Information-theoretic Planck scale cutoff: Predictions for the CMB

Achim Kempf

With: A. Chatwin-Davies (CalTech), R. Martin (U. Cape Town)

Departments of Applied Mathematics and Physics Institute for Quantum Computing, University of Waterloo

RQI-N Conference, YITP, Kyoto, 6 July 2017

Overview

- Planck length => finite information density, finite bandwidth?
- How to maintain covariance?
- Experimental tests?
- New results in inflationary cosmology: we're lucky!

Planck length + finite info density?

Increase position resolution,

- => momentum / energy uncertainty increases
- => mass / curvature uncertainty increases
- => distance uncertainty increases
- **Cannot resolve distances below** $10^{(-35)}$ m.

Information-theoretic meaning?

• Wave function have a <u>finite bandwidth</u>:

Intuition:

If there were arbitrarily short wavelengths, $\delta(x-x')$ could be obtained, violating the new uncertainty principle.

Role of bandlimitation in information theory?

Central!

Information can be:

- discrete (letters, digits, etc): R 7 2 SB
- continuous (e.g., music):

Unified in 1949 by Shannon, for bandlimited signals.

Shannon sampling theorem

• Assume f is bandlimited, i.e:

$$f(t) = \int_{-\omega_{\max}}^{\omega_{\max}} \widetilde{f}(\omega) \ e^{-2\pi i \omega t} d\omega$$

• Take samples of f(t) at <u>Nyquist rate</u>:

 $t_{n+1} - t_n = (2\omega_{\max})^{-1}$

• Then, <u>exact</u> reconstruction is possible:

samples $f(t) = \sum_{n} f(t_{n}) \frac{\sin[2\pi (t-t_{n})\omega_{\max}]}{\pi (t-t_{n})\omega_{\max}}$

f(x)

It is one of the most used theorems:

- analog/digital conversion
- communication engineering & signal processing
- scientific data taking, e.g., in astronomy.

Properties of bandlimited functions

- Differential operators are also finite difference operators.
- Differential equations are also finite difference equations.
- Integrals are also series:

$$\int_{-\infty}^{\infty} f(x)^* g(x) dx = \frac{1}{2\omega_{\max}} \sum_{n=-\infty}^{\infty} f(x_n)^* g(x_n)$$

Remark:

Useful also as a summation tool for series (traditionally used, e.g., in analytic number theory)

What if physical fields are bandlimited?

They possess equivalent representations

• on a differentiable spacetime manifold

(which shows preservation of external symmetries)

• on any lattice of sufficiently dense spacing (which shows UV finiteness of QFTs).

Conclusions so far:

Spacetime can be simultaneously continuous and discrete in the same way that information can.

But this is not covariant!

Lorentz contraction and time dilation:

- How could a minimum length or time ever be covariant?
- How could a bandwidth in space or time ever be covariant?

Are we back to square one?

Recall GR + QM:

Use scattering experiments to resolve distances more and more precisely.

=> momentum / energy fluctuations increase

=> mass fluctuations increase

- => curvature fluctuations increase
- => distance uncertainty increases

=> expect that cannot resolve distances below $10^{(-35)}$ m.

QFT + GR

=>

Planck length + info cutoff ?

- Feynman graphs with loops:
- Virtual particles can be arbitrarily far off shell:
 (p₀)² (**p**)² can take any value!

- Do virtual particle masses beyond the Planck mass really exist ?
- Can field fluctuations really be arbitrarily far off shell ?

Covariant UV cutoff

Cut off spectrum of the d'Alembertian:

 $Z[J] = \int_{F} e^{iS[\phi] + i \int J\phi \ d^{n}x} D[\phi]$ Here, the space of fields, F, is spanned by the eigenfunctions of the d'Alembertian w. eigenvalues:

$|(\mathbf{p}_0)^2 - (\mathbf{p})^2| < \Lambda_{\text{Planck}}$

This generalizes covariantly to curved spacetimes.

Relation to spacetime structure?

We cut off extreme virtual masses, i.e., off-shell fluctuations.

• Does this imply a minimum length or wavelength?

• Does it imply a spatial or temporal bandwidth?

Covariant cutoff

E.g. in flat spacetime: $|p_0^2 - \vec{p}^2| < \Lambda^2$

No overall bandlimitation!

- Every spatial mode (fixed **p**) has a sampling theorem in time.
- Every temporal mode (fixed p_0) has a sampling thm. in space.

Covariant cutoff

E.g. in flat spacetime:

 $|p_0^2 - \vec{p}^2| < \Lambda^2$

- Sub-Planck wavelengths exist but have negligible bandwidth!
- Sub-Planckian wavelengths freeze out!
- Wavelengths and bandwidths transform together, covariantly!

Conclusions so far

• QM+GR:

 $\Delta x_{\rm min} = L_{Planck} ~~ {\rm and} ~{\rm spatial} ~{\rm bandlimitation}$

• QFT+GR:

Planckian bound on virtual particles' masses

Planckian bound on off-shell quantum field fluctuations

Transplankian wavelengths exist but freeze out dynamically.

How could one experimentally test such a Planck scale cutoff?

Any signature visible in the CMB?

CMB's structure originated close to Planck scale

Hubble scale in inflation was likely only about 5 orders from the Planck scale.

Natural UV cutoffs in inflation

Multiple groups have non-covariant predictions for CMB.

• No agreement, if the effect is first or second order in

Planck length / Hubble length

• I.e., is the effect O(10⁻⁵) or O(10⁻¹⁰) ?

Problem: hard to separate symmetry breaking from cutoff

Calculate predictions with locally Lorentz covariant UV cutoff!

Calculation of signature in the CMB

- 1. Calculate the projector onto covariantly bandlimited fields.
- 2. Apply projector to the Feynman rules (Feynman propagator).
- 3. Evaluate propagator at equal time, at horizon crossing.

 \rightarrow primordial fluctuation spectrum \rightarrow CMB spectrum

New perspectives

Need the projector onto covariantly bandlimited fields.→Need to diagonalize the d'Alembertian.

Technical challenges:

- * Families of self-adjoint extensions
- * Kernel of d'Alembertian non-vanishing
- * Propagator is non-self-adjoint ambiguous right inverse

Offers new perspective on:

- * Big bang initial conditions
- * Identification of the vacuum state

Numerical challenge

Need the projector onto covariantly bandlimited fields.

 \rightarrow Need inner product of eigenfunctions of d'Alembertian.

Computationally hard problem:

Similar to calculating the inner product of two plane waves numerically. $\int_{-\infty}^{\infty}$

$$\int_{-\infty}^{\infty} e^{itw} e^{-itw'} dt = 2\pi\delta(w - w')$$

• Here, not plane waves but at best hypergeometric functions.

Results for the covariant UV cutoff

Predicted relative change in CMB spectrum (power law inflation):

The predicted oscillations' amplitude is linear in (Planck length/Hubble length)!

Conclusions

• QM+GR:

 $\Delta x_{\min} = L_{Planck}$ and spatial bandlimitation.

• QFT+GR:

Transplankian wavelengths: vanishing bandwidth.

• In inflationary cosmology:

Predict oscillatory 10⁻⁵ effect in the CMB.

Δp

. ∆ Xmin

region allowed by uncertainty relation

ΔX

Outlook

Impact of covariant UV cutoff on:

- Hawking radiation?
- Proton decay?

Minkowski space:

• Impact on the equal time fluctuation spectrum in 3+1 dim:

