The Relativistic Quantum Information North (RQIN 2017)

On time and position in quantum theory

07.05.2017

GOBIERNO

 DE ESPANA
MINSTERIO
 DE ECONOMIA
 Y COMPETITIVIDAD
 Juan León QUINFOG

 Instituto de Física Fundamental (CSIC)Causal order is under quantum examination

A problem with time

Quantum time

Measuring in space time local and non local operators

Different states for the same event

Quantum time again
Ψ is complete
Ψ is not complete

$H \rightarrow H_{A} \otimes H_{B}$ measurements \rightarrow projectors
any experiment takes place in spacetime and therefore has a causal order

Giulia Rubino et al. Sci Adv 2017;3:e1602589

A process with indefinite causal order
by almost 7 SDs

$$
\begin{aligned}
\left|w_{\text {SWITCH }}\right\rangle & =\frac{1}{\sqrt{2}}\left(\left|w^{A \rightarrow B}\right\rangle|0\rangle^{C}+\left|w^{B \rightarrow A}\right\rangle|1\rangle^{C}\right) \\
W_{\text {SWITCH }} & =\operatorname{Tr}_{\mathcal{H}^{(\text {(ut) })}}\left(\left|w_{\text {SWITCH }}\right\rangle\left\langle w_{\text {SWITCH }}\right|\right)
\end{aligned}
$$

$$
\operatorname{Tr}\left(S W^{\mathrm{n}-\mathrm{sep}}\right)<0
$$

S decomposes in terms of operations made in the laboratory $\rho_{z}^{(\text {in })} \otimes M_{a, x}^{A} \otimes M_{b, y}^{B} \otimes D_{d}^{(\text {out })}$

J. W. MacLean et al, Nat. Comm. 8, 15149 (2017)
the causal map COH is intrinsically quantum in both the common-cause and cause-effect pathways and it exhibits a quantum Berkson effect.

Causal order:

1. If A happens before B on the same machine, then $A<B$
2. If A the sending of a message and B the reception of the same message, $A<B$
3. If $A<B$ and $B<C$ then $A<C$
4. For all $A, A \nless A \quad$... (or use \leq)

Quantum Mechanics has problems with this

$U_{T}=e^{i t H}$ with $\sigma(H)$ bounded, define $f(t)=<U_{t} \Psi, P U_{t} \Psi>$
Analiticity: either $f(t) \neq 0$ on a dense open set, or $f(t)=0 \forall t \in \mathbb{R}$ Hegerfeldt, Phys. Rev. Lett. 72, 596 (1994)

$$
f(t)=<U_{t} \Psi, P(a, b) U_{t} \Psi>=<\Psi, P(a+t, b+t) \Psi>, t \in \mathbb{R}
$$

Consider $\mid \Psi>\in P(a, b)$ and $t>|b-a|$

$$
f(t)=<P(a, b) \Psi, P(a+t, b+t) \Psi>=0 \Longrightarrow f(t)=0, \forall t \in \mathbb{R}
$$

Then, $\quad 0=f(0)=<\Psi, P(a, b) \Psi\rangle=\langle\Psi, \Psi\rangle \quad \Rightarrow \Psi>=0$ Halvorson https://www.princeton.edu/~hhalvors/papers/

Way outs
i. $P(a+t, b+t)$ not orthogonal to $P(a, b)$ PVM to POVMs
ii. $\sigma(H)$ unbounded

$$
\begin{array}{cc}
\begin{array}{c}
\text { clock } \\
{[\hat{T}, \widehat{\Omega}]=i}
\end{array} \begin{array}{c}
\text { system } \\
{[\hat{Q}, \hat{P}]=i \hbar}
\end{array} \\
\mathcal{H}=\mathcal{H}_{T} \otimes \mathcal{H}_{S}, \quad \mathbb{J}=\hbar \Omega \otimes \mathbb{I}_{S}+\mathbb{I}_{T} \otimes H_{S}, \quad \sigma(\Omega, T, \mathbb{J})=\mathbb{R} \\
\text { time is what is shown in a clock } \\
t_{0} \\
|\Psi\rangle\rangle=\int_{-\infty}^{+\infty} d t|t\rangle|\psi(t)\rangle=\int_{-\infty}^{+\infty} d \omega|\omega\rangle|\tilde{\psi}(\omega)\rangle \\
\left.\langle t| \mathbb{J}|\Psi\rangle\rangle=0 \Rightarrow\left(-i \hbar \frac{\partial}{\partial t}+H_{S}\right)|\psi(t)\rangle=0, \quad\langle\omega| \mathbb{J}|\Psi\rangle\right\rangle=0 \Longrightarrow\left(\hbar \omega+H_{S}\right)|\tilde{\psi}(\omega)\rangle=0
\end{array}
$$

