these approxi-
mations will be checked in Section 3, where approximated
solutions are compared with results of numerical calcu-
lations.

2.3. Temporal Evolution of the Shell

The dynamical evolution of the shell is determined by
the following two competing e↵ects, (1) the deceleration
by loading mass and (2) the acceleration by the pressure
gradient. We denote the mass, the Lorentz factor, the
velocity and the position of the shell by Ms, �s, �s, and
Rs. The integration of Equation (2) over the volume of
the shell leads to

dSr

dt
+ 4⇡R2

fsFfs � 4⇡R2
rsFrs = 4⇡R2

fsprs,d � 4⇡R2
rspfs,d

(13)
Since the shocked gas is in between the forward and the
reverse shocks, the shell is accelerated by the di↵erence
of the post-shock pressure at the forward and the reverse
shocks, pfs,d and prs,d. The R.H.S. of Equation (13) rep-
resents this e↵ect. The quantities Ffs and �Frs in the
L.H.S. of Equation (13) denote the momentum fluxes of
gas flowing into the shocked gas through the forward and
the reverse shocks. They also contribute to the temporal
evolution of the momentum of the shell and expressed in
terms of the velocities, �fs and �rs, of the forward and
reverse shocks and the post-shock densities ⇢fs and ⇢rs at
the forward and the reverse shocks as follows,

Ffs = ⇢fs�
2
s�s(�fs � �s), (14)

and
Frs = ⇢rs�

2
s�s(�rs � �s). (15)

Next, the integration of Equation (1) gives the following
equation governing the temporal evolution of the mass
of the shell,

dMs

dt
+ 4⇡R2

fsFm,fs � 4⇡R2
rsFm,rs = 0 (16)

The mass fluxes Fm,fs and �Fm,rs flowing into the
shocked gas through the forward and reverse shocks are
expressed as follows,

Fm,fs = ⇢fs�s(�fs � �s), (17)

and
Fm,rs = ⇢rs�s(�rs � �s). (18)

Solving Equation (16), one finds the temporal evolution
of the mass of the shell, which increases with time by
sweeping the pre-shock gas in the ejecta and the CSM.
Furthermore, one can eliminate the flux terms in Equa-
tions (13) and (16) and obtain

Ms
d(�s�s)

dt
= 4⇡R2

s (prs,d � pfs,d), (19)
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One-zone semi-analytical model
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Here �min is set to 1/
p
2, which gives the 4-velocity of

unity, �� = 1. We denote the total kinetic energy in
units of 1051 erg by Erel,51. In a similar way, the mass of
the relativistic ejecta can be calculated as follows,

Mrel = 4⇡

Z �maxt

�mint
⇢ej�r

2dr, (10)

which is proportional to the kinetic energy Erel.
Several studies (Tan et al. 2001) investigated the value

of the exponent n corresponding to di↵erent regimes,
such as, non-relativistic, trans-relativistic, and ultra-
relativistic regimes. These studies focus on the emer-
gence of a strong shock wave from a stellar atmosphere
with spherical symmetry. Recent two-dimensional spe-
cial relativistic hydrodynamic simulations Suzuki et al.
(2015) revealed that the cocoon component associated
with an ultra-relativistic jet can produce quasi-spherical
ejecta. While failed jet cases create ejecta with the ex-
ponent n similar to those expected in earlier works (Tan
et al. 2001), the kinetic energy distribution of the cocoon
component exhibits a steeper slope. In this work, we con-
sider ejecta with various values of the exponent n = 1, 2,
3, 4, and 5. Furthermore, three values of the maximum
Lorentz factor, �max = 10, 5 and 3, are treated. The
values of the mass of the ejecta with Erel,51 = 1 for these
parameters are summarized in Table 1.
The ejecta collide with a CSM with a power-law density

profile with an exponent �k,

⇢CSM(r) = Ar�k. (11)

We especially consider a steady wind at a constant mass-
loss rate and thus set the exponent k to k = 2 throughout
this paper. For a given set of the mass-loss rate Ṁ and
the wind velocity vw, one can express the coe�cient A
as follows,

A =
Ṁ

4⇡vw
= 5.0⇥ 1011Ṁ�5v

�1
w,3 g cm�1, (12)

where Ṁ = 10�5Ṁ�5 M� yr�1 and vw =
103 vw,3 km s�1. Hereafter, A? stands for the param-
eter A in units of 5⇥ 1011 g cm�1.
When the hydrodynamical interaction between the

ejecta and the CSM starts at t = t0, the ejecta fill a
region from r = 0 to r = �maxt0 and the outermost layer
is adjacent to the CSM at r = �maxt0.

2.2. Thin Shell Approximation

After the ejecta start expanding and interacting with
the CSM at t > t0, the hydrodynamical interaction of
the two media leads to the formation of the forward and
reverse shocks, when the pressure is su�ciently low at the
interface between the two components. We treat cases
where both forward and reverse shocks form and consider
the dynamical evolution of the shocked gas.
As we have mentioned in Section 1, a self-similar solu-

tion describes the dynamical evolution of the shocked gas
in non-relativistic and ultra-relativistic regimes. How-
ever, we cannot expect any analytical solution for the
trans-relativistic case, because the Rankine-Hugoniot
condition at the two shocks cannot be simplified into a
convenient form. In other words, the characteristic vari-
ables of the shocked gas cannot be expressed as power-

law functions of time unlike non-relativistic and ultra-
relativistic cases. Despite the di�culty, the shocked gas
can be regarded as a geometrically thin shell at earlier
stages of the evolution as we will see below. Thus, we
approximate the width of the shell to be negligibly small
(referred to as a “thin shell approximation”) and solve
the equation of motion of the shell. We further assume
that the rest-mass energy of the shell dominates over the
internal energy, p/⇢ ⌧ 1. The validity of these approxi-
mations will be checked in Section 3, where approximated
solutions are compared with results of numerical calcu-
lations.

2.3. Temporal Evolution of the Shell

The dynamical evolution of the shell is determined by
the following two competing e↵ects, (1) the deceleration
by loading mass and (2) the acceleration by the pressure
gradient. We denote the mass, the Lorentz factor, the
velocity and the position of the shell by Ms, �s, �s, and
Rs. The integration of Equation (2) over the volume of
the shell leads to

dSr

dt
+ 4⇡R2

fsFfs � 4⇡R2
rsFrs = 4⇡R2

fsprs,d � 4⇡R2
rspfs,d

(13)
Since the shocked gas is in between the forward and the
reverse shocks, the shell is accelerated by the di↵erence
of the post-shock pressure at the forward and the reverse
shocks, pfs,d and prs,d. The R.H.S. of Equation (13) rep-
resents this e↵ect. The quantities Ffs and �Frs in the
L.H.S. of Equation (13) denote the momentum fluxes of
gas flowing into the shocked gas through the forward and
the reverse shocks. They also contribute to the temporal
evolution of the momentum of the shell and expressed in
terms of the velocities, �fs and �rs, of the forward and
reverse shocks and the post-shock densities ⇢fs and ⇢rs at
the forward and the reverse shocks as follows,

Ffs = ⇢fs�
2
s�s(�fs � �s), (14)

and
Frs = ⇢rs�

2
s�s(�rs � �s). (15)

Next, the integration of Equation (1) gives the following
equation governing the temporal evolution of the mass
of the shell,

dMs

dt
+ 4⇡R2

fsFm,fs � 4⇡R2
rsFm,rs = 0 (16)

The mass fluxes Fm,fs and �Fm,rs flowing into the
shocked gas through the forward and reverse shocks are
expressed as follows,

Fm,fs = ⇢fs�s(�fs � �s), (17)

and
Fm,rs = ⇢rs�s(�rs � �s). (18)

Solving Equation (16), one finds the temporal evolution
of the mass of the shell, which increases with time by
sweeping the pre-shock gas in the ejecta and the CSM.
Furthermore, one can eliminate the flux terms in Equa-
tions (13) and (16) and obtain

Ms
d(�s�s)

dt
= 4⇡R2

s (prs,d � pfs,d), (19)
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TABLE 1
Total mass of trans-relativistic ejecta for Erel,51 = 1

�max n = 1 n = 2 n = 3 n = 4 n = 5
10 3.78⇥ 10�4M� 5.47⇥ 10�4M� 6.98⇥ 10�4M� 8.14⇥ 10�4M� 9.00⇥ 10�4M�
5 4.64⇥ 10�4M� 5.90⇥ 10�4M� 7.13⇥ 10�4M� 8.19⇥ 10�4M� 9.02⇥ 10�4M�
3 6.06⇥ 10�4M� 6.87⇥ 10�4M� 7.69⇥ 10�4M� 8.46⇥ 10�4M� 9.14⇥ 10�4M�

As we have mentioned in Section 1, self-similar solu-
tions describing the dynamical evolution of the shocked
gas have been found in non-relativistic and ultra-
relativistic regimes. However, we cannot expect any an-
alytical solution for the trans-relativistic case, because
the shock jump conditions at the two shocks cannot
be simplified into a convenient form. In other words,
the characteristic variables of the shocked gas cannot
be expressed as power-law functions of time unlike non-
relativistic and ultra-relativistic cases. Despite the di�-
culty, the shocked gas can be regarded as a geometrically
thin shell at earlier stages of the evolution as we will see
below. Thus, we approximate the width of the shell to be
negligibly small (referred to as a “thin shell approxima-
tion”) compared with the radius and solve the equation
of motion of the shell. We further assume that the rest-
mass energy of the shell dominates over the internal en-
ergy, p/⇢ ⌧ 1. The validity of these approximations will
be checked in Section 3, where approximated solutions
are compared with results of numerical calculations.

2.3. Temporal Evolution of the Shell

The dynamical evolution of the shell is determined
by the following two competing e↵ects, the deceleration
by loading mass, the supply of momentum through the
shocks, and the deceleration and acceleration due to the
di↵erence in the post-shock pressure, pfs and prs, at the
forward and reverse shocks. We denote the mass, the
Lorentz factor, the velocity and the position of the for-
ward and reverse shocks by Ms, �s, �s Rfs, and Rrs. We
model the temporal evolution of the momentum Sr of the
shell along the radial direction as follows,

dSr

dt
+4⇡R2

fsFfs � 4⇡R2
rsFrs = 4⇡R2

fsprs � 4⇡R2
rspfs, (13)

The 1st and 2nd terms of the R.H.S. of Equation (13)
represent the force exerted by the post-shock pressure at
the reverse and forward shocks. The quantities Ffs and
�Frs in the L.H.S. of Equation (13) denote the momen-
tum fluxes of gas flowing into the shocked gas through
the forward and the reverse shocks, which reflects the mo-
mentum conservation. Since the ambient gas is moving
at a velocity much smaller than the ejecta, we neglect
the contribution of the ambient gas to the momentum
gain of the shell and thus set the flux to zero, Ffs = 0.
On the other hand, the supply of the momentum of the
ejecta through the reverse shock plays a dominant role
in increasing the momentum of the shell. The flux Frs is
described as follows,

Frs = ⇢ej�
2
ej�ej(�ej � �rs), (14)

where ⇢ej, �ej, and �ej are the density, the Lorentz factor
and the velocity of the unshocked ejecta at the reverse
shock.

