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Weak Gravitational Lensing

The large-scale structures induce weak gravitational lensing effect.

We can probe into the matter distribution in an unbiased way.
Convergence field:

The images of galaxies are distorted ’
due to the foreground gravitational field, K(0) = 3 ﬂ Q
and the distortion can be detected ) C m
by statistically analyzing many images.
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The Sunyaev-Zeldovich Effect

Afterglow Light
Pattern Dark Ages Development of
375,000 yrs. Galaxies, Planets, etc.

all-sky Compton-y map
by Planck
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Cosmology with WL and tSZ

We can place stringent constraints on cosmological parameters
with auto-power spectra of convergence (WL) and Compton-y (t52).

tSZ auto-power spectrum analysis

HSC cosmic shear analysis
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Auto 2pt Correlations

WL

Power spectrum / 2pt correlation

+04.00°F ©
.- e .
+03.00°p o 2
- g
S +02.00°F * - / '3 ? < ’
8 . * : -l : ..' :'_ ‘,_L. o &% ‘ . \..
3 o . ‘o, 3 ‘\ 3 ’ ’ ! . P v - L . \ |
§ oo EARAZEET L S E Gt SR Ll st Cosmology
. e ) : } oy LS T ek W .
N : ’ at. & " . . % . 4 . ) : |
+00.00°F € Y o
: '.*... e
—071.00° D S s R
141.00° 133.00° 135.00° 132.00° 129.00°
RA (J2000)

tSZ

Cosmology

Power spectrum / 2pt correlation



Auto 2pt Correlations
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Cross 2pt Correlations

WL
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Why Cross-Correlation?

* A naive advantage over auto-correlation is addition of independent
information useful for breaking parameter degeneracy.
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* A naive advantage over auto-correlation is addition of independent
information useful for breaking parameter degeneracy.

4+Especially in the case of cross-correlation between
high S/N and low S/N observables, the cross-correlation becomes
more powerful!

X = WL, galaxies, CMB temp. Y =1SZ, CMB pol., GW source

2
(S/ N )XY > 1 Cross-correlation outperforms

(S / N )%(Y auto-correlation!
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X = WL, galaxies, CMB temp. Y =1SZ, CMB pol., GW source

2
(S/ N )XY > 1 Cross-correlation outperforms

(S / N )%(Y auto-correlation!

If the observable Y contains unique information (e.g., cluster
astrophysics), cross-correlation should be the first way to go!



Why Cross-Correlation?

* A naive advantage over auto-correlation is addition of independent
information useful for breaking parameter degeneracy.

4+Especially in the case of cross-correlation between
high S/N and low S/N observables, the cross-correlation becomes

Contents of this talk

e

Part I: Cosmological analysis of the measurement of

tSZ-WL cross-correlations with RCSLenS and Planck

Part lI: Measurements of the tSZ-WL cross-correlations
with HSC and Planck
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astrophysics), cross-correlation should be the first way to go!



Strategy

4+Example: RCSLenS x Planck measurement of WL-tSZ cross-correlations.
x 1079

3.9

3.0
Error (covariance)

Covariance matrix can be

estimated from mock simulations
or directly from observation.

Signal

2PCF
gV ()

Predictions depend on model and
cosmology, and fast calculation
is essential.
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Analytical Prediction of Signal

Theoretical prediction of cross spectra is based on halo model.
All matter and gas is associated with halos.
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Analytical Prediction of Signal

Theoretical prediction of cross spectra is based on halo model.
All matter and gas is associated with halos.
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Analytical Prediction of Signal

Theoretical prediction of cross spectra is based on halo model.
All matter and gas is associated with halos.
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Analytical Prediction of Signal

Theoretical prediction of cross spectra is based on halo model.
All matter and gas is associated with halos.
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Models of ICM Profiles

Earlier works include Kaiser (1986); Makino+ (1998); Suto+ (1998);

Generalized NFW (GN FW) o rofile Komatsu & Seljak (2001, 2002); Ostriker+ (2005); Bode+ (2009)
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Non-thermal Pressure

NOTE: From X-ray and SZ, only thermal pressure component can
be observed, but simulations suggest that turbulent motion

can also balance the self-gravity of galaxy clusters.
This another source of pressure is called as non-thermal pressure.




Non-thermal Pressure

NOTE: From X-ray and SZ, only thermal pressure component can
be observed, but simulations suggest that turbulent motion

can also balance the self-gravity of galaxy clusters.
This another source of pressure is called as non-thermal pressure.

