近傍大質量星からの紫外線照射による分子雲 コアの光蒸発:コア寿命の金属量依存性

仲谷崚平 (東京大学D3)

This talk is based on

Nakatani & Yoshida (arXiv:1811.00297; Submitted to ApJ)

(and Nakatani et al. (ApJ, 857, 57, 2018); Nakatani et al. (ApJ, 865, 75, 2018))

第31回理論懇シンポジウム@京都大学基礎物理学研究所パナソニックホール, 12/20/2018

Cloud Destruction by Massive Stars

GMC

Orion Molecular Cloud

Trapezium cluster

OB Stars

Dispersing surrounding clouds

R Nakatani

https://apod.nasa.gov/apod/ap180805.html

https://en.wikipedia.org/wiki/Orion_Molecular_Cloud_Complex#/media/File:Orion_Head_to_Toe.jpg

Intense UV from OB stars can destruct ambient cores/clumps.

Cloud Destruction by Massive Stars

This situation is observed in many other GMCs.

Radiation Impacts on Clouds

- Erode clouds through photoevaporation
- Cometary structure
- Radiation-driven
 compression

Mass functions of cores, clumps, and stars can be s affected

Influences of Massive Stars on Star Formation

➤ LMC (lower metallicity; strong UV field) has similar Clump MF (e.g., Brunetti & Wilson 2018) → Is there any metallicity effects ?

What about other low-metallicity environment? (protogalaxies, high-z galaxies, outer Galaxy.)

Methods

- 3D Hydrodynamics + Radiation transfer (ray-tracing) + Chemistry
 - Metallicity is varied over a range of $10^{-3} < Z/Zsun < 1$

Initial Condition Cometary structure formation Solar-Metallicity Core $t \simeq 5000 \,\mathrm{yr}$

Solar-Metallicity Core

• Mass loss is higher with high cross-section, inefficient in the cometary phase

• Lifetime is 10^5 years for Z_{\odot} core

Comparison with Other Z

• Faster disapperance for lower-Z cores

Effects of Metal Cooling

Lower metallicity clumps remain larger in launch surface

Mass Evolution with Various Z

• Lifetime is ~10⁴ years for $Z = 10^{-3}Z_{\odot}$

Core Mass Evolution

Lifetime VS Metallicity

Implication to Star Formation

 $t_{
m ff} < t_{
m life}$ Would be necessary to gravitationally collapse.

$Z = Z_{\odot}$	0	
$Z = 10^{-0.5} Z_{\odot}$	0	Compression shortens the free fall time
$Z = 10^{-1} Z_{\odot}$	0	
$Z = 10^{-1.5} Z_{\odot}$	\bigtriangleup	Marginal
$Z = 10^{-2} Z_{\odot}$	×	Photoevaporation is
$Z=10^{-3}Z_{\odot}$	×	very efficient

Massive stars have potential to significantly suppress star formation in nearby cores with low metallicities.

Summary

• Aims: Metallicity d

Metallicity dependence of the lifetimes of cores illuminated by external massive stars.

• Results:

The lifetime is 100,000 years for solar-metallicity cores, and is shorter with metal-poor cores.

The lifetime is 10,000 years for very low-metallicity cores.

• Conclusion:

- the gas metallicity strongly affects the core lifetime and thus determines the strength of feedback from massive stars in star-forming regions.

- star formation could be significantly suppressed in lowmetallicity environments.

- Future prospects:
 - Parameter study (metallicity, flux, core density, size)
 - Postprocess study in the context of galaxy evolution