Next, the temporal evolution of the mass of the shell
can be considered in a similar way to the momentum.
The mass of the shocked gas continuously increases as
the forward and reverse shocks sweep the ambient gas
and the ejecta. The governing equation is expressed as
follows,

dMs

dt
+ 4⇡R2

fsFm,fs � 4⇡R2
rsFm,rs = 0 (15)

The mass fluxes Fm,fs and �Fm,rs flowing into the
shocked gas through the forward and reverse shocks.
They are expressed as follows,

Fm,fs = ⇢a�a(�a � �fs) = �⇢a�fs, (16)

and
Fm,rs = ⇢ej�ej(�ej � �rs). (17)

Here ⇢a, �a, and �a denote the density, the Lorentz fac-
tor, and the velocity of the unshocked ambient gas at the
forward shock. Since the velocity of the ambient gas is
negligibly small, the velocity is set to zero, �a and then
the R.H.S of Equation (16) is obtained.
Defining the Lorentz factor �s and the velocity �s of

the shell, the following relation between these variables,
the momentum, and the mass is obtained,

Sr = Ms�s�s (18)

which can be solved with respect to the Lorentz factor
for a given set the momentum and the mass,

�s =

s

1 +
S2
r

M2
s

. (19)

The radius of the shell evolves according to the follow-
ing equation,

dRs

dt
= �s, (20)

The temporal evolution of the the forward and reverse
shock radii, Rfs and Rrs are governed by similar equa-
tions,

dRfs

dt
= �fs, (21)

and
dRrs

dt
= �rs, (22)

These equations can be integrated in a straightforward
way, once the velocities, �s, �fs, and �rs, are obtained.

2.4. Shock Jump Conditions

In order to integrate the equations introduced in the
previous subsection, the shock velocities �rs and �fs and
the hydrodynamical variables at the post-shock gas, ⇢fs,
pfs, ⇢rs, and prs at the forward and reverse shocks should
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TABLE 1
Total mass of trans-relativistic ejecta for Erel,51 = 1

�max n = 1 n = 2 n = 3 n = 4 n = 5
10 3.78⇥ 10�4M� 5.47⇥ 10�4M� 6.98⇥ 10�4M� 8.14⇥ 10�4M� 9.00⇥ 10�4M�
5 4.64⇥ 10�4M� 5.90⇥ 10�4M� 7.13⇥ 10�4M� 8.19⇥ 10�4M� 9.02⇥ 10�4M�
3 6.06⇥ 10�4M� 6.87⇥ 10�4M� 7.69⇥ 10�4M� 8.46⇥ 10�4M� 9.14⇥ 10�4M�

As we have mentioned in Section 1, self-similar solu-
tions describing the dynamical evolution of the shocked
gas have been found in non-relativistic and ultra-
relativistic regimes. However, we cannot expect any an-
alytical solution for the trans-relativistic case, because
the shock jump conditions at the two shocks cannot
be simplified into a convenient form. In other words,
the characteristic variables of the shocked gas cannot
be expressed as power-law functions of time unlike non-
relativistic and ultra-relativistic cases. Despite the di�-
culty, the shocked gas can be regarded as a geometrically
thin shell at earlier stages of the evolution as we will see
below. Thus, we approximate the width of the shell to be
negligibly small (referred to as a “thin shell approxima-
tion”) compared with the radius and solve the equation
of motion of the shell. We further assume that the rest-
mass energy of the shell dominates over the internal en-
ergy, p/⇢ ⌧ 1. The validity of these approximations will
be checked in Section 3, where approximated solutions
are compared with results of numerical calculations.

2.3. Temporal Evolution of the Shell

The dynamical evolution of the shell is determined
by the following two competing e↵ects, the deceleration
by loading mass, the supply of momentum through the
shocks, and the deceleration and acceleration due to the
di↵erence in the post-shock pressure, pfs and prs, at the
forward and reverse shocks. We denote the mass, the
Lorentz factor, the velocity and the position of the for-
ward and reverse shocks by Ms, �s, �s Rfs, and Rrs. We
model the temporal evolution of the momentum Sr of the
shell along the radial direction as follows,

dSr

dt
+4⇡R2

fsFfs � 4⇡R2
rsFrs = 4⇡R2

fsprs � 4⇡R2
rspfs, (13)

The 1st and 2nd terms of the R.H.S. of Equation (13)
represent the force exerted by the post-shock pressure at
the reverse and forward shocks. The quantities Ffs and
�Frs in the L.H.S. of Equation (13) denote the momen-
tum fluxes of gas flowing into the shocked gas through
the forward and the reverse shocks, which reflects the mo-
mentum conservation. Since the ambient gas is moving
at a velocity much smaller than the ejecta, we neglect
the contribution of the ambient gas to the momentum
gain of the shell and thus set the flux to zero, Ffs = 0.
On the other hand, the supply of the momentum of the
ejecta through the reverse shock plays a dominant role
in increasing the momentum of the shell. The flux Frs is
described as follows,

Frs = ⇢ej�
2
ej�ej(�ej � �rs), (14)

where ⇢ej, �ej, and �ej are the density, the Lorentz factor
and the velocity of the unshocked ejecta at the reverse
shock.

Next, the temporal evolution of the mass of the shell
can be considered in a similar way to the momentum.
The mass of the shocked gas continuously increases as
the forward and reverse shocks sweep the ambient gas
and the ejecta. The governing equation is expressed as
follows,

dMs

dt
+ 4⇡R2

fsFm,fs � 4⇡R2
rsFm,rs = 0 (15)

The mass fluxes Fm,fs and �Fm,rs flowing into the
shocked gas through the forward and reverse shocks.
They are expressed as follows,

Fm,fs = ⇢a�a(�a � �fs) = �⇢a�fs, (16)

and
Fm,rs = ⇢ej�ej(�ej � �rs). (17)

Here ⇢a, �a, and �a denote the density, the Lorentz fac-
tor, and the velocity of the unshocked ambient gas at the
forward shock. Since the velocity of the ambient gas is
negligibly small, the velocity is set to zero, �a and then
the R.H.S of Equation (16) is obtained.
Defining the Lorentz factor �s and the velocity �s of

the shell, the following relation between these variables,
the momentum, and the mass is obtained,

Sr = Ms�s�s (18)

which can be solved with respect to the Lorentz factor
for a given set the momentum and the mass,

�s =

s

1 +
S2
r

M2
s

. (19)

The radius of the shell evolves according to the follow-
ing equation,

dRs

dt
= �s, (20)

The temporal evolution of the the forward and reverse
shock radii, Rfs and Rrs are governed by similar equa-
tions,

dRfs

dt
= �fs, (21)

and
dRrs

dt
= �rs, (22)

These equations can be integrated in a straightforward
way, once the velocities, �s, �fs, and �rs, are obtained.

2.4. Shock Jump Conditions

In order to integrate the equations introduced in the
previous subsection, the shock velocities �rs and �fs and
the hydrodynamical variables at the post-shock gas, ⇢fs,
pfs, ⇢rs, and prs at the forward and reverse shocks should
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be calculated for a given set of the shock radii and the
velocity of the shell �s, or the corresponding Lorentz
factor �s. These variables are obtained from the shock
jump conditions at the shock fronts. The derivation of
the shock jump condition is described in elsewhere (see,
Appendix of the previous paper, Suzuki & Shigeyama
(2014), some textbooks, or review papers, such as, Lan-
dau & Lifshitz (1987); Mart́ı & Müller (2003)). Thus,
we will not repeat the derivation in this paper.
The shock velocity �sh is generally expressed as a func-

tion of the velocity and the Lorentz factor of the gas in
the upstream, �u and �u, and in the downstream, �d and
�d, as follows,

�sh(�u,�d) =
��u�2

d(�u � �d)�d � (� � 1)(�u � �d)

��u�2
d(�u � �d)� (� � 1)(�u�u � �d�d)

,

(23)
when the pressure in the upstream is negligible. Once the
shock velocity �sh is obtained, the post-shock density ⇢d
and pressure pd are found from the following relations,

⇢d = ⇢u
�u(�u � �sh)

�d(�d � �sh)
, (24)

and

pd =
⇢u�2

u(�u � �d)(�u � �sh)

1� �d�sh
, (25)

where �sh = (1� �sh)�1/2 is the shock Lorentz factor.

2.4.1. Forward Shock

For the forward shock, the pre-shock velocity �fs,u is
equal to zero and the pre-shock density ⇢a is obtained by
substituting the forward shock radius Rfs into the density
profile of the ambient gas, Equation (11),

⇢a = AR�2
fs . (26)

Thus, assuming that the post-shock velocity is equal to
the velocity of the shell, �s, the evaluation of the forward
shock velocity �fs is derived in a straightforward way,

�fs = �sh(0,�s), (27)

Using the shock velocity, the forward shock Lorentz fac-
tor �fs, the post-shock density ⇢fs, and the post-shock
pressure pfs can be calculated as follows,

�fs =
1p

1� �2
fs

, (28)

⇢fs = ⇢a
�fs

�s(�fs � �s)
, (29)

and

pfs = ⇢a
�s�fs

1� �s�fs
. (30)

2.4.2. Reverse shock

The reverse shock propagates in the freely expanding
ejecta. Thus, the pre-shock values, �ej and ⇢ej, of the
velocity and the density are given by

�ej =
Rrs

t
, (31)

and
⇢ej = ⇢ej(t, Rrs). (32)

The reverse shock velocity is determined in a similar way
to the forward shock,

�rs = �sh(�ej,�s). (33)

Once the reverse shock velocity is obtained, the reverse
shock Lorentz factor �rs, the post-shock density ⇢rs, and
the post-shock pressure prs are evaluated,

�rs =
1p

1� �2
rs

, (34)

⇢rs = ⇢ej
�ej(�ej � �rs)

�u(�s � �rs)
, (35)

and

prs =
⇢ej�2

ej(�ej � �rs)(�ej � �s)

1� �s�rs
. (36)

2.5. Non-relativistic and Ultra-relativistic Limits

When the velocity of the shell is much smaller than the
speed of light (“non-relativistic regime”) or the Lorentz
factor of the shell is much larger than unity (“ultra-
relativistic regime”), self-similar solutions describing the
flow are known (Chevalier 1982; Nakamura & Shigeyama
2006). The time dependence of physical variables of the
flow can be obtained by imposing the condition that the
pressure in the downstream of the forward and reverse
shocks on time t should be identical with each other,
pfs / prs. In the following, we consider the relation
between our model and the non-relativistic and ultra-
relativistic cases by reproducing the temporal behavior
of the shell in these two limits.