BUT it is hard to measure the non-thermal pressure

since it requires high-res. spectroscopy.
We incorporate this effect in a phenomenological manner.

Hydrostatic bias Non-thermal pressure profile
for GNFW profile for analytic profile
1.8
M P r
HSE nth
=1-b (r) = a(l + 2z

Mtrue P tot R5OOC
Studies on mass calibration with WL Based on hydro. simulations.
suggestb ~ 0.1-0.4.  medezinski+ (2018); Lau+ (2009);

Miyatake, ..., KO, ... (2018) Nelson+ (2014)



All-Sky Mock Simulations

4+For more reliable estimation of covariance, we make advantage of
all-sky N-body simulations. We can incorporate various effects, e.g.,

survey geometry, noise, and beam convolution.

All-sky convergence map All-skv Compton-y ma

Shirasaki+ (2015); Takahashi,...,KO,... (2017) KO+ (in prep.)



Compton-y Auto-Spectra

Planck (data) + mock (covariance)
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Cross-Correlation Functions

920 \{\ RCSLenS x Planck (data) + mock (covariance)
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KO, Flender, Nagai, Shirasaki, and Yoshida (2018)



Amplitude of matter fluctuation

Constraints on Non-Thermal Pressure
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Amplitude of matter fluctuation

Constraints on Non-Thermal Pressure
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Amplitude of matter fluctuation

Constraints on Non-Thermal Pressure

1.0

Non-thermal pressure profile

for analytic profile
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Issues on this anal

sis of RCSLenS x Planck results:

The pressure profiles are calibrated against

low-z and cluster-size halos, and it leads to

large uncertainty for high-z or group-size halos.
=We need deeper measurements like HSC-Planck!
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Amplitude of non-thermal pressure ()
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KO, Flender, Nagai, Shirasaki, and Yoshida (2018)






HSC-SSP WL Survey

+HSC S16A
Wide and deep WL survey which covers 136.9 deg?

with mean i-band seeing ~ 0".58 and n.4 = 24.6 arcmin™*

c.f., for RCSLenS

— 2
N = .8 arcmin

9suabianuo)

KO, Miyatake, Nagai, Shirasaki, Yoshida+ (in prep.)



Measurements of Cross-Correlations

Null tests passed

6 HSC patches

GNFW

HSC x Planck

KO, Miyatake, Nagai, Shirasaki, Yoshida+ (in prep.)



Constraints on Cosmological Parameters

@
b In this analysis, GNFW profile is used.

With the prior from Planck CMB measurements,
¢ we can place tight constraints on cosmological
parameters along with hydrostatic mass bias!

n

0

S

Hydrostatic bias
for GNFW profile

KO, Miyatake, Nagai, Shirasaki, Yoshida+ (in prep.)



Fraction of mass supported by thermal pressure

Constraints on Mass Bias

CS82-ACT
No non-thermal pressure
HSC-Planck
CCCP
CLASH
HSC-ACT WtG
Planck tSZ auto-power spectrum
(Bolliet+, 2018) High non-thermal pressure

= Mass supported by thermal pressure
KO, Miyatake, Nagai, Shirasaki, Yoshida+ (in prep.)



Fraction of mass supported by thermal pressure

Constraints on Mass Bias

CS82-ACT
No non-thermal pressure
HSC-Planck
CCCP
CLASH
HSC-ACT WtG
This work
Planck tSZ auto-power spectrum
(Bolliet+, 2018) High non-thermal pressure

= Mass supported by thermal pressure
KO, Miyatake, Nagai, Shirasaki, Yoshida+ (in prep.)



Constraints on Mass Bias

CS82-ACT
No non-thermal pressure

HSC-Planck LoCuSS

Our results show higher b than

WL mass calibration measurements
and imply the possible redshift evolution of mass bias!

This work

Planck tSZ auto-power spectrum
(Bolliet+, 2018) High non-thermal pressure

Fraction of mass supported by thermal pressure

= Mass supported by thermal pressure
KO, Miyatake, Nagai, Shirasaki, Yoshida+ (in prep.)



Summary

e Weak lensing and the thermal Sunyaev-Zel'dovich effect
are promising probes into the large-scale structure
and thermodynamical properties of intra-cluster medium.

e Cross-correlation provides additional information
with high S/N significance compared with auto-correlations.

* Halo model calculation and N-body simulations are
used to predict the signal and estimate the covariance matrix.
This study presents the first attempt to estimate
covariance matrix from realistic mock simulations.

e HSC is the unique WL survey which can probe into
the large-scale structures and galaxy clusters at high redshifts,
and the redshift evolution of them by tomography.



