第31回理論懇シンポジウム 「宇宙物理の標準理論:未来へ向けての再考」 Dec. 19-21, 2018 @京大基研

原始惑星系円盤から 惑星系へ :物理・化学素過程の 観測的検証法

野村 英子 (東工大地惑)

原始惑星系円盤から惑星系へ

(e.g., Hayashi et al. 1985) ダストの成長・ 原始惑星系円盤 赤道面への沈殿 微惑星の形成 微惑星形成 地球型惑星形成 微惑星の合体成長 地球型惑星形成 ガス惑星形成 Shandhand: Stor 木星型惑星形成 ガス円盤の散逸 → 惑星系形成 (C) Newton Press

ALMA(アタカマ大型電波干渉計)!

- ・日米欧共同 プロジェクト
- 南米チリアタカマ
 砂漠に建設中
- •2011年部分運用 開始
- (2016年本格運用 開始)

- ・54台の12mアンテナ+12台の7mアンテナ(ACA)
 - → 高感度・高空間分解能のミリ波・サブミリ波観測
- ・太陽系内天体から宇宙論まで
- ・星・惑星系形成過程の解明!

Subaru 密度波理論による波形 (Tsukagoshi+ 2016) (Fukagawa+ 2013)

(Oberg et al. 2015)(ALMA partnership+ 2015)(Qi et al. 2013)IM LupDCO+ 3-2HL Tau N_2H^+ 4-3TW Hya

原始惑星系円盤のガス・ダスト観測により 円盤内の物理・化学素過程の検証が 可能になった

原始惑星系円盤内の ダスト進化

https://almascience.nao.ac.jp/almadata/lp/DSHARP,

惑星によりガスギャップができると、 ダストはガスギャップの両側に移動 移動の度合いはダストのサイズに依存

(NAOJ・塚越崇氏のスライドより)

原始惑星系円盤内の 複雑な有機分子生成 :太陽系内物質の起源

これまでに観測された星間分子の一部

CH+	HCN	H2CO	HC3N	СНЗОН	HC5N		НСООСН3	HC7N			
CS	HNC	H2CS	нсоон	CH3CN	СНЗССН		CH3C3N	HC9N			
СО	НСО	H2CN	CH2NH	CH3NC	CH3NH2		СНЗСООН	HC11N			
CN	OCS	HNCO	CH2CO	CH3SH	СНЗСНО		СН2СНСНО	C2H5CN			
C2	CH2	HNCS	NH2CN	NH2CHO	CH2CHCN		СН2ОНСНО	СНЗС4Н			
茸	CH3C5N										
		СНЗОСНЗ									
		С2Н5ОН									
@	STAF	CH3CONH2									
	ROS	СН3СОСН3									
	OHCH2CH2OH										
	С2Н5ОСНО										
	С8Н-										
		NH2CH2COOH?									
3№ 1970年 1980年 1995年 2018年											
~ 10 種 → ~ 50 種 → ~ 100 種 → ~ 210 種											

HCOOH @ 129GHz, TW Hya, ALMA cycle 3 (Favre et al. 2018)

ダスト表面反応による有機分子生成

(Walsh et al. 2017)

ロゼッタミッション:彗星中の有機分

67P/ Churyumov-Gerasimenko 中の有機分子 COSAC/Philae, ROSINA, Rosetta

Name	Formula	Molar mass (u)	Relative to water	25 ₽ 20					
Water	H ₂ O	18	100						
Methane	CH4	16	0.5	zed					
Methanenitrile (hydrogen cyanide)	HCN	27	0.9						
Carbon monoxide	CO	28	1.2	Б 2 5			. di		
Methylamine	CH ₃ NH ₂	31	0.6	0		ـ ابالر	اليور		. بايار.
Ethanenitrile (acetonitrile)	CH ₃ CN	41	0.3	10	20	30	40	50	60
Isocyanic acid	HNCO	43	0.3				m/z		
Ethanal (acetaldehyde)	CH ₃ CHO	44	0.5	<u> </u>		C3	H ₇ O ₂		
Methanamide (formamide)	HCONH ₂	45	1.8	グリ	シン	C₂H₅N	Ι Φ 2		ŀ
Ethylamine	C ₂ H ₅ NH ₂	45	0.3			Å.	Ŵ		
Isocyanomethane (methyl isocyanate)	CH ₃ NCO	57	1.3				1; N		ŀ
Propanone (acetone)	CH ₃ COCH ₃	58	0.3				I I		-
Propanal (propionaldehyde)	C ₂ H ₅ CHO	58	0.1						Ţ
Ethanamide (acetamide)	CH ₃ CONH ₂	M							
2-Hydroxyethanal (glycolaldehyde)	CH ₂ OHCHO	60	0.4						
1,2-Ethanediol (ethylene glycol)	CH ₂ (OH)CH ₂ (OH)	62	0.2		<u> </u>		: [M.		
(Geosm:	ann + 2015	ΔΙτωρ	10 + 201	6^{90} 2	017	5.00 m/z	/5.05	75.10	75.1

(Geosmann+ 2015, Altwegg+ 2016, 2017)

グリシン他、多数の有機分子を質量分析器で検出

まとめ

高空間分解能・高感度ALMA観測による 原始惑星系円盤内の「構造」の観測

- → 円盤内のダスト運動の検証
- → 構造はいつできるのか?惑星形成との関連?
 - ALMA・ロゼッタによる円盤&彗星中の 複雑な有機分子の観測
- → 冷たい塵・暖かい塵上の表面反応の検証
 →より複雑な有機分子生成過程:氷マントル反応

惑星系の材料物質?

- ALMA観測・小惑星探査による円盤から
 - 太陽系内縁天体への物質進化の検証:
 - 氷マントル反応&炭素塵破壊の効果?