2.5.1. Non-relativistic Regime

Since our density profile, Equation (6), is restricted to
ejecta moving at relativistic speeds, the density profile
should be modified to consider the non-relativistic coun-
terpart of the semi-analytical model. We simply assume
a power-law function of the velocity with an exponent n,

⇢ej,NR / t�3��n, (37)

The position of the shell is proportional to the product
of the velocity and time t, Rs / �st. Since the flow is
self-similar, the forward and reverse shock velocities are
proportional to that of the shell. Therefore, the pres-
sure of the gas in the downstream of the reverse shock,
Equation (36), should satisfy

prs,NR / t�3��n+2
s . (38)

On the other hand, Equation (30) gives the following
relation for the pressure of the gas in the downstream of
the forward shock in the non-relativistic regime,

pfs,NR / t�k��k+2
s . (39)

The condition pfs,NR / prs,NR gives the time depen-
dence of the velocity �s,

�s,NR / t(k�3)/(n�k), (40)

Thus, the radius of the shell evolves as follows,

Rs,NR / �s,NRt / t(n�3)/(n�k), (41)

which agrees with the dependence derived by Chevalier
(1982).
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TABLE 1
Total mass of trans-relativistic ejecta for Erel,51 = 1

�max n = 1 n = 2 n = 3 n = 4 n = 5
10 3.78⇥ 10�4M� 5.47⇥ 10�4M� 6.98⇥ 10�4M� 8.14⇥ 10�4M� 9.00⇥ 10�4M�
5 4.64⇥ 10�4M� 5.90⇥ 10�4M� 7.13⇥ 10�4M� 8.19⇥ 10�4M� 9.02⇥ 10�4M�
3 6.06⇥ 10�4M� 6.87⇥ 10�4M� 7.69⇥ 10�4M� 8.46⇥ 10�4M� 9.14⇥ 10�4M�

As we have mentioned in Section 1, self-similar solu-
tions describing the dynamical evolution of the shocked
gas have been found in non-relativistic and ultra-
relativistic regimes. However, we cannot expect any an-
alytical solution for the trans-relativistic case, because
the shock jump conditions at the two shocks cannot
be simplified into a convenient form. In other words,
the characteristic variables of the shocked gas cannot
be expressed as power-law functions of time unlike non-
relativistic and ultra-relativistic cases. Despite the di�-
culty, the shocked gas can be regarded as a geometrically
thin shell at earlier stages of the evolution as we will see
below. Thus, we approximate the width of the shell to be
negligibly small (referred to as a “thin shell approxima-
tion”) compared with the radius and solve the equation
of motion of the shell. We further assume that the rest-
mass energy of the shell dominates over the internal en-
ergy, p/⇢ ⌧ 1. The validity of these approximations will
be checked in Section 3, where approximated solutions
are compared with results of numerical calculations.

2.3. Temporal Evolution of the Shell

The dynamical evolution of the shell is determined
by the following two competing e↵ects, the deceleration
by loading mass, the supply of momentum through the
shocks, and the deceleration and acceleration due to the
di↵erence in the post-shock pressure, pfs and prs, at the
forward and reverse shocks. We denote the mass, the
Lorentz factor, the velocity and the position of the for-
ward and reverse shocks by Ms, �s, �s Rfs, and Rrs. We
model the temporal evolution of the momentum Sr of the
shell along the radial direction as follows,

dSr

dt
+4⇡R2

fsFfs � 4⇡R2
rsFrs = 4⇡R2

fsprs � 4⇡R2
rspfs, (13)

The 1st and 2nd terms of the R.H.S. of Equation (13)
represent the force exerted by the post-shock pressure at
the reverse and forward shocks. The quantities Ffs and
�Frs in the L.H.S. of Equation (13) denote the momen-
tum fluxes of gas flowing into the shocked gas through
the forward and the reverse shocks, which reflects the mo-
mentum conservation. Since the ambient gas is moving
at a velocity much smaller than the ejecta, we neglect
the contribution of the ambient gas to the momentum
gain of the shell and thus set the flux to zero, Ffs = 0.
On the other hand, the supply of the momentum of the
ejecta through the reverse shock plays a dominant role
in increasing the momentum of the shell. The flux Frs is
described as follows,

Frs = ⇢ej�
2
ej�ej(�ej � �rs), (14)

where ⇢ej, �ej, and �ej are the density, the Lorentz factor
and the velocity of the unshocked ejecta at the reverse
shock.

Next, the temporal evolution of the mass of the shell
can be considered in a similar way to the momentum.
The mass of the shocked gas continuously increases as
the forward and reverse shocks sweep the ambient gas
and the ejecta. The governing equation is expressed as
follows,

dMs

dt
+ 4⇡R2

fsFm,fs � 4⇡R2
rsFm,rs = 0 (15)

The mass fluxes Fm,fs and �Fm,rs flowing into the
shocked gas through the forward and reverse shocks.
They are expressed as follows,

Fm,fs = ⇢a�a(�a � �fs) = �⇢a�fs, (16)

and
Fm,rs = ⇢ej�ej(�ej � �rs). (17)

Here ⇢a, �a, and �a denote the density, the Lorentz fac-
tor, and the velocity of the unshocked ambient gas at the
forward shock. Since the velocity of the ambient gas is
negligibly small, the velocity is set to zero, �a and then
the R.H.S of Equation (16) is obtained.
Defining the Lorentz factor �s and the velocity �s of

the shell, the following relation between these variables,
the momentum, and the mass is obtained,

Sr = Ms�s�s (18)

which can be solved with respect to the Lorentz factor
for a given set the momentum and the mass,

�s =

s

1 +
S2
r

M2
s

. (19)

The radius of the shell evolves according to the follow-
ing equation,

dRs

dt
= �s, (20)

The temporal evolution of the the forward and reverse
shock radii, Rfs and Rrs are governed by similar equa-
tions,

dRfs

dt
= �fs, (21)

and
dRrs

dt
= �rs, (22)

These equations can be integrated in a straightforward
way, once the velocities, �s, �fs, and �rs, are obtained.

2.4. Shock Jump Conditions

In order to integrate the equations introduced in the
previous subsection, the shock velocities �rs and �fs and
the hydrodynamical variables at the post-shock gas, ⇢fs,
pfs, ⇢rs, and prs at the forward and reverse shocks should
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be calculated for a given set of the shock radii and the
velocity of the shell �s, or the corresponding Lorentz
factor �s. These variables are obtained from the shock
jump conditions at the shock fronts. The derivation of
the shock jump condition is described in elsewhere (see,
Appendix of the previous paper, Suzuki & Shigeyama
(2014), some textbooks, or review papers, such as, Lan-
dau & Lifshitz (1987); Mart́ı & Müller (2003)). Thus,
we will not repeat the derivation in this paper.
The shock velocity �sh is generally expressed as a func-

tion of the velocity and the Lorentz factor of the gas in
the upstream, �u and �u, and in the downstream, �d and
�d, as follows,

�sh(�u,�d) =
��u�2

d(�u � �d)�d � (� � 1)(�u � �d)

��u�2
d(�u � �d)� (� � 1)(�u�u � �d�d)

,

(23)
when the pressure in the upstream is negligible. Once the
shock velocity �sh is obtained, the post-shock density ⇢d
and pressure pd are found from the following relations,

⇢d = ⇢u
�u(�u � �sh)

�d(�d � �sh)
, (24)

and

pd =
⇢u�2

u(�u � �d)(�u � �sh)

1� �d�sh
, (25)

where �sh = (1� �sh)�1/2 is the shock Lorentz factor.

2.4.1. Forward Shock

For the forward shock, the pre-shock velocity �fs,u is
equal to zero and the pre-shock density ⇢a is obtained by
substituting the forward shock radius Rfs into the density
profile of the ambient gas, Equation (11),

⇢a = AR�2
fs . (26)

Thus, assuming that the post-shock velocity is equal to
the velocity of the shell, �s, the evaluation of the forward
shock velocity �fs is derived in a straightforward way,

�fs = �sh(0,�s), (27)

Using the shock velocity, the forward shock Lorentz fac-
tor �fs, the post-shock density ⇢fs, and the post-shock
pressure pfs can be calculated as follows,

�fs =
1p

1� �2
fs

, (28)

⇢fs = ⇢a
�fs

�s(�fs � �s)
, (29)

and

pfs = ⇢a
�s�fs

1� �s�fs
. (30)

2.4.2. Reverse shock

The reverse shock propagates in the freely expanding
ejecta. Thus, the pre-shock values, �ej and ⇢ej, of the
velocity and the density are given by

�ej =
Rrs

t
, (31)

and
⇢ej = ⇢ej(t, Rrs). (32)

The reverse shock velocity is determined in a similar way
to the forward shock,

�rs = �sh(�ej,�s). (33)

Once the reverse shock velocity is obtained, the reverse
shock Lorentz factor �rs, the post-shock density ⇢rs, and
the post-shock pressure prs are evaluated,

�rs =
1p

1� �2
rs

, (34)

⇢rs = ⇢ej
�ej(�ej � �rs)

�u(�s � �rs)
, (35)

and

prs =
⇢ej�2

ej(�ej � �rs)(�ej � �s)

1� �s�rs
. (36)

2.5. Non-relativistic and Ultra-relativistic Limits

When the velocity of the shell is much smaller than the
speed of light (“non-relativistic regime”) or the Lorentz
factor of the shell is much larger than unity (“ultra-
relativistic regime”), self-similar solutions describing the
flow are known (Chevalier 1982; Nakamura & Shigeyama
2006). The time dependence of physical variables of the
flow can be obtained by imposing the condition that the
pressure in the downstream of the forward and reverse
shocks on time t should be identical with each other,
pfs / prs. In the following, we consider the relation
between our model and the non-relativistic and ultra-
relativistic cases by reproducing the temporal behavior
of the shell in these two limits.

2.5.1. Non-relativistic Regime

Since our density profile, Equation (6), is restricted to
ejecta moving at relativistic speeds, the density profile
should be modified to consider the non-relativistic coun-
terpart of the semi-analytical model. We simply assume
a power-law function of the velocity with an exponent n,

⇢ej,NR / t�3��n, (37)

The position of the shell is proportional to the product
of the velocity and time t, Rs / �st. Since the flow is
self-similar, the forward and reverse shock velocities are
proportional to that of the shell. Therefore, the pres-
sure of the gas in the downstream of the reverse shock,
Equation (36), should satisfy

prs,NR / t�3��n+2
s . (38)

On the other hand, Equation (30) gives the following
relation for the pressure of the gas in the downstream of
the forward shock in the non-relativistic regime,

pfs,NR / t�k��k+2
s . (39)

The condition pfs,NR / prs,NR gives the time depen-
dence of the velocity �s,

�s,NR / t(k�3)/(n�k), (40)

Thus, the radius of the shell evolves as follows,

Rs,NR / �s,NRt / t(n�3)/(n�k), (41)

which agrees with the dependence derived by Chevalier
(1982).
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be calculated for a given set of the shock radii and the
velocity of the shell �s, or the corresponding Lorentz
factor �s. These variables are obtained from the shock
jump conditions at the shock fronts. The derivation of
the shock jump condition is described in elsewhere (see,
Appendix of the previous paper, Suzuki & Shigeyama
(2014), some textbooks, or review papers, such as, Lan-
dau & Lifshitz (1987); Mart́ı & Müller (2003)). Thus,
we will not repeat the derivation in this paper.
The shock velocity �sh is generally expressed as a func-

tion of the velocity and the Lorentz factor of the gas in
the upstream, �u and �u, and in the downstream, �d and
�d, as follows,

�sh(�u,�d) =
��u�2

d(�u � �d)�d � (� � 1)(�u � �d)

��u�2
d(�u � �d)� (� � 1)(�u�u � �d�d)

,

(23)
when the pressure in the upstream is negligible. Once the
shock velocity �sh is obtained, the post-shock density ⇢d
and pressure pd are found from the following relations,

⇢d = ⇢u
�u(�u � �sh)

�d(�d � �sh)
, (24)

and

pd =
⇢u�2

u(�u � �d)(�u � �sh)

1� �d�sh
, (25)

where �sh = (1� �sh)�1/2 is the shock Lorentz factor.

2.4.1. Forward Shock

For the forward shock, the pre-shock velocity �fs,u is
equal to zero and the pre-shock density ⇢a is obtained by
substituting the forward shock radius Rfs into the density
profile of the ambient gas, Equation (11),

⇢a = AR�2
fs . (26)

Thus, assuming that the post-shock velocity is equal to
the velocity of the shell, �s, the evaluation of the forward
shock velocity �fs is derived in a straightforward way,

�fs = �sh(0,�s), (27)

Using the shock velocity, the forward shock Lorentz fac-
tor �fs, the post-shock density ⇢fs, and the post-shock
pressure pfs can be calculated as follows,

�fs =
1p

1� �2
fs

, (28)

⇢fs = ⇢a
�fs

�s(�fs � �s)
, (29)

and

pfs = ⇢a
�s�fs

1� �s�fs
. (30)

2.4.2. Reverse shock

The reverse shock propagates in the freely expanding
ejecta. Thus, the pre-shock values, �ej and ⇢ej, of the
velocity and the density are given by

�ej =
Rrs

t
, (31)

and
⇢ej = ⇢ej(t, Rrs). (32)

The reverse shock velocity is determined in a similar way
to the forward shock,

�rs = �sh(�ej,�s). (33)

Once the reverse shock velocity is obtained, the reverse
shock Lorentz factor �rs, the post-shock density ⇢rs, and
the post-shock pressure prs are evaluated,

�rs =
1p

1� �2
rs

, (34)

⇢rs = ⇢ej
�ej(�ej � �rs)

�u(�s � �rs)
, (35)

and

prs =
⇢ej�2

ej(�ej � �rs)(�ej � �s)

1� �s�rs
. (36)

2.5. Non-relativistic and Ultra-relativistic Limits

When the velocity of the shell is much smaller than the
speed of light (“non-relativistic regime”) or the Lorentz
factor of the shell is much larger than unity (“ultra-
relativistic regime”), self-similar solutions describing the
flow are known (Chevalier 1982; Nakamura & Shigeyama
2006). The time dependence of physical variables of the
flow can be obtained by imposing the condition that the
pressure in the downstream of the forward and reverse
shocks on time t should be identical with each other,
pfs / prs. In the following, we consider the relation
between our model and the non-relativistic and ultra-
relativistic cases by reproducing the temporal behavior
of the shell in these two limits.

2.5.1. Non-relativistic Regime

Since our density profile, Equation (6), is restricted to
ejecta moving at relativistic speeds, the density profile
should be modified to consider the non-relativistic coun-
terpart of the semi-analytical model. We simply assume
a power-law function of the velocity with an exponent n,

⇢ej,NR / t�3��n, (37)

The position of the shell is proportional to the product
of the velocity and time t, Rs / �st. Since the flow is
self-similar, the forward and reverse shock velocities are
proportional to that of the shell. Therefore, the pres-
sure of the gas in the downstream of the reverse shock,
Equation (36), should satisfy

prs,NR / t�3��n+2
s . (38)

On the other hand, Equation (30) gives the following
relation for the pressure of the gas in the downstream of
the forward shock in the non-relativistic regime,

pfs,NR / t�k��k+2
s . (39)

The condition pfs,NR / prs,NR gives the time depen-
dence of the velocity �s,

�s,NR / t(k�3)/(n�k), (40)

Thus, the radius of the shell evolves as follows,

Rs,NR / �s,NRt / t(n�3)/(n�k), (41)

which agrees with the dependence derived by Chevalier
(1982).
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be calculated for a given set of the shock radii and the
velocity of the shell �s, or the corresponding Lorentz
factor �s. These variables are obtained from the shock
jump conditions at the shock fronts. The derivation of
the shock jump condition is described in elsewhere (see,
Appendix of the previous paper, Suzuki & Shigeyama
(2014), some textbooks, or review papers, such as, Lan-
dau & Lifshitz (1987); Mart́ı & Müller (2003)). Thus,
we will not repeat the derivation in this paper.
The shock velocity �sh is generally expressed as a func-

tion of the velocity and the Lorentz factor of the gas in
the upstream, �u and �u, and in the downstream, �d and
�d, as follows,

�sh(�u,�d) =
��u�2

d(�u � �d)�d � (� � 1)(�u � �d)

��u�2
d(�u � �d)� (� � 1)(�u�u � �d�d)

,

(23)
when the pressure in the upstream is negligible. Once the
shock velocity �sh is obtained, the post-shock density ⇢d
and pressure pd are found from the following relations,

⇢d = ⇢u
�u(�u � �sh)

�d(�d � �sh)
, (24)

and

pd =
⇢u�2

u(�u � �d)(�u � �sh)

1� �d�sh
, (25)

where �sh = (1� �sh)�1/2 is the shock Lorentz factor.

2.4.1. Forward Shock

For the forward shock, the pre-shock velocity �fs,u is
equal to zero and the pre-shock density ⇢a is obtained by
substituting the forward shock radius Rfs into the density
profile of the ambient gas, Equation (11),

⇢a = AR�2
fs . (26)

Thus, assuming that the post-shock velocity is equal to
the velocity of the shell, �s, the evaluation of the forward
shock velocity �fs is derived in a straightforward way,

�fs = �sh(0,�s), (27)

Using the shock velocity, the forward shock Lorentz fac-
tor �fs, the post-shock density ⇢fs, and the post-shock
pressure pfs can be calculated as follows,

�fs =
1p

1� �2
fs

, (28)

⇢fs = ⇢a
�fs

�s(�fs � �s)
, (29)

and

pfs = ⇢a
�s�fs

1� �s�fs
. (30)

2.4.2. Reverse shock

The reverse shock propagates in the freely expanding
ejecta. Thus, the pre-shock values, �ej and ⇢ej, of the
velocity and the density are given by

�ej =
Rrs

t
, (31)

and
⇢ej = ⇢ej(t, Rrs). (32)

The reverse shock velocity is determined in a similar way
to the forward shock,

�rs = �sh(�ej,�s). (33)

Once the reverse shock velocity is obtained, the reverse
shock Lorentz factor �rs, the post-shock density ⇢rs, and
the post-shock pressure prs are evaluated,

�rs =
1p

1� �2
rs

, (34)

⇢rs = ⇢ej
�ej(�ej � �rs)

�u(�s � �rs)
, (35)

and

prs =
⇢ej�2

ej(�ej � �rs)(�ej � �s)

1� �s�rs
. (36)

2.5. Non-relativistic and Ultra-relativistic Limits

When the velocity of the shell is much smaller than the
speed of light (“non-relativistic regime”) or the Lorentz
factor of the shell is much larger than unity (“ultra-
relativistic regime”), self-similar solutions describing the
flow are known (Chevalier 1982; Nakamura & Shigeyama
2006). The time dependence of physical variables of the
flow can be obtained by imposing the condition that the
pressure in the downstream of the forward and reverse
shocks on time t should be identical with each other,
pfs / prs. In the following, we consider the relation
between our model and the non-relativistic and ultra-
relativistic cases by reproducing the temporal behavior
of the shell in these two limits.

2.5.1. Non-relativistic Regime

Since our density profile, Equation (6), is restricted to
ejecta moving at relativistic speeds, the density profile
should be modified to consider the non-relativistic coun-
terpart of the semi-analytical model. We simply assume
a power-law function of the velocity with an exponent n,

⇢ej,NR / t�3��n, (37)

The position of the shell is proportional to the product
of the velocity and time t, Rs / �st. Since the flow is
self-similar, the forward and reverse shock velocities are
proportional to that of the shell. Therefore, the pres-
sure of the gas in the downstream of the reverse shock,
Equation (36), should satisfy

prs,NR / t�3��n+2
s . (38)

On the other hand, Equation (30) gives the following
relation for the pressure of the gas in the downstream of
the forward shock in the non-relativistic regime,

pfs,NR / t�k��k+2
s . (39)

The condition pfs,NR / prs,NR gives the time depen-
dence of the velocity �s,

�s,NR / t(k�3)/(n�k), (40)

Thus, the radius of the shell evolves as follows,

Rs,NR / �s,NRt / t(n�3)/(n�k), (41)

which agrees with the dependence derived by Chevalier
(1982).

➡ we approximate the shocked region as a thin shell and solve the EOM. 

➡ shock radii Rfs,Rrs, shell mass Ms, shell momentum Sr, and so on

radius

ρ

r=Rs

Erel

ejecta

CSM

shell

deceleration by pressure gradient forcemomentum influx from ejecta



➡ fiducial model: Erel,51=0.5,A★=25,n=5 (dM/dt=2.5x10-4M◉/yr for vw=103km/s) 

➡ theoretical emission model is consistent with observed prompt gamma-ray and 
X-ray  light curves 

➡ note: theoretical model produce bolometric light curves 

➡ spectral evolution is the next step
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Erad vs Tburst

Suzuki, Maeda, & Shigeyama (2018)
➡ Erad-Tburst diagram 

➡ longer bursts show larger radiated 
energies 

➡ in ejecta-CSM interaction model, 
this trend can be explained by 
increasing CSM density (or mass) 

➡ GRB 171205A is consistent with 
the trend.  

➡ GRB171205A: Erel~1051[erg], A★~ 
several 10



Non-thermal X-ray and radio emission
➡ Afterglow emission following the 

prompt gamma-ray 

➡  Swift XRT observations + radio 
(NOEMA, ALMA, VLA ) 
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Fig. 6. Swift/XRT and /UVOT light curve of the GRB 171205A afterglow. UVOT data are corrected for the host galaxy and extinction
contribution. Information on the UVOT filter passbands can be found at: http://www.swift.ac.uk/analysis/uvot/filters.php.

the bolometric rest-frame band to take this e↵ect into account,
increases just slightly the Eiso error (less than 10%). Concerning
the spectral model uncertainties, if we use a Band function in-
stead of a CPL, we obtain Eiso = 3.6+0.9

�0.9 ⇥ 1049, a slightly higher
value.

The Eiso derived for this burst is similar to those of other
low-luminosity GRBs. For example, the Eiso (in the observed
15-150 keV band) for GRB 060218 is 2.57 ⇥ 1049 erg (assum-
ing T90 = 2100 s, see Campana et al. 2006) and GRB 100316D
has Eiso � 3.70 ⇥ 1049 erg (assuming T90 � 1300 s, see
Starling et al. 2011). However, besides the low Eiso, other prop-
erties of GRB 171205A seem to be di↵erent from GRB 060218
and GRB 100316D. The BAT spectrum of GRB 171205A is
harder than those of GRB 060218 and GRB 100316D, which
have power-law indices of 2.18 and 2.36, respectively (Lien et
al. 2016). In addition, both GRB060218 and GRB 100316D
show long-lasting burst emission of more than ⇠ 1000 s, while
GRB171205A has no obvious emission after⇠ T0+200 s, though
we note that GRB171205A went out of the BAT field of view at
T0 + 479 s. As shown in Fig. 9, GRB 171205A lies outside the
Amati relation from the BAT long GRB (Krimm et al. 2009) and

the Konus-Wind (Tsvetkova et al. 2017) samples, even adopting
the more conservative values for Epeak (see Section 3.1.3) and
Eiso.

