Entanglement Growth and Probability Distribution

Naoki Watamura (Nagoya Univ.)
arXiv : [hep-th] 1703.06589, M. Nozaki, NW.

Entanglement Growth and Probability Distribution

OUTLINE

- Introduction
- Entanglement Growth of Locally Excited States
- Late Time Algebra
- Probability Distribution and EE.
- Summary

Introduction

One of the ways to measure the correlation of 2 regions.

- Entanglement Entropy

Many Applications in

- Condensed Matter Context
- Quantum Information Context
- Quantum Field Theory Context
- Relation to Quantum Gravity (Ryu-Takayanagi, ...)
- CFT central charge and c-theorem etc...
Important to understand the basic properties the growth of EE with Locally Excited States

Introduction

One of the ways to measure the correlation of 2 regions.

- Entanglement Entropy

Many Applications in

- Condensed Matter Context
- Quantum Information Context
- Quantum Field Theory Context

Important to understand the basic properties
the growth of EE with Locally Excited States

- On of the easiest (simplest) deformation
- Finite
- Gauge Invariant (in Maxwell theory)

If Gauge Dependence is only on the Entangling surface

Entanglement Growth of Locally Excited States

Entanglement Growth of Locally Excited States

- The Setup.
$(3+1) \mathrm{D}$
Time : $\quad t=0$

Euclid time : $\tau=0$
region A : $x^{1}>0$

region $\mathrm{B}: x^{1} \leqq 0$

Entanglement Growth of Locally Excited States

- The Setup. (3+1) D

Euclid time : $\tau=0$
region $\mathrm{A}: x^{1}>0$
region $\mathrm{B}: x^{1} \leqq 0$
2 Rényi EE.
generated from

Vacuum State

$$
\rho^{\mathrm{vac}}=|0\rangle\langle 0|
$$

Excited State

$$
\rho^{\mathrm{ex}}=\mathcal{O}(-t,-l)|0\rangle\langle 0| \mathcal{O}^{\dagger}(-t,-l) \rightarrow S_{A}^{(n), \mathrm{EX}}
$$

The difference : $\Delta S_{A}^{(n)}=S_{A}^{(n), \mathrm{EX}}-S_{A}^{(n), \mathrm{G}}$

Our Target

Entanglement Growth of Locally Excited States

- The Setup.
$(3+1) \mathrm{D}$
Euclid time : $\tau=0$
region $\mathrm{A}: x^{1}>0$
region $\mathrm{B}: x^{1} \leqq 0$
$\rho^{\mathrm{vac}}=|0\rangle\langle 0|$
$\rho^{\mathrm{ex}}=\mathcal{O}(-t,-l)|0\rangle\langle 0| \mathcal{O}^{\dagger}(-t,-l)$

The difference : $\Delta S_{A}^{(n)}=S_{A}^{(n), \mathrm{EX}}-S_{A}^{(n), \mathrm{G}}$

$$
=-\frac{1}{n-1} \log \frac{\langle 0| \mathcal{O O}^{\dagger} \cdots \mathcal{O} \mathcal{O}^{\dagger}|0\rangle_{\Sigma_{n}}}{\langle 0 \mid 0\rangle_{\Sigma_{n}}} \frac{\left(\langle 0 \mid 0\rangle_{\Sigma_{1}}\right)^{n}}{\left(\langle 0| \mathcal{O} O^{\dagger}|0\rangle_{\Sigma_{1}}\right)^{n}}
$$

Exact calculation in free theory

2n-point function on Σ_{n}

2-point function on Σ_{1}

Entanglement Growth of Locally Excited States

All Results are for Free theories
4D Massless Free Scalar Field

$$
\mathcal{O}=\phi
$$

At the late time limit:

$$
t \rightarrow \infty
$$

$$
\Delta S_{A}^{(2)} \rightarrow \log 2
$$

[M. Nozaki, T. Numasawa, T. Takayanagi], [M. Nozaki]

Entanglement Growth of Locally Excited States

All Results are for Free theories

4D Free Maxwell

Red: $E_{1}\left(B_{1}\right) \quad t \rightarrow \infty$
Blue: $E_{2,3}\left(B_{2,3}\right) \quad \Delta S_{A}^{(n)} \rightarrow \log 2$
[M. Nozaki, NW]

