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Information-theoretic Planck scale cutoff: 
Predictions for the CMB 



Overview 
 

 Planck length => finite information density, finite bandwidth?  
 

 How to maintain covariance? 
 

 Experimental tests? 
 

 New results in inflationary cosmology:  we’re lucky! 



 

QM + GR   
 
   

 
Planck length + finite info density? 
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Increase position resolution, 
 

  
=> momentum / energy uncertainty increases 
 

       
=> mass / curvature uncertainty increases 
   

 
 => distance uncertainty increases 
  

 
 

       Cannot resolve distances below 10^(-35)m. 
 



                     ∆xmin = LPlanck 
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Information-theoretic meaning? 
 

 Wave function have a finite bandwidth:  
 
 
 
 
 

 Intuition:     
If there were arbitrarily short wavelengths, δ(x-x’) could be 
obtained, violating the new uncertainty principle.  
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Role of bandlimitation in information theory? 
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Central! 
 
 
Information can be: 

 
- discrete (letters, digits, etc): 

 
- continuous (e.g., music): 
 

 

 
Unified in 1949 by Shannon, for bandlimited signals. 



Shannon sampling theorem      
 
 Assume  f  is bandlimited, i.e: 

 
 
 
 
 

 Take samples of f(t) at Nyquist rate:   
 
 
 

 Then,  exact  reconstruction    
is possible:     
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It is one of the most used theorems: 
 
 
 analog/digital conversion 

 
 communication engineering & signal processing 

 
 scientific data taking, e.g., in astronomy. 
 
 

 



Properties of bandlimited functions 
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 Differential operators are also finite difference operators. 

 
 

 Differential equations are also finite difference equations.  
 
 

 Integrals are also series:  
 
 
 
 
 
 

  
Remark:  
 
Useful also as a summation tool for series  
 
(traditionally used, e.g., in analytic number theory)  
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What if physical fields are bandlimited? 
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They possess equivalent representations 
 
 

 on a differentiable spacetime manifold 
 
(which shows preservation of external symmetries) 
 
 
 

 on any lattice of sufficiently dense spacing 
 

(which shows UV finiteness of QFTs). 
 

 
 



Conclusions so far: 
 
QM + QFT : 

 
 
 
 

=> Fields are bandlimited :       
 
Spacetime  can be simultaneously continuous and 
discrete in the same way that information can.   



But this is not covariant! 
 

Lorentz contraction and time dilation: 
 
 

 How could a minimum length or time ever be covariant?  
 

 How could a bandwidth in space or time ever be covariant? 
 
 

Are we back to square one?   



Recall GR + QM: 
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Use scattering experiments to resolve distances more and 
more precisely. 
 

  
=> momentum / energy fluctuations increase 
 

       
                  => mass fluctuations increase   

 
 => curvature fluctuations increase 

   
 => distance uncertainty increases 
  

 
 

=> expect that cannot resolve distances below 10^(-35)m. 
 



QFT + GR   
 

=>   
 

Planck length + info cutoff ? 



 
 Feynman graphs with loops:  

 
 Virtual particles can be  

arbitrarily far off shell: 
    (p0)2 – (p)2   can take any value!  
 
 
 

 Do virtual particle masses beyond the Planck mass really exist ? 
 

 Can field fluctuations really be arbitrarily far off shell ?    



Covariant UV cutoff 
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Cut off spectrum of the d’Alembertian:  
 

 
                                F                    

Here, the space of fields, F, is spanned by the 
eigenfunctions of the d’Alembertian w. eigenvalues:       
 
                 | (p0)2 – (p)2 |  < ΛPlanck  
 
This generalizes covariantly to curved spacetimes. 



Relation to spacetime structure? 
 

We cut off extreme virtual masses, i.e., off-shell fluctuations.  
 
 

 Does this imply a minimum length or wavelength? 
 
 

 Does it imply a spatial or temporal bandwidth?  
 



Covariant cutoff 
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E.g. in flat spacetime:  
 
 

No overall bandlimitation! 
  
 
 Every spatial mode (fixed p) has a sampling theorem in time. 

 
 Every temporal mode (fixed p0) has a sampling thm. in space. 



Covariant cutoff 
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E.g. in flat spacetime:  
 
 

 
 
  
 Sub-Planck wavelengths exist but have negligible bandwidth!   

 
 Sub-Planckian wavelengths freeze out!  

 
 Wavelengths and bandwidths transform together, covariantly! 



Conclusions so far 
 QM+GR:  

 
∆xmin = LPlanck   and spatial bandlimitation 

 
 QFT+GR:   

  
Planckian bound on virtual particles’ masses 
 
Planckian bound on off-shell quantum field fluctuations 
 
Transplankian wavelengths exist but freeze out dynamically.  

 



 
 

How could one experimentally test such 
a Planck scale cutoff?  

 



Any signature visible in the CMB ? 
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CMB’s structure originated close to Planck scale 
 
 
 
 
 
  
 
Hubble scale in inflation was likely only about 5 
orders from the Planck scale.  

 
 
 



Natural UV cutoffs in inflation 
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Multiple groups have non-covariant predictions for CMB.  
 
 No agreement, if the effect is first or second order in 

 
  Planck length / Hubble length 

 
 I.e., is the effect O(10-5) or O(10-10) ?    

 
Problem:   hard to separate symmetry breaking from cutoff 
 
 
Calculate predictions with locally Lorentz covariant UV cutoff ! 
 
 

 
 
 



Calculation of signature in the CMB 
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1. Calculate the projector onto covariantly bandlimited fields.  

 
2. Apply projector  to the Feynman rules (Feynman 

propagator). 
 

3. Evaluate propagator at equal time, at horizon crossing. 
 

       primordial fluctuation spectrum  CMB spectrum 



New perspectives  
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Need the projector onto covariantly bandlimited fields.  
Need to diagonalize the d’Alembertian. 

 
Technical challenges:  
 * Families of self-adjoint extensions 
 * Kernel of d’Alembertian non-vanishing  
 * Propagator is non-self-adjoint ambiguous right inverse  
Offers new perspective on:  
 * Big bang initial conditions 
 * Identification of the vacuum state 

 



Numerical challenge 
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Need the projector onto covariantly bandlimited fields.  

  Need inner product of eigenfunctions of d’Alembertian. 
 

Computationally hard problem:  
Similar to calculating the inner product of two plane waves 
numerically.  

 
 

 Here, not plane waves but at best hypergeometric functions. 



Results for the covariant UV cutoff 

Predicted relative change in CMB spectrum (power law inflation):  
 
 
 
 
 
 
 

The predicted oscillations’ amplitude is linear in (Planck 
length/Hubble length)! 



Conclusions 
 QM+GR:  

 
 ∆xmin = LPlanck   and spatial bandlimitation. 

 
 QFT+GR:   

  
 Transplankian wavelengths: vanishing bandwidth.  

 
 In inflationary cosmology: 

 
     Predict  oscillatory 10-5 effect in the CMB.  



Outlook 
 

 
Impact of covariant UV cutoff on:  

 
 Hawking radiation? 

 
 Proton decay?  
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Minkowski space: 
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 Impact on the equal time fluctuation spectrum in 3+1 dim: 
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