Other low-luminosity GRBs such as 171205A are not consis-
tent with the Amati relation. As discussed by Amati et al. (2007),
this lack of consistency strongly indicates that these LL-GRBs
are not just normal, ”cosmological” events seen o↵-axis. GRBs
are supposed to be jetted sources seen on-axis (Sari et al. 1999)
or very close to it. Theoretically, if a GRB event were seen o↵-
axis, the prompt emission detected would be weaker, since the
radiation is strongly beamed toward the direction of motion by
relativistic e↵ects. It is found that Ep / � and Eiso / �1�↵ (Amati
et al. 2007, Yamazaki et al. 2003), where ↵ is the low-energy
photon index and � is the relativistic Dopper factor which, in
turn, depends on the half-opening angle ✓ jet of the GRB jets
and the angle between the GRB jet axis and the observer ✓obs:
� = (�(1� v/c cos(✓obs � ✓ jet)))�1. This parameter � decreases as
✓obs � ✓ jet increases.

Since Ep and Eiso depend on � in di↵erent ways, GRBs seen
o↵-axis cannot follow the Amati relation as GRBs seen on-axis.
We find that, in principle, this might be the case for 171205A.

104s 
↓

105s 
↓

106s 
↓

XRT & UVOT obs. (D’Elia+2018)
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(Campana et al. 2006; Starling et al. 2011). The unusually
long gamma-ray emission and the large blackbody radii in-
ferred by the thermal component indicate that a hot ejecta
component with a photospheric radius larger than typical
radii of compact stars play a vital role in producing high-
energy emission.

Radio observations of SNe are another tool for prob-
ing highly energetic explosions through the presence of
fast shock waves propagating in the circumstellar medium
(CSM) of the exploding star. Follow-up radio observations of
GRB-SNe have also been conducted in great detail. GRB-
SNe are indeed known to be a bright radio emitter, e.g.,
SN 1998bw (Kulkarni et al. 1998; Weiler et al. 2002), which
is likely caused by synchrotron emission produced by the
forward shock sweeping the ambient gas. Furthermore, the
discovery of radio-loud SNe Ic-BL without any gamma-ray
signature, e.g., SN 2009bb and SN 2012ap, have revealed a
population of relativistic SNe, whose radio emission strongly
indicate the presence of ejecta traveling at (mildly) relativis-
tic speeds (Soderberg et al. 2010; Milisavljevic et al. 2015;
Chakraborti et al. 2015). Light curve modelings of radio
emission from GRB-SNe and relativistic SNe have also been
attempted by several authors (e.g., Barniol Duran et al.
2015; Nakauchi et al. 2015).

Despite these multi-wavelength observations and inten-
sive discussion, the progenitor system of llGRBs and the ori-
gin of their gamma-ray emission are still debated (see, e.g.,
Li 2007; Toma et al. 2007; Wang et al. 2007; Waxman et al.
2007; Bromberg et al. 2011). One of the plausible scenarios
for the gamma-ray emission is the emergence of a mildly
relativistic shock from a CSM in which the progenitor
star is embedded (e.g., Campana et al. 2006; Waxman et al.
2007; Nakar & Sari 2012; see also Matzner & McKee 1999;
Woosley et al. 1999; Tan et al. 2001). In this scenario,
the CSM should be sufficiently dense so that the pho-
tosphere in the CSM is well above the surface of the
star so as to prolong the prompt gamma-ray emission.
The mildly relativistic shock can be driven by either a
weak jet (Irwin & Chevalier 2016), the cocoon associated
with a jet (Ramirez-Ruiz et al. 2002; Lazzati & Begelman
2005; Suzuki & Shigeyama 2013), or a jet choked in a star
(Bromberg et al. 2011; Lazzati et al. 2012) or an extended
stellar envelope (Nakar 2015). The hydrodynamic interac-
tion of the relativistic flow and the CSM dissipates the ki-
netic energy of the flow and gives rise to bright high-energy
emission.

Recently, the new GRB 171205A was detected by the
Swift satellite (D’Elia et al. 2017). The reported T90 dura-
tion and the 15–50 keV fluence of the burst were T90 = 189.4
s and 3.6 ± 0.3 × 10−6 erg cm−2. The optical afterglow was
soon identified and found associated with a spiral galaxy at
z = 0.0368 (Izzo et al. 2017). Assuming the distance of 168
Mpc, the isotropic equivalent energy of the prompt gamma-
ray emission is 1.2 × 1049 erg, which is much smaller than
those of standard GRBs. From these gamma-ray proper-
ties, GRB 171205A is unambiguously classified as an ll-
GRB. Observations in other wavelengths have also been
carried out by several groups. Follow-up optical photomet-
ric and spectroscopic observations identified an SN com-
ponent in the optical afterglow at only 2.4 days after the
discovery (de Ugarte Postigo et al. 2017a). The early spec-
tra of the SN component showed SN 1998bw-like spectral
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Figure 1. Schematic view of the emission model. The upper and
lower panels correspond to the stages where the shocked gas is
optically thick and thin.

features. Radio observations were initiated about 20 hours
after the trigger and reported the detection of a bright
radio source (de Ugarte Postigo et al. 2017b). The prompt
Swift detection and the multi-wavelength follow-up cam-
paigns have made GRB 171205A one of the most densely
observed nearby GRB-SNe.

Developing theoretical light curve models self-
consistently explaining the multi-wavelength light curves
of GRB 171205A would greatly help us constraining
the progenitor scenario for llGRBs and the mechanism
responsible for the high-energy emission. In this work, we
perform light curve modeling of GRB 171205A based on
the relativistic ejecta-CSM interaction model developed by
our previous work (Suzuki et al. 2017, hereafter SMS17).
We found that the relativistic ejecta-CSM interaction
model can successfully explain the multi-wavelength light
curves of GRB 171205A. From the light curve modeling,
we obtain some requirements on the dynamical properties
of the ejecta produced by the stellar explosion associated
with GRB 171205A and the density structure of the CSM
surrounding the progenitor star. Then, we further discuss
the population of llGRBs and other X-ray transients in the
framework of the CSM interaction scenario.

This paper is organized as follows. In Section 2, we de-
scribe our emission model. Results of the light curve model-
ing are presented in Section 3. We discuss the implications
of the results and the origin of llGRBs in Section 4. Finally,
Section 5 concludes this paper.

2 EMISSION MODEL

The emission model is based on our previous work (two sep-
arated papers; SMS17 and Suzuki & Maeda 2018, hereafter
SM18) with some updates. Figure 1 schematically represents
the situation considered here. A massive star explodes in the
surrounding CSM and creates expanding spherical ejecta. As

MNRAS 000, 1–16 (2018)



➡ electron distribution in momentum 
space  

➡ parameters: p, εe, εB 

➡ synchrotron, inverse Compton, and 
adiabatic cooling

Non-thermal X-ray and radio emission
Suzuki, Maeda, & Shigeyama (2018)
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(Campana et al. 2006; Starling et al. 2011). The unusually
long gamma-ray emission and the large blackbody radii in-
ferred by the thermal component indicate that a hot ejecta
component with a photospheric radius larger than typical
radii of compact stars play a vital role in producing high-
energy emission.

Radio observations of SNe are another tool for prob-
ing highly energetic explosions through the presence of
fast shock waves propagating in the circumstellar medium
(CSM) of the exploding star. Follow-up radio observations of
GRB-SNe have also been conducted in great detail. GRB-
SNe are indeed known to be a bright radio emitter, e.g.,
SN 1998bw (Kulkarni et al. 1998; Weiler et al. 2002), which
is likely caused by synchrotron emission produced by the
forward shock sweeping the ambient gas. Furthermore, the
discovery of radio-loud SNe Ic-BL without any gamma-ray
signature, e.g., SN 2009bb and SN 2012ap, have revealed a
population of relativistic SNe, whose radio emission strongly
indicate the presence of ejecta traveling at (mildly) relativis-
tic speeds (Soderberg et al. 2010; Milisavljevic et al. 2015;
Chakraborti et al. 2015). Light curve modelings of radio
emission from GRB-SNe and relativistic SNe have also been
attempted by several authors (e.g., Barniol Duran et al.
2015; Nakauchi et al. 2015).

Despite these multi-wavelength observations and inten-
sive discussion, the progenitor system of llGRBs and the ori-
gin of their gamma-ray emission are still debated (see, e.g.,
Li 2007; Toma et al. 2007; Wang et al. 2007; Waxman et al.
2007; Bromberg et al. 2011). One of the plausible scenarios
for the gamma-ray emission is the emergence of a mildly
relativistic shock from a CSM in which the progenitor
star is embedded (e.g., Campana et al. 2006; Waxman et al.
2007; Nakar & Sari 2012; see also Matzner & McKee 1999;
Woosley et al. 1999; Tan et al. 2001). In this scenario,
the CSM should be sufficiently dense so that the pho-
tosphere in the CSM is well above the surface of the
star so as to prolong the prompt gamma-ray emission.
The mildly relativistic shock can be driven by either a
weak jet (Irwin & Chevalier 2016), the cocoon associated
with a jet (Ramirez-Ruiz et al. 2002; Lazzati & Begelman
2005; Suzuki & Shigeyama 2013), or a jet choked in a star
(Bromberg et al. 2011; Lazzati et al. 2012) or an extended
stellar envelope (Nakar 2015). The hydrodynamic interac-
tion of the relativistic flow and the CSM dissipates the ki-
netic energy of the flow and gives rise to bright high-energy
emission.

Recently, the new GRB 171205A was detected by the
Swift satellite (D’Elia et al. 2017). The reported T90 dura-
tion and the 15–50 keV fluence of the burst were T90 = 189.4
s and 3.6 ± 0.3 × 10−6 erg cm−2. The optical afterglow was
soon identified and found associated with a spiral galaxy at
z = 0.0368 (Izzo et al. 2017). Assuming the distance of 168
Mpc, the isotropic equivalent energy of the prompt gamma-
ray emission is 1.2 × 1049 erg, which is much smaller than
those of standard GRBs. From these gamma-ray proper-
ties, GRB 171205A is unambiguously classified as an ll-
GRB. Observations in other wavelengths have also been
carried out by several groups. Follow-up optical photomet-
ric and spectroscopic observations identified an SN com-
ponent in the optical afterglow at only 2.4 days after the
discovery (de Ugarte Postigo et al. 2017a). The early spec-
tra of the SN component showed SN 1998bw-like spectral
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Figure 1. Schematic view of the emission model. The upper and
lower panels correspond to the stages where the shocked gas is
optically thick and thin.

features. Radio observations were initiated about 20 hours
after the trigger and reported the detection of a bright
radio source (de Ugarte Postigo et al. 2017b). The prompt
Swift detection and the multi-wavelength follow-up cam-
paigns have made GRB 171205A one of the most densely
observed nearby GRB-SNe.

Developing theoretical light curve models self-
consistently explaining the multi-wavelength light curves
of GRB 171205A would greatly help us constraining
the progenitor scenario for llGRBs and the mechanism
responsible for the high-energy emission. In this work, we
perform light curve modeling of GRB 171205A based on
the relativistic ejecta-CSM interaction model developed by
our previous work (Suzuki et al. 2017, hereafter SMS17).
We found that the relativistic ejecta-CSM interaction
model can successfully explain the multi-wavelength light
curves of GRB 171205A. From the light curve modeling,
we obtain some requirements on the dynamical properties
of the ejecta produced by the stellar explosion associated
with GRB 171205A and the density structure of the CSM
surrounding the progenitor star. Then, we further discuss
the population of llGRBs and other X-ray transients in the
framework of the CSM interaction scenario.

This paper is organized as follows. In Section 2, we de-
scribe our emission model. Results of the light curve model-
ing are presented in Section 3. We discuss the implications
of the results and the origin of llGRBs in Section 4. Finally,
Section 5 concludes this paper.

2 EMISSION MODEL

The emission model is based on our previous work (two sep-
arated papers; SMS17 and Suzuki & Maeda 2018, hereafter
SM18) with some updates. Figure 1 schematically represents
the situation considered here. A massive star explodes in the
surrounding CSM and creates expanding spherical ejecta. As
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for the inverse Compton emission. We calculate the non-
thermal emission following the early high-energy emission
by using the method developed by SM18. We focus on the
non-thermal emission from the forward shock, because the
energy dissipation rate at the forward shock front dominates
over that of the reverse shock (Section 2.1).

2.4.1 Electron momentum distribution

We treat non-thermal electrons produced at the shock front
in one-zone approximation. In other words, we assume that
the electrons are uniformly distributed in a narrow re-
gion close to their production site and do not treat their
spatial advection and di↵usion. Furthermore, we assume
that their angular distribution in the momentum space is
isotropic. Thus, their momentum distribution is expressed
as a function of time t and the norm of the momentum pe,
dN/dpe(t, pe).

The temporal evolution of the electron momentum dis-
tribution is obtained by solving the following advection
equation in the momentum space for the range from pmin =
10�3mec to pmax = 106mec,

@
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dN
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=
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@pe
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(ṗsyn + ṗic + ṗad)
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dṄ
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We inject electrons with a power-law momentum distribu-
tion with an exponent �p,
 

dṄ
dpe

!

in
/

(
p�pe for pin  pe  pmax
0 otherwise . (24)

The normalization and the minimum injection momentum
pin are determined by the energy dissipation rate at the for-
ward shock front and the average electron energy. As usually
assumed in many non-thermal emission models for GRBs
and SNe (e.g., Sari et al. 1998; Sari & Esin 2001; Granot
& Sari 2002), we introduce a parameter ✏e and assume that
a fraction ✏e of the internal energy of the gas in the down-
stream of the shock is converted to the energy of non-thermal
electrons, uele = ✏euint, where uint is the internal energy den-
sity at the shock front. The average energy of a single non-
thermal electron is given by the electron internal energy uele
divided by the electron number density nele in the down-
stream, uele/nele.

The momentum loss rates, ṗsyn and ṗic, for synchrotron
and inverse Compton cooling can be calculated from the
corresponding energy loss rates. They are given by

ṗsyn =
4�TuB
3m2

e c2 pe

q
m2

e c2 + p2
e, (25)

and

ṗic =
4�Turad
3m2

e c2 pe

q
m2

e c2 + p2
e, (26)

where �T is the Thomson cross section, uB the magnetic en-
ergy density, and urad the energy density of seed photons.
The magnetic energy density is given by uB = ✏Buint, where
✏B is another microphysics parameter specifying the fraction
of the magnetic energy density to the internal energy den-
sity. As we will see below, the photospheric and synchrotron
emission contribute to seed photons for inverse Compton
emission. Thus, we use the radiation energy densities of pho-
tospheric and synchrotron photons for urad. The adiabatic

momentum loss rate is

ṗad =
pe
3V

dV
dt
. (27)

The advection equation, Equation (23), is numerically
solved by a 1st-order implicit upwind scheme.

2.4.2 Synchrotron emission

For a given electron momentum distribution, calculations
of synchrotron emissivity j⌫,syn and the self-absorption co-
e�cient ↵⌫,syn are straightforward. We use the widely used
formulae found in the literature (e.g. Rybicki & Lightman
1979):

j⌫,syn =
1

4⇡V

Z
P⌫,syn(�e)

dN
dpe

dpe, (28)

for the synchrotron emissivity, and

↵⌫,syn =
c2

8⇡V ⌫2

Z
@

@pe

f
pe�eP⌫,syn(�e)

g 1
p2

e

dN
dpe

dpe, (29)

for the absorption coe�cient, where P⌫,syn(�e) is the syn-
chrotron power per unit frequency for a single electron with
a Lorentz factor of �e = [1 + p2

e/(m2
e c2)]1/2. The correspond-

ing synchrotron self-absorption optical depth is the product
of the absorption coe�cient and the shell width V/(4⇡R2

s ),

⌧⌫,ssa =
c2

32⇡2R2
s ⌫2
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@pe

f
pe�eP⌫,syn(�e)

g 1
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e
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dpe. (30)

Since the intensity of the synchrotron emission is expressed
in the following way,

Isyn(⌫) =
j⌫,syn
↵⌫,syn

(1 � e�⌧⌫,ssa ), (31)

the corresponding synchrotron energy loss rate per unit fre-
quency yields
 

dĖ
d⌫

!

syn
= 16⇡2R2

fsIsyn(⌫). (32)

The observed luminosity per unit frequency is given by

L⌫,syn(tobs) = 2c
Z (dĖ(t, ⌫̄)/d ⌫̄)syn

Rs(t)�2
s [1 � µ�s(t)]2

dt. (33)

2.4.3 Inverse Compton emission

The inverse Compton emission is calculated by the following
formula,

Iic(⌫) =
Z

G(�e, ⌫i, ⌫)
dN
dpe

Iseed(⌫i)dped⌫i, (34)

for a given electron momentum distribution dN/dpe and
seed photon intensity Iseed(⌫i). The redistribution function
G(�e, ⌫i, ⌫) gives the energy spectrum of scattered photons for
incoming mono-energetic electrons with the Lorentz factor
�e and monochromatic photons with the frequency ⌫i (see,
Appendix of SM18). We consider the photospheric emission
and the synchrotron emission as the sources of seed photons.

Iseed(⌫) =
1

16⇡2R2
fs

1 � �s(t)
1 � �ph(t 0)

 
dĖ
d⌫
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ph
+ Isyn(⌫). (35)
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for the inverse Compton emission. We calculate the non-
thermal emission following the early high-energy emission
by using the method developed by SM18. We focus on the
non-thermal emission from the forward shock, because the
energy dissipation rate at the forward shock front dominates
over that of the reverse shock (Section 2.1).

2.4.1 Electron momentum distribution

We treat non-thermal electrons produced at the shock front
in one-zone approximation. In other words, we assume that
the electrons are uniformly distributed in a narrow re-
gion close to their production site and do not treat their
spatial advection and di↵usion. Furthermore, we assume
that their angular distribution in the momentum space is
isotropic. Thus, their momentum distribution is expressed
as a function of time t and the norm of the momentum pe,
dN/dpe(t, pe).

The temporal evolution of the electron momentum dis-
tribution is obtained by solving the following advection
equation in the momentum space for the range from pmin =
10�3mec to pmax = 106mec,
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We inject electrons with a power-law momentum distribu-
tion with an exponent �p,
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The normalization and the minimum injection momentum
pin are determined by the energy dissipation rate at the for-
ward shock front and the average electron energy. As usually
assumed in many non-thermal emission models for GRBs
and SNe (e.g., Sari et al. 1998; Sari & Esin 2001; Granot
& Sari 2002), we introduce a parameter ✏e and assume that
a fraction ✏e of the internal energy of the gas in the down-
stream of the shock is converted to the energy of non-thermal
electrons, uele = ✏euint, where uint is the internal energy den-
sity at the shock front. The average energy of a single non-
thermal electron is given by the electron internal energy uele
divided by the electron number density nele in the down-
stream, uele/nele.

The momentum loss rates, ṗsyn and ṗic, for synchrotron
and inverse Compton cooling can be calculated from the
corresponding energy loss rates. They are given by

ṗsyn =
4�TuB
3m2

e c2 pe

q
m2

e c2 + p2
e, (25)

and

ṗic =
4�Turad
3m2

e c2 pe

q
m2

e c2 + p2
e, (26)

where �T is the Thomson cross section, uB the magnetic en-
ergy density, and urad the energy density of seed photons.
The magnetic energy density is given by uB = ✏Buint, where
✏B is another microphysics parameter specifying the fraction
of the magnetic energy density to the internal energy den-
sity. As we will see below, the photospheric and synchrotron
emission contribute to seed photons for inverse Compton
emission. Thus, we use the radiation energy densities of pho-
tospheric and synchrotron photons for urad. The adiabatic

momentum loss rate is

ṗad =
pe
3V

dV
dt
. (27)

The advection equation, Equation (23), is numerically
solved by a 1st-order implicit upwind scheme.

2.4.2 Synchrotron emission

For a given electron momentum distribution, calculations
of synchrotron emissivity j⌫,syn and the self-absorption co-
e�cient ↵⌫,syn are straightforward. We use the widely used
formulae found in the literature (e.g. Rybicki & Lightman
1979):

j⌫,syn =
1

4⇡V

Z
P⌫,syn(�e)

dN
dpe

dpe, (28)

for the synchrotron emissivity, and
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for the absorption coe�cient, where P⌫,syn(�e) is the syn-
chrotron power per unit frequency for a single electron with
a Lorentz factor of �e = [1 + p2

e/(m2
e c2)]1/2. The correspond-

ing synchrotron self-absorption optical depth is the product
of the absorption coe�cient and the shell width V/(4⇡R2

s ),
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Since the intensity of the synchrotron emission is expressed
in the following way,

Isyn(⌫) =
j⌫,syn
↵⌫,syn

(1 � e�⌧⌫,ssa ), (31)

the corresponding synchrotron energy loss rate per unit fre-
quency yields
 

dĖ
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syn
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fsIsyn(⌫). (32)

The observed luminosity per unit frequency is given by

L⌫,syn(tobs) = 2c
Z (dĖ(t, ⌫̄)/d ⌫̄)syn

Rs(t)�2
s [1 � µ�s(t)]2

dt. (33)

2.4.3 Inverse Compton emission

The inverse Compton emission is calculated by the following
formula,

Iic(⌫) =
Z

G(�e, ⌫i, ⌫)
dN
dpe

Iseed(⌫i)dped⌫i, (34)

for a given electron momentum distribution dN/dpe and
seed photon intensity Iseed(⌫i). The redistribution function
G(�e, ⌫i, ⌫) gives the energy spectrum of scattered photons for
incoming mono-energetic electrons with the Lorentz factor
�e and monochromatic photons with the frequency ⌫i (see,
Appendix of SM18). We consider the photospheric emission
and the synchrotron emission as the sources of seed photons.
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for the inverse Compton emission. We calculate the non-
thermal emission following the early high-energy emission
by using the method developed by SM18. We focus on the
non-thermal emission from the forward shock, because the
energy dissipation rate at the forward shock front dominates
over that of the reverse shock (Section 2.1).

2.4.1 Electron momentum distribution

We treat non-thermal electrons produced at the shock front
in one-zone approximation. In other words, we assume that
the electrons are uniformly distributed in a narrow re-
gion close to their production site and do not treat their
spatial advection and di↵usion. Furthermore, we assume
that their angular distribution in the momentum space is
isotropic. Thus, their momentum distribution is expressed
as a function of time t and the norm of the momentum pe,
dN/dpe(t, pe).

The temporal evolution of the electron momentum dis-
tribution is obtained by solving the following advection
equation in the momentum space for the range from pmin =
10�3mec to pmax = 106mec,
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dṄ
dpe

!

in
. (23)

We inject electrons with a power-law momentum distribu-
tion with an exponent �p,
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The normalization and the minimum injection momentum
pin are determined by the energy dissipation rate at the for-
ward shock front and the average electron energy. As usually
assumed in many non-thermal emission models for GRBs
and SNe (e.g., Sari et al. 1998; Sari & Esin 2001; Granot
& Sari 2002), we introduce a parameter ✏e and assume that
a fraction ✏e of the internal energy of the gas in the down-
stream of the shock is converted to the energy of non-thermal
electrons, uele = ✏euint, where uint is the internal energy den-
sity at the shock front. The average energy of a single non-
thermal electron is given by the electron internal energy uele
divided by the electron number density nele in the down-
stream, uele/nele.

The momentum loss rates, ṗsyn and ṗic, for synchrotron
and inverse Compton cooling can be calculated from the
corresponding energy loss rates. They are given by

ṗsyn =
4�TuB
3m2
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e, (25)

and

ṗic =
4�Turad
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where �T is the Thomson cross section, uB the magnetic en-
ergy density, and urad the energy density of seed photons.
The magnetic energy density is given by uB = ✏Buint, where
✏B is another microphysics parameter specifying the fraction
of the magnetic energy density to the internal energy den-
sity. As we will see below, the photospheric and synchrotron
emission contribute to seed photons for inverse Compton
emission. Thus, we use the radiation energy densities of pho-
tospheric and synchrotron photons for urad. The adiabatic

momentum loss rate is

ṗad =
pe
3V

dV
dt
. (27)

The advection equation, Equation (23), is numerically
solved by a 1st-order implicit upwind scheme.

2.4.2 Synchrotron emission

For a given electron momentum distribution, calculations
of synchrotron emissivity j⌫,syn and the self-absorption co-
e�cient ↵⌫,syn are straightforward. We use the widely used
formulae found in the literature (e.g. Rybicki & Lightman
1979):
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for the synchrotron emissivity, and
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for the absorption coe�cient, where P⌫,syn(�e) is the syn-
chrotron power per unit frequency for a single electron with
a Lorentz factor of �e = [1 + p2

e/(m2
e c2)]1/2. The correspond-

ing synchrotron self-absorption optical depth is the product
of the absorption coe�cient and the shell width V/(4⇡R2
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Since the intensity of the synchrotron emission is expressed
in the following way,

Isyn(⌫) =
j⌫,syn
↵⌫,syn

(1 � e�⌧⌫,ssa ), (31)

the corresponding synchrotron energy loss rate per unit fre-
quency yields
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The observed luminosity per unit frequency is given by

L⌫,syn(tobs) = 2c
Z (dĖ(t, ⌫̄)/d ⌫̄)syn
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dt. (33)

2.4.3 Inverse Compton emission

The inverse Compton emission is calculated by the following
formula,

Iic(⌫) =
Z

G(�e, ⌫i, ⌫)
dN
dpe

Iseed(⌫i)dped⌫i, (34)

for a given electron momentum distribution dN/dpe and
seed photon intensity Iseed(⌫i). The redistribution function
G(�e, ⌫i, ⌫) gives the energy spectrum of scattered photons for
incoming mono-energetic electrons with the Lorentz factor
�e and monochromatic photons with the frequency ⌫i (see,
Appendix of SM18). We consider the photospheric emission
and the synchrotron emission as the sources of seed photons.
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for the inverse Compton emission. We calculate the non-
thermal emission following the early high-energy emission
by using the method developed by SM18. We focus on the
non-thermal emission from the forward shock, because the
energy dissipation rate at the forward shock front dominates
over that of the reverse shock (Section 2.1).

2.4.1 Electron momentum distribution

We treat non-thermal electrons produced at the shock front
in one-zone approximation. In other words, we assume that
the electrons are uniformly distributed in a narrow re-
gion close to their production site and do not treat their
spatial advection and di↵usion. Furthermore, we assume
that their angular distribution in the momentum space is
isotropic. Thus, their momentum distribution is expressed
as a function of time t and the norm of the momentum pe,
dN/dpe(t, pe).

The temporal evolution of the electron momentum dis-
tribution is obtained by solving the following advection
equation in the momentum space for the range from pmin =
10�3mec to pmax = 106mec,
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We inject electrons with a power-law momentum distribu-
tion with an exponent �p,
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The normalization and the minimum injection momentum
pin are determined by the energy dissipation rate at the for-
ward shock front and the average electron energy. As usually
assumed in many non-thermal emission models for GRBs
and SNe (e.g., Sari et al. 1998; Sari & Esin 2001; Granot
& Sari 2002), we introduce a parameter ✏e and assume that
a fraction ✏e of the internal energy of the gas in the down-
stream of the shock is converted to the energy of non-thermal
electrons, uele = ✏euint, where uint is the internal energy den-
sity at the shock front. The average energy of a single non-
thermal electron is given by the electron internal energy uele
divided by the electron number density nele in the down-
stream, uele/nele.

The momentum loss rates, ṗsyn and ṗic, for synchrotron
and inverse Compton cooling can be calculated from the
corresponding energy loss rates. They are given by

ṗsyn =
4�TuB
3m2

e c2 pe

q
m2

e c2 + p2
e, (25)

and
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where �T is the Thomson cross section, uB the magnetic en-
ergy density, and urad the energy density of seed photons.
The magnetic energy density is given by uB = ✏Buint, where
✏B is another microphysics parameter specifying the fraction
of the magnetic energy density to the internal energy den-
sity. As we will see below, the photospheric and synchrotron
emission contribute to seed photons for inverse Compton
emission. Thus, we use the radiation energy densities of pho-
tospheric and synchrotron photons for urad. The adiabatic

momentum loss rate is

ṗad =
pe
3V

dV
dt
. (27)

The advection equation, Equation (23), is numerically
solved by a 1st-order implicit upwind scheme.

2.4.2 Synchrotron emission

For a given electron momentum distribution, calculations
of synchrotron emissivity j⌫,syn and the self-absorption co-
e�cient ↵⌫,syn are straightforward. We use the widely used
formulae found in the literature (e.g. Rybicki & Lightman
1979):
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for the synchrotron emissivity, and
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for the absorption coe�cient, where P⌫,syn(�e) is the syn-
chrotron power per unit frequency for a single electron with
a Lorentz factor of �e = [1 + p2

e/(m2
e c2)]1/2. The correspond-

ing synchrotron self-absorption optical depth is the product
of the absorption coe�cient and the shell width V/(4⇡R2
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Since the intensity of the synchrotron emission is expressed
in the following way,

Isyn(⌫) =
j⌫,syn
↵⌫,syn

(1 � e�⌧⌫,ssa ), (31)

the corresponding synchrotron energy loss rate per unit fre-
quency yields
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d⌫

!

syn
= 16⇡2R2

fsIsyn(⌫). (32)

The observed luminosity per unit frequency is given by

L⌫,syn(tobs) = 2c
Z (dĖ(t, ⌫̄)/d ⌫̄)syn

Rs(t)�2
s [1 � µ�s(t)]2

dt. (33)

2.4.3 Inverse Compton emission

The inverse Compton emission is calculated by the following
formula,

Iic(⌫) =
Z

G(�e, ⌫i, ⌫)
dN
dpe

Iseed(⌫i)dped⌫i, (34)

for a given electron momentum distribution dN/dpe and
seed photon intensity Iseed(⌫i). The redistribution function
G(�e, ⌫i, ⌫) gives the energy spectrum of scattered photons for
incoming mono-energetic electrons with the Lorentz factor
�e and monochromatic photons with the frequency ⌫i (see,
Appendix of SM18). We consider the photospheric emission
and the synchrotron emission as the sources of seed photons.

Iseed(⌫) =
1

16⇡2R2
fs

1 � �s(t)
1 � �ph(t 0)

 
dĖ
d⌫

!

ph
+ Isyn(⌫). (35)
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for the inverse Compton emission. We calculate the non-
thermal emission following the early high-energy emission
by using the method developed by SM18. We focus on the
non-thermal emission from the forward shock, because the
energy dissipation rate at the forward shock front dominates
over that of the reverse shock (Section 2.1).

2.4.1 Electron momentum distribution

We treat non-thermal electrons produced at the shock front
in one-zone approximation. In other words, we assume that
the electrons are uniformly distributed in a narrow re-
gion close to their production site and do not treat their
spatial advection and di↵usion. Furthermore, we assume
that their angular distribution in the momentum space is
isotropic. Thus, their momentum distribution is expressed
as a function of time t and the norm of the momentum pe,
dN/dpe(t, pe).

The temporal evolution of the electron momentum dis-
tribution is obtained by solving the following advection
equation in the momentum space for the range from pmin =
10�3mec to pmax = 106mec,

@

@t

 
dN
dpe

!
=
@

@pe

"
(ṗsyn + ṗic + ṗad)

dN
dpe

#
+

 
dṄ
dpe

!

in
. (23)

We inject electrons with a power-law momentum distribu-
tion with an exponent �p,
 

dṄ
dpe

!

in
/

(
p�pe for pin  pe  pmax
0 otherwise . (24)

The normalization and the minimum injection momentum
pin are determined by the energy dissipation rate at the for-
ward shock front and the average electron energy. As usually
assumed in many non-thermal emission models for GRBs
and SNe (e.g., Sari et al. 1998; Sari & Esin 2001; Granot
& Sari 2002), we introduce a parameter ✏e and assume that
a fraction ✏e of the internal energy of the gas in the down-
stream of the shock is converted to the energy of non-thermal
electrons, uele = ✏euint, where uint is the internal energy den-
sity at the shock front. The average energy of a single non-
thermal electron is given by the electron internal energy uele
divided by the electron number density nele in the down-
stream, uele/nele.