Pauli problem: as $\mathbb{J}|\Psi\rangle\rangle=0$ on physical states $\Rightarrow\langle\langle\Phi|[T, \mathbb{J}] \mid \Psi\rangle\rangle=0$

Pauli problem $\mathbb{J}|\Psi\rangle\rangle=0$ on physical states $\Rightarrow\langle\langle\Phi|[T, \mathbb{J}] \mid \Psi\rangle\rangle=0$

$$
\begin{aligned}
& \quad\langle\Phi|[T, \mathbb{J}]|\Psi\rangle\rangle=\langle\langle\Phi| \hbar[T, \Omega]+[T, H] \mid \Psi\rangle\rangle \\
& \quad[T, \Omega]=i \Rightarrow\langle\langle |[T, H] \mid \Psi\rangle\rangle=-i \hbar, \\
& \quad \sigma(H)=\sigma(T)=\mathbb{R} \quad \text { on physical states! }
\end{aligned}
$$

$$
\text { NO, } \quad \mathbb{|}|\Psi\rangle\rangle=0 \nRightarrow T \nabla|\Psi\rangle\rangle=0
$$

$$
\text { Weyl sequence } \left.\left|\Psi_{n}\right\rangle\right\rangle=\left(\frac{2}{\pi n}\right)^{1 / 4} \int d t e^{t^{2} / n}|t\rangle|\psi(t)\rangle
$$

$$
\left.\left.\lim _{n \rightarrow \infty}|(\mathbb{J}-\lambda)| \Psi_{n}\right\rangle\right\rangle\left.\right|^{2} \rightarrow 0 \text { for } \lambda=0 \text { (essential eigenvalue) }
$$

$$
\left.\left.\left.\left|\left|\left|\Psi_{n}\right\rangle\right\rangle\right|^{2}=\frac{1}{n} \rightarrow 0,|\nabla| \Psi_{n}\right\rangle\right\rangle\left.\right|^{2}=\frac{3}{4} \Rightarrow \quad\left\langle\left\langle\Psi_{n} \mid T\right\rangle \mid \Psi_{n}\right\rangle\right\rangle=\frac{i}{2}
$$

$$
\text { Then } \left.\left.\left\langle\left\langle\Psi_{n}\right|[T, \mathbb{J}] \mid \Psi_{n}\right\rangle\right\rangle=i \text { and }[T, \Omega]=i \Rightarrow\langle\langle\Phi|[T, H] \mid \Psi\rangle\right\rangle=0
$$

No Pauli problem

Beware of promoting T to an operator in \mathcal{H}_{S}
Simplest mishap: time of arrival operator
$t \sim \frac{m q}{p} \longrightarrow \widehat{T} \sim \frac{m \hat{Q}}{\widehat{P}}$ (with appropriate ordering)
Measurement of time of arrival in QM
a) Prepare a particle state and detect its arrival (results in $\Delta t \sim 1 / E_{K}$)

Or
b) Measure \widehat{T} for the set up ... results of b) do not correspond to those of a)...ETC

Aharonov, Oppenheim, Popescu, Reznik, Unruh PRD (1998)

Measurement and reduction in QFT
Hellwig, Krauss PRD 1970
System in \mathcal{H} density $\rho \operatorname{tr} \rho=1$
Measurement of A at $t_{0},\langle A\rangle=\operatorname{tr} \rho A$

Quantum Mechanics
$\rho \rightarrow \rho_{P^{\prime}}=P \rho P+(1-P) \rho(1-P)$
$\rho \rightarrow \rho_{P^{\prime \prime}}=P \rho P / \operatorname{tr} \rho P$

time $\rho_{P^{\prime}}$ or $\rho_{P^{\prime \prime}}$

P and Q selective measurements on W

$$
\begin{array}{ll}
\mathrm{P}: \quad \mathrm{W} \rightarrow \mathrm{~W}_{P \prime \prime} & \text { in } 3,4 \\
\mathrm{~W} \rightarrow \mathrm{~W} & \text { in } 1,2 \\
\mathrm{Q}: \mathrm{W} \rightarrow \mathrm{~W} & \text { in } 1 \\
\mathrm{~W}_{P_{\prime \prime}} \rightarrow \mathrm{W}_{P^{\prime \prime}} & \text { in } 3 \\
\mathrm{~W} \rightarrow \mathrm{~W}_{Q^{\prime \prime}} & \text { in } 2 \\
& \mathrm{~W}_{P \prime \prime} \rightarrow=\frac{Q \mathrm{~W}_{P^{\prime \prime}} Q}{\operatorname{tr}\left(Q \mathrm{~W}_{P^{\prime \prime}}\right)}=\frac{Q P W P Q}{\operatorname{tr}(Q P W)} \text { in } 4
\end{array}
$$