The Late Time Algebra

The late time behavior of $\Delta S_{A}^{(n)}$ can be understood from the following algebra obtained from the QFT propagator

- Left / Right movers

$\mathrm{L} \quad \mathrm{R} \quad x^{1} \quad$ Left $/$ Right is along the x^{1} direction

$$
\hat{\phi}=\hat{\phi}_{L}+\hat{\phi}_{R}+\hat{\phi}_{L}^{\dagger}+\hat{\phi}_{R}^{\dagger}
$$

Commutation Relations

$$
\begin{aligned}
& {\left[\hat{\phi}_{L}, \hat{\phi}_{L}^{\dagger}\right]=G^{(n)}(\Delta \theta)<\begin{array}{c}
\text { Propagators on }
\end{array}} \\
& {\left[\hat{\phi}_{R}, \hat{\phi}_{R}^{\dagger}\right]=G^{(n)}(2 \pi-\Delta \theta)}
\end{aligned} \begin{array}{r}
\text { n-sheeted Riemann surface } \\
\text { after taking the limit } t \rightarrow \infty \\
G^{(n)}\left(\theta-\theta^{\prime}\right)=\left\langle\phi(\theta) \phi\left(\theta^{\prime}\right)\right\rangle_{\Sigma_{n}}
\end{array}
$$

The Late Time Algebra

The late time behavior of $\Delta S_{A}^{(n)}$ can be understood from the following algebra obtained from the QFT propagator

$$
\hat{\phi}=\hat{\phi}_{L}+\hat{\phi}_{R}+\hat{\phi}_{L}^{\dagger}+\hat{\phi}_{R}^{\dagger}
$$

Commutation Relations

$$
\left[\begin{array}{l}
{\left[\hat{\phi}_{L}, \hat{\phi}_{L}^{\dagger}\right]=G^{(n)}(\Delta \theta)} \\
{\left[\hat{\phi}_{R}, \hat{\phi}_{R}^{\dagger}\right]=G^{(n)}(2 \pi-\Delta \theta)}
\end{array}\right.
$$

The others are zero

$$
\begin{aligned}
\mathcal{H}_{\mathrm{tot}} & =\mathcal{H}_{A} \otimes \mathcal{H}_{B} \\
\mathcal{H}_{A} & =\operatorname{Span}\left\{|0\rangle, \hat{\phi}_{R}^{\dagger}|0\rangle, \cdots\right\} \\
\mathcal{H}_{B} & =\operatorname{Span}\left\{|0\rangle, \hat{\phi}_{L}^{\dagger}|0\rangle, \cdots\right\}
\end{aligned}
$$

Reduced density matrix

$$
\hat{\rho}_{A}=\operatorname{tr}_{\mathcal{H}_{B}} \hat{\rho}
$$

$$
\stackrel{\operatorname{REE}}{\Delta} S_{A}^{(n)}=\frac{1}{1-n} \log \left[\operatorname{tr}_{\mathcal{H}_{A}}\left(\hat{\rho}_{A}\right)^{n}\right]
$$

Extending the LTA to finite time agrees with the QFT result, also in higher dimensions, both Scalar and Maxwell.

Example : $\hat{\rho}=\frac{1}{\mathcal{N}^{2}} \hat{\phi}|0\rangle\langle 0| \hat{\phi}^{\dagger}$

Entanglement Growth and Probability Distribution

OUTLINE

- Introduction
- Entanglement Growth of Locally Excited States
- Late Time Algebra
- Probability Distribution and EE.
- Summary

Probability Distribution and EE

It looks like a spherically propagating particle.

For 4D Free Massless Scalar Theory, this is the case!