The momentum loss rates, ṗsyn and ṗic, for synchrotron
and inverse Compton cooling can be calculated from the
corresponding energy loss rates. They are given by

ṗsyn =
4�TuB
3m2

e c2 pe

q
m2

e c2 + p2
e, (25)

and

ṗic =
4�Turad
3m2

e c2 pe

q
m2

e c2 + p2
e, (26)

where �T is the Thomson cross section, uB the magnetic en-
ergy density, and urad the energy density of seed photons.
The magnetic energy density is given by uB = ✏Buint, where
✏B is another microphysics parameter specifying the fraction
of the magnetic energy density to the internal energy den-
sity. As we will see below, the photospheric and synchrotron
emission contribute to seed photons for inverse Compton
emission. Thus, we use the radiation energy densities of pho-
tospheric and synchrotron photons for urad. The adiabatic

momentum loss rate is

ṗad =
pe
3V

dV
dt
. (27)

The advection equation, Equation (23), is numerically
solved by a 1st-order implicit upwind scheme.

2.4.2 Synchrotron emission

For a given electron momentum distribution, calculations
of synchrotron emissivity j⌫,syn and the self-absorption co-
e�cient ↵⌫,syn are straightforward. We use the widely used
formulae found in the literature (e.g. Rybicki & Lightman
1979):

j⌫,syn =
1

4⇡V

Z
P⌫,syn(�e)

dN
dpe

dpe, (28)

for the synchrotron emissivity, and

↵⌫,syn =
c2

8⇡V ⌫2

Z
@

@pe

f
pe�eP⌫,syn(�e)

g 1
p2

e

dN
dpe

dpe, (29)

for the absorption coe�cient, where P⌫,syn(�e) is the syn-
chrotron power per unit frequency for a single electron with
a Lorentz factor of �e = [1 + p2

e/(m2
e c2)]1/2. The correspond-

ing synchrotron self-absorption optical depth is the product
of the absorption coe�cient and the shell width V/(4⇡R2

s ),

⌧⌫,ssa =
c2

32⇡2R2
s ⌫2

Z
@

@pe

f
pe�eP⌫,syn(�e)

g 1
p2

e

dN
dpe

dpe. (30)

Since the intensity of the synchrotron emission is expressed
in the following way,

Isyn(⌫) =
j⌫,syn
↵⌫,syn

(1 � e�⌧⌫,ssa ), (31)

the corresponding synchrotron energy loss rate per unit fre-
quency yields
 

dĖ
d⌫

!

syn
= 16⇡2R2

fsIsyn(⌫). (32)

The observed luminosity per unit frequency is given by

L⌫,syn(tobs) = 2c
Z (dĖ(t, ⌫̄)/d ⌫̄)syn

Rs(t)�2
s [1 � µ�s(t)]2

dt. (33)

2.4.3 Inverse Compton emission

The inverse Compton emission is calculated by the following
formula,

Iic(⌫) =
Z

G(�e, ⌫i, ⌫)
dN
dpe

Iseed(⌫i)dped⌫i, (34)

for a given electron momentum distribution dN/dpe and
seed photon intensity Iseed(⌫i). The redistribution function
G(�e, ⌫i, ⌫) gives the energy spectrum of scattered photons for
incoming mono-energetic electrons with the Lorentz factor
�e and monochromatic photons with the frequency ⌫i (see,
Appendix of SM18). We consider the photospheric emission
and the synchrotron emission as the sources of seed photons.

Iseed(⌫) =
1

16⇡2R2
fs

1 � �s(t)
1 � �ph(t 0)

 
dĖ
d⌫

!

ph
+ Isyn(⌫). (35)
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Figure 6. X-ray, optical, and radio light curves calculated by our
emission model. The light curves in X-ray (top panel), optical-UV
(middle panel), and radio (bottom panel) bands are compared
with observations of GRB 171205A. In the top panel, we plot the
BAT and XRT observations (the same symbols as Figure 3). The
light curve shown as a red solid line up to tobs ' 103 is the fiducial
model shown in Figure 3. The late X-ray emission is dominated by
the inverse Compton emission. While the green solid line shows
the 0.3–10 keV light curve of the inverse Compton emission, te
⌫L⌫ light curves at 1 and 10 keV are plotted as dashed and dash-
dotted lines. In the middle panel, we plot the same multi-band
light curves as Figure 5 by in ⌫L⌫ as well as the bolometric light
curve Lph,bol (dashed line). In the bottom panel, radio light curves
at 5 (solid), 10 (dashed), 100 (dash-dotted), and 300 (dotted) GHz
are compared with early radio observations by NOEMA (blue
circle; de Ugarte Postigo et al. 2017b), ALMA (blue and magenta
squares; Perley et al. 2017), and VLA (red star; Laskar et al.
2017).

several bands are also plotted in the bottom panel of Fig-
ure 7. The flux density in each band initially rises and then
declines in a power-law fashion, and its peak appears earlier
for higher frequencies. These trends are common properties
of young radio emitting SNe, where the rising and declin-
ing parts correspond to optically thick and thin synchrotron
emission (e.g., Chevalier & Fransson 2016). The 100 and 350
GHz radio flux densities reach the peak values of ⇠ 100 mJy
at tobs = 5⇥104 s and 2⇥105 s. The fluxes continue to decline
with ⇠ t�1.5 after the peaks. At tobs ' 5 ⇥ 104 s, ALMA ob-
servations were carried out at 92 and 340 GHz and reported
flux densities of a few 10 mJy (Perley et al. 2017), which
are roughly consistent with the theoretical fluxes at similar

Figure 7. Same as Figure 6, but with the reduced outer CSM
density of Aout,? = 2.

frequencies of 100 and 300 GHz. Since the flux density at
92 GHz is smaller than that at 340 GHz, the synchrotron
spectrum in this frequency range is likely to have been in
the optically thin regime. In this regime, the spectral slope
depends on the assumed exponent p of the electron momen-
tum distribution, / ⌫�p/2 or ⌫�(p�1)/2. On the other hand,
radio fluxes at lower frequencies, 5 and 10 GHz, are still ris-
ing even at tobs = 106 s, which is also consistent with Karl G.
Jansky Very Large Array (VLA) observations by Laskar et
al. (2017), claiming a spectral slope consistent with a syn-
chrotron self-absorbed spectrum.

3.4.2 Electron momentum distribution

Figure 8 shows the electron momentum distributions at sev-
eral epochs. The plotted electron distributions are those
at epochs satisfying t � Rs(t)/c = 103, 104, and 105 s. At
these epochs, non-thermal electrons with the plotted mo-
mentum distributions most predominantly contribute to the
non-thermal emission at observer times of tobs = 103, 104,
and 105 s.

The distributions at early epochs are generally a bro-
ken power-law function with three segments, the high en-
ergy part with the spectral slope of d ln N/d ln pe = �4, the
low energy part with a flat slope, and the intermediate part
between them. The high energy part is composed of elec-
trons with the momentum higher than the minimum injec-
tion momentum at several 10mec. These electrons su↵er from
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Figure 10. Spectral energy distributions at tobs = 3⇥ 103,
104, and 105 s from top to bottom. The luminosity per unit
frequency (or equivalently the flux density) is plotted for the
synchrotron (green), photospheric (red), and inverse Comp-
ton (blue) components. Some observational data are plotted
for comparison. The black circle in the bottom panel rep-
resents NOEMA observation. The UVOT multi-color pho-
tometric data are plotted as blue circles in the middle and
bottom panels. The time-sliced XRT data after absorption
correction (see Appendix B) are plotted as magenta crosses
in all the panels.

distribution is given by a Planck function as we have
assumed in Section 2.3. Finally, the inverse Compton
emission is the convolution of the electron momentum
distribution with the synchrotron and photospheric pho-
ton spectra, resulting in relatively complex spectral en-
ergy distributions. The inverse Compton emission in the
X-ray energy range is created by photospheric photons
scattered by non-thermal electrons with energies close
to the minimum injection energy.
The spectra in the X-ray range of 0.3–10 keV show

power-law distributions with hard photon indices, �ph '
1.5. The photon index reflects the slope of the elec-
tron momentum distribution below the minimum injec-
tion energy, i.e., the intermediate part (Section 3.4.2).
Since electrons in this part are predominantly produced
by inverse Compton cooling, the electron energy spec-
trum follows ��2

e , which leads to the inverse Compton

spectrum with the photon index of �ph = 1.5. The X-
ray spectrum gradually softens with time and the pho-
ton index around 0.3 keV becomes nearly �ph ' 2 at
tobs = 105 s.
Some observational data at similar epochs, NOEMA

(de Ugarte Postigo et al. 2017b) and UVOT (Siegel et
al. 2017), are plotted in Figure 10 and compared with
the theoretical spectral energy distributions. For the X-
ray emission, we have obtained time-sliced X-ray spec-
tra in the 0.3–10.0 keV energy range by analyzing the
XRT data (see, Appendix B for detail). The spectral
fitting by an absorbed single power-law function have
been performed and the results are summarized in Ta-
ble 1. The absorption corrected X-ray spectra for the
three di↵erent time intervals, tobs = 103 s to 104 s, 104 s
to 3⇥104 s, and 105 s to 2⇥105 s, are plotted in Figure
10. As seen in Figure 10, the theoretical spectral energy
distributions show overall agreements with current ob-
servational constraints in radio, optical, and X-ray. The
slopes of the absorption corrected X-ray spectra are well
explained by the theoretical model. The best-fit photon
indices of the XRT spectra at earlier two time intervals
are �ph ⇠ 1.7 or 1.8, while it softens to �ph ' 2.3 at
tobs > 105 s. The spectral softening expected by the
theoretical model appears to agree with the temporal
evolution of the X-ray spectra, although observations
with better photon statistics are needed.

4. DISCUSSION

4.1. Broad-band emission from llGRBs

The broad-band light curves calculated by our theo-
retical model successfully explain several key properties
of GRB 171205A. The early gamma-ray and X-ray light
curves of GRB 171205A are reproduced by the emis-
sion di↵using out from the optically thick shell, which
is a natural consequence of the relativistic ejecta-CSM
interaction. The light curve fitting suggests the ejecta
kinetic energy of 5⇥ 1050 erg and the CSM density pa-
rameter of A? = 25. After the shell becomes transpar-
ent, photospheric and non-thermal emission contribute
to the subsequent multi-wavelength emission. The pho-
tospheric emission from the ejecta expects optical and
UV fluxes comparable to observed values. We found
that a wind-like CSM based on a simple extrapolation
of the density profile of A?r�2 with A? = 25 to outer
radii leads to a too bright X-ray afterglow. In order to
ease the discrepancy, we introduced a sudden change in
the CSM density at rout = 3 ⇥ 1013 cm and obtained
an X-ray light curve marginally consistent with obser-
vations.
We note that the discrepancy might also be resolved

by a more sophisticated treatment of radiative transfer



Summary

Suzuki, Maeda, & Shigeyama (2018)

➡ low-luminosity GRBs: a sub-energetic 
population of long GRBs 

➡ A part of them are really a distinct 
population powered by CSM interaction. 

➡ origin of (sub-)relativistic ejecta? 

➡ There should be more llGRBs, but how 
to distinguish between off-axis GRBs 
and CSM-powered transients. 

➡ Future deep and/or wide X-ray surveys  
will unveil the hidden population. 




