Creation of a localised source in quantum field theory

Jorma Louko

School of Mathematical Sciences, University of Nottingham

RQIN 2017, YITP, Kyoto University, Japan, 4-7 July 2017

E. G. Brown and JL JHEP **1508**, 061 (2015) L. J. Zhou, M. E. Carrington, G. Kunstatter, JL PRD **95**, 085007 (2017) W. M. H. Wan Mokhtar and JL in preparation

Plan

1. Motivation: Firewalls

 \longrightarrow Correlation breakdown in quantum field theory

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 2. Wall for scalar field in 1+1
- 3. Wall for spinor field in 1+1
- 4. Pointlike source for scalar field in 3+1
- 5. Summary

Suppose BH evaporates fully and the process preserves unitarity

Pure state on Σ₂ ⇒ B' and C' strongly correlated

Suppose BH evaporates fully and the process preserves unitarity

- Pure state on Σ₂ ⇒ B' and C' strongly correlated
- Evolution \Rightarrow

B and C strongly correlated

Suppose BH evaporates fully and the process preserves unitarity

- Pure state on $\Sigma_2 \Rightarrow$ B' and C' strongly correlated
- \blacktriangleright Evolution \Rightarrow B and C strongly correlated
- Hawking \Rightarrow B and A strongly correlated

・ロト ・ 日 ト ・ 日 ト

Suppose BH evaporates fully and the process preserves unitarity

- Pure state on Σ₂ ⇒ B' and C' strongly correlated
- ► Evolution ⇒
 B and C strongly correlated
- ► Hawking ⇒ B and A strongly correlated

Contradicts entanglement monogamy theorem ?!?

Suppose BH evaporates fully and the process preserves unitarity

- Pure state on $\Sigma_2 \Rightarrow$ *B'* and *C'* strongly correlated
- ► Evolution ⇒
 B and C strongly correlated
- ► Hawking ⇒ B and A strongly correlated

Contradicts entanglement monogamy theorem ?!?

Almheiri at al (AMPS) 2013 resolution proposal:

A-B correlations broken by "drama" at the shrinking horizon even for macroscopic BH

"Firewall"

・ロン ・聞 と ・ ヨ と ・ ヨ と … ヨ

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- ・ロト ・個ト ・ヨト ・ヨト ・ヨー のへの

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• **Softer:** to λ^{-1} from Dirichlet $\Rightarrow \langle E_{tot} \rangle \propto \lambda \ln(\lambda/\mu)$

- ▶ Total energy radiated: $\langle E_{tot} \rangle = +\infty$, from $|x| \rightarrow (t_0 \lambda^{-1})_+$
- ► Softer: to λ^{-1} from Dirichlet $\Rightarrow \langle E_{tot} \rangle \propto \lambda \ln(\lambda/\mu) \xrightarrow[\lambda \to \infty]{} \infty$ Divergent for sharp wall formation Cf Anderson and DeWitt 1986

detector

- ロ ト - 4 回 ト - 4 □ - 4

► X

- ▶ Total energy radiated: $\langle E_{tot} \rangle = +\infty$, from $|x| \rightarrow (t_0 \lambda^{-1})_+$
- Softer: to λ^{-1} from Dirichlet $\Rightarrow \langle E_{tot} \rangle \propto \lambda \ln(\lambda/\mu) \xrightarrow[\lambda \to \infty]{} \infty$ Divergent for sharp wall formation Cf Anderson and DeWitt 1986
- Atom coupled to ϕ : use Unruh-DeWitt detector

detector

► X

 t_0

- ▶ Total energy radiated: $\langle E_{tot} \rangle = +\infty$, from $|x| \rightarrow (t_0 \lambda^{-1})_+$
- Softer: to λ^{-1} from Dirichlet $\Rightarrow \langle E_{tot} \rangle \propto \lambda \ln(\lambda/\mu) \xrightarrow[\lambda \to \infty]{} \infty$ Divergent for sharp wall formation Cf Anderson and DeWitt 1986
- Atom coupled to \u03c6: use Unruh-DeWitt detector Transition probability finite for sharp wall formation

- ▶ Total energy radiated: $\langle E_{tot} \rangle = +\infty$, from $|x| \rightarrow (t_0 \lambda^{-1})_+$
- ► Softer: to λ^{-1} from Dirichlet $\Rightarrow \langle E_{tot} \rangle \propto \lambda \ln(\lambda/\mu) \xrightarrow[\lambda \to \infty]{} \infty$ Divergent for sharp wall formation Cf Anderson and DeWitt 1986
- ► Atom coupled to *φ*: use Unruh-DeWitt detector Transition probability finite for sharp wall formation
- Moral: sharp wall formation singular gravitationally but nonsingular for a matter coupling

1+1 Minkowski $\psi(t,x)$ massless $ot\!\!/\psi \psi = 0$

MIT bag wall > X

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1+1 Minkowski $\psi(t, x)$ massless $\not D \psi = 0$ $\rightarrow \boxed{\not D_{\vec{\theta}(t),n} \psi = 0}$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

► Total energy radiated: $\langle E_{tot} \rangle \xrightarrow[\lambda \to \infty]{} \infty$ Divergent for sharp wall formation

- ► Total energy radiated: $\langle E_{tot} \rangle \xrightarrow[\lambda \to \infty]{} \infty$ Divergent for sharp wall formation
- ► Atom coupled to ψ: Unruh-DeWitt detector Transition probability diverges for sharp wall formation