P Q spatially separated, R in the future

R measure on state

$$
\left(W_{P \prime \prime}\right)_{Q^{\prime \prime}}=\frac{Q \mathrm{~W}_{P^{\prime \prime}} Q}{\operatorname{tr}\left(Q \mathrm{~W}_{P^{\prime \prime}}\right)}=\frac{Q P W P Q}{\operatorname{tr}(Q P W)}=\frac{P Q W Q P}{\operatorname{tr}(P Q W)}=\left(W_{Q \prime \prime}\right)_{P \prime \prime}
$$

Independent of $t_{P}<t_{Q}$ or $t_{P} \succcurlyeq t_{Q}$

Proposal grounded on strict locality in QFT

Measurement and reduction in QFT

Warning : Histories may be frame dependent
Frame dependent states

Aharonov, Albert PRD 1984
Prepare a particle in state

$$
|\alpha\rangle=\left|x_{1}\right\rangle+\left|x_{2}\right\rangle+\left|x_{3}\right\rangle, \quad t<t_{1}
$$

Measure at $t=t_{1} \quad \ldots$ particle not in x_{1}

$$
|\beta\rangle=\left|x_{2}\right\rangle+\left|x_{3}\right\rangle, \quad t_{1}<t<t_{2}
$$

Measure at $t=t_{1} \quad$... particle not in x_{1}

$$
\left|x_{3}\right\rangle \quad t_{2}<t
$$

Observer K

$$
|\beta\rangle \quad t_{1}<t<t_{2}
$$

Observer $\mathrm{K}^{\prime} \quad\left|\gamma^{\prime}\right\rangle \quad t^{\prime}{ }_{2}<t^{\prime}<t^{\prime}{ }_{1}$

$$
\begin{aligned}
& \left|\alpha^{\prime}\right\rangle \\
& \left|\gamma^{\prime}\right\rangle=\left|x^{\prime}{ }_{1}\right\rangle+\left|x^{\prime}{ }_{3}\right\rangle, \quad t^{\prime}<t_{2}<t^{\prime}<t^{\prime}{ }_{1} \\
& \left|x^{\prime}{ }_{3}\right\rangle \\
& t_{1}<t^{\prime}
\end{aligned}
$$

In frame K^{\prime} where $\left(x^{\prime}{ }_{2}, t^{\prime}{ }_{2}\right)$ precedes $\left(x^{\prime}{ }_{1}, t^{\prime}{ }_{1}\right)$

A non local system evolves undisturbed from $t=-\infty$ to $t=-\infty$

At $t=-\infty$ prepare a particle $\operatorname{in}|\delta\rangle=\left|x_{1}\right\rangle+\left|x_{2}\right\rangle, D|\delta\rangle=\delta|\delta\rangle$ const. of motion
Check that particle is in $|\delta\rangle$ at an instant t using $H=H_{1}+H_{2}, \quad H_{i}=g_{i}(t) q_{i} \sigma_{z}^{\left(x_{i}\right)}$
If prepared in $|\delta\rangle$ the procedure gives δ and leaves the state as it was
Now, suppose a local detector at $x_{1}=0$ founds the particle at $x_{1}=0$ at $t=0$
From then on $t \in(0, \infty)$, the particle remains in the box

A and B using instantaneous reduction in their frames
_conflicting accounts not a single history in space-time

Needed a functional on spacelike hypersurfaces
most basic level: spacelike hypersurfaces characterized by their relative velocities

Clocks evolve with their proper times characterized by their relative velocities
The Hamiltonian constraint serve to fix a time on the physical subspace of $\mathcal{H}_{T} \otimes \mathcal{H}_{S}$

Consider a set of clocks $\alpha, \mathcal{H}_{T} \longrightarrow \mathcal{H}_{T_{\alpha}}, \mathbb{J} \longrightarrow \mathbb{J}_{\alpha}$ For each α a physical subspace with states given by $\left.\mathbb{J}_{\alpha}\left|\Psi_{\alpha}\right\rangle\right\rangle$

Is something like this what we are looking for?

Thanks for your attention

Ψ is complete
Ψ is not complete

Figure 1. The different possible roles of the wave function Ψ. A model that uses a variable Λ to de either Ψ-ontic or Ψ-epistemic, depending on whether or not the wave function Ψ is uniquely det denoted by λ). Conversely, the relevant parts of Λ may be determined by Ψ, in which case Ψ is co respect to an appropriate causal order), [17] rules out the right column, [16] rules out the botton well as [14], based on different assumptions) rules out the bottom row.