Probability Distribution and EE

For free massless Scalar in 4d

Area of the Left side

Area of the Right side

$$
\frac{S_{A}(t)}{S_{\text {all }}(t)}
$$

Probability Distribution and EE

For free massless Scalar in 4d

Area of the Left side
$\frac{S_{B}(t)}{S_{\text {all }}(t)}=\frac{G^{(n)}(\Delta \theta)}{G^{(1)}(\Delta \theta)}$

Area of the Right side

$$
\frac{S_{A}(t)}{S_{\text {all }}(t)}=\frac{G^{(n)}(2 \pi-\Delta \theta)}{G^{(1)}(\Delta \theta)}
$$

Probability Distribution and EE

For free massless Scalar in 4d

Let's consider a model of propagating quasi-particles

An inserted operator creates one quasi-particle at that point

$$
\mathcal{O}=\phi
$$

Area of the Right side

The Density Matrix

$$
\rho=P_{1}|0,1\rangle\langle 0,1|+P_{2}|1,0\rangle\langle 1,0|
$$

The particle is in \mathbf{A}

$$
P_{1}
$$

The particle is in B

$$
P_{2}
$$

$$
\frac{S_{A}(t)}{S_{a l l}(t)}=\frac{G^{(n)}(2 \pi-\Delta \theta)}{G^{(1)}(\Delta \theta)}
$$

Area of the Left side

$$
\frac{S_{B}(t)}{S_{\text {all }}(t)}=\frac{G^{(n)}(\Delta \theta)}{G^{(1)}(\Delta \theta)}
$$

Probability Distribution and EE

For free massless Scalar in 4d

Let's consider a model of propagating quasi-particles

An inserted operator creates one quasi-particle at that point

$$
\mathcal{O}=\phi
$$

Area of the Right side

The Density Matrix

$$
\rho=P_{1}|0,1\rangle\langle 0,1|+P_{2}|1,0\rangle\langle 1,0|
$$

n-th Rényi EE

$$
S^{(n)}=\frac{1}{1-n} \log \operatorname{Tr} \rho^{n}
$$

Perfectly agrees with the QFT result In finite t

$$
P_{1}=\frac{S_{A}(t)}{S_{\text {all }}(t)}
$$

Area of the Left side

$$
P_{2}=\frac{S_{B}(t)}{S_{a l l}(t)}
$$

Probability Distribution and EE

The Density Matrix

For free massless Scalar in 4d

Let's consider a model of propagating quasi-particles

An inserted operator creates one quasi-particle at that point
$c=1$

$$
\begin{aligned}
P_{1} & =\frac{S_{A}(t)}{S_{a l l}(t)} \\
P_{2} & =\frac{S_{B}(t)}{S_{\text {all }}(t)}
\end{aligned}
$$

$$
\mathcal{O}=\phi
$$

$$
\rho=P_{1}|0,1\rangle\langle 0,1|+P_{2}|1,0\rangle\langle 1,0|
$$

This is the same for assuming

$$
\begin{aligned}
& {\left[\phi_{L}, \phi_{L}^{\dagger}\right]=G^{(n)}(\Delta \theta)} \\
& {\left[\phi_{R}, \phi_{R}^{\dagger}\right]=G^{(n)}(2 \pi-\Delta \theta)}
\end{aligned}
$$

Probability Distribution and EE

For free massless Scalar in 4d

For insertion of more than 1 operators at the same point

$$
\begin{aligned}
& \mathcal{O}=: \phi^{k}: \quad \text { k quasi-particles } \\
& \rho=\sum_{l=0}^{k}{ }_{k} C_{l}\left(P_{1}(t)\right)^{k-l}\left(P_{2}(t)\right)^{k}|l, k-l\rangle\langle l, k-l| \\
& \quad \text { I in } \mathbf{B}, \mathbf{k}-\mid \text { in } \mathbf{A}
\end{aligned}
$$

n-th Rényi EE

$$
S^{(n)}=\frac{1}{1-n} \log \operatorname{Tr} \rho^{n}
$$

This kind of description for other fields and other dimensions are under investigation.

Perfectly agrees with the QFT result In finite t

Summary

- We investigate the property of EE of a state excited by acting with a local operator.
- The late time behavior can be obtained from the „Late Time Algebra"(LTA),
- The commutation relations in LTA are defined from the propagators of corresponding QFT
- In (3+1)D free massless scalar field theory, the QFT result can be described with an model of quasi-particle which is propagating spherically.