- ► Total energy radiated: $\langle E_{tot} \rangle \xrightarrow[\lambda \to \infty]{} \infty$ Divergent for sharp wall formation
- ► Atom coupled to ψ: Unruh-DeWitt detector Transition probability diverges for sharp wall formation
- Moral: sharp wall formation singular both gravitationally and for a matter coupling

3+1 Minkowski

 $\phi(t, \mathbf{x})$ massless

$$\partial_t^2 \phi - \nabla^2 \phi = \mathbf{0}$$

Formed source

► r

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

4. Pointlike source for scalar field in 3+1

Zhou et al 2016

3+1 Minkowski $\phi(t, \mathbf{x})$ massless $\partial_t^2 \phi - \nabla^2 \phi = 0$ $\rightarrow \overline{\partial_t^2 \phi - \Delta_{\theta(t)} \phi = 0}$

 $\theta(t)$: origin boundary condition (spherically symmetric sector)

• $\langle T_{00} \rangle$ well defined; time-dependent even for $t > r + \lambda^{-1}$

r

Summary

Rapid creation of a localised source tends to be singular!

- Both gravitationally and for a model atom's response
- ▶ 1+1 scalar field exceptional (and needs an infrared cutoff)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Model for a black hole firewall?

- Spacetime will react. How?
- $G_{\mu\nu} = 8\pi \langle T_{\mu\nu} \rangle$? May or may not suffice...
- Fully-developed firewall?
 - Quantum theory of spacetime needed

Appendix: pointlike detector in quantum field theory (Unruh-DeWitt)

Quantum field

- D spacetime dimension
- ϕ real scalar field
- $|0\rangle$ (initial) state

Two-state detector (atom)

- $\|0\rangle\!\rangle$ state with energy 0
- $\|1
 angle$ state with energy ω
- $x(\tau)$ detector worldline,
 - au proper time

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Appendix: pointlike detector in quantum field theory (Unruh-DeWitt)

Quantum field

- D spacetime dimension
- ϕ real scalar field
- $|0\rangle$ (initial) state

Two-state detector (atom)

- $\|0\rangle\!\rangle$ state with energy 0
- $\left\| 1 \right\rangle \!\!\!\! \rangle$ state with energy ω
- $x(\tau)$ detector worldline, au proper time

Interaction: one of

$$\begin{split} H^{(0)}_{\text{int}}(\tau) &= \mathbf{c}\chi(\tau)\mu(\tau)\phi\bigl(\mathsf{x}(\tau)\bigr) & \longleftarrow \text{ usual UDW} \\ H^{(1)}_{\text{int}}(\tau) &= \mathbf{c}\chi(\tau)\mu(\tau)\frac{\mathrm{d}}{\mathrm{d}\tau}\phi\bigl(\mathsf{x}(\tau)\bigr) & \longleftarrow \text{ derivative-coupling} \end{split}$$

- c coupling constant
- χ switching function, C_0^{∞}
- μ detector's monopole moment operator

Probability of transition

$$\|0
angle \otimes |0
angle \longrightarrow \|1
angle \otimes |$$
anything $angle$

in first-order perturbation theory:

$$P(\omega) = c^{2} \underbrace{\left| \langle \langle 0 || \mu(0) || 1 \rangle \rangle \right|^{2}}_{\text{detector internals only:}} \times \underbrace{F(\omega)}_{\text{trajectory and } |0\rangle:}$$

$$F^{(0)}(\omega) = \int_{-\infty}^{\infty} \mathrm{d}\tau' \int_{-\infty}^{\infty} \mathrm{d}\tau'' \,\mathrm{e}^{-i\omega(\tau'-\tau'')} \,\chi(\tau')\chi(\tau'') \,W(\tau',\tau'')$$

$$F^{(1)}(\omega) = \int_{-\infty}^{\infty} \mathrm{d}\tau' \int_{-\infty}^{\infty} \mathrm{d}\tau'' \,\mathrm{e}^{-i\omega(\tau'-\tau'')} \,\chi(\tau')\chi(\tau'') \,\partial_{\tau'}\partial_{\tau''} W(\tau',\tau'')$$

 $\mathcal{W}(\tau',\tau'') = \langle \mathbf{0} | \phi \big(\mathbf{x}(\tau') \big) \phi \big(\mathbf{x}(\tau'') \big) | \mathbf{0} \rangle \quad \text{Wightman function}$

Probability of transition

$$\|0
angle \otimes |0
angle \longrightarrow \|1
angle \otimes |$$
anything $angle$

in first-order perturbation theory:

$$P(\omega) = c^{2} \underbrace{\left| \langle \langle 0 || \mu(0) || 1 \rangle \rangle \right|^{2}}_{\text{detector internals only:}} \times \underbrace{F(\omega)}_{\text{trajectory and } |0\rangle:}$$

$$F^{(0)}(\omega) = \int_{-\infty}^{\infty} \mathrm{d}\tau' \int_{-\infty}^{\infty} \mathrm{d}\tau'' \,\mathrm{e}^{-i\omega(\tau'-\tau'')} \,\chi(\tau')\chi(\tau'') \,W(\tau',\tau'')$$

$$F^{(1)}(\omega) = \int_{-\infty}^{\infty} \mathrm{d}\tau' \int_{-\infty}^{\infty} \mathrm{d}\tau'' \,\mathrm{e}^{-i\omega(\tau'-\tau'')} \,\chi(\tau')\chi(\tau'') \,\partial_{\tau'}\partial_{\tau''} W(\tau',\tau'')$$

 $W(\tau',\tau'') = \langle 0|\phi(\mathsf{x}(\tau'))\phi(\mathsf{x}(\tau''))|0\rangle \qquad \begin{array}{l} \text{Wightman function} \\ \text{(distribution!)} \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <