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Introduction
One of the ways to measure the correlation of 2 regions.
• Entanglement Entropy

Many Applications in

• Relation to Quantum Gravity (Ryu-Takayanagi,…) 
• CFT central charge and c-theorem 

etc…
Important to understand the basic properties

• Condensed Matter Context 
• Quantum Information Context 
• Quantum Field Theory Context

the growth of EE with Locally Excited States



Introduction
One of the ways to measure the correlation of 2 regions.
• Entanglement Entropy

Many Applications in

Important to understand the basic properties

• Condensed Matter Context 
• Quantum Information Context 
• Quantum Field Theory Context

the growth of EE with Locally Excited States
• On of the easiest (simplest) deformation 

• Gauge Invariant ( in Maxwell theory )
If Gauge Dependence is only on the Entangling surface

• Finite
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Entanglement Growth of Locally Excited States

4D Massless Free Scalar Field

All Results are for Free theories
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Entanglement Growth of Locally Excited States
All Results are for Free theories

4D Free Maxwell

2 4 6 8 10
t / l0.0

0.2

0.4

0.6

0.8
ΔSA�2�

�S(n)
A ! log 2

E1(B1)Red: 
Blue: E2,3(B2,3)

t ! 1

Aregion

x

2,3

x

1

Bregion

O

[M. Nozaki, NW]



• Left / Right movers

Left / Right is along the     directionx

1
L R
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The Late Time Algebra

Commutation Relations

The others are zero

Propagators on  
n-sheeted Riemann surface  

after taking the limit t ! 1

The late time behavior of           can be understood from the 
following algebra obtained from the QFT propagator
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The late time behavior of           can be understood from the 
following algebra obtained from the QFT propagator
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Extending the LTA to finite time  
 agrees with the QFT result,  
also in higher dimensions,  
both Scalar and Maxwell.
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For 4D Free Massless Scalar Theory, this is the case!
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Probability Distribution and EE
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Probability Distribution and EE

For free massless Scalar in 4d
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Probability Distribution and EE

The Density Matrix

An inserted operator creates one quasi-particle at that point

The particle is in A The particle is in B
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Let’s consider a model of propagating quasi-particles
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Let’s consider a model of propagating quasi-particles

An inserted operator creates one quasi-particle at that point
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Perfectly agrees with the QFT result 
In finite t
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For free massless Scalar in 4d

The Density Matrix
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Probability Distribution and EE

Let’s consider a model of propagating quasi-particles

An inserted operator creates one quasi-particle at that point
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This is the same for assuming 

is valid for finite t in LTA

For free massless Scalar in 4d

The Density Matrix

⇢ = P1|0, 1ih0, 1|+ P2|1, 0ih1, 0|



Probability Distribution and EE

For insertion of more than 1 operators at the same point
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Perfectly agrees with the QFT result 
In finite t
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For free massless Scalar in 4d

This kind of description for other fields  
and other dimensions  

are under investigation.



Summary
• We investigate the property of EE of a state excited by 

acting with a local operator.


• The late time behavior can be obtained from the „Late 
Time Algebra“(LTA), 


• The commutation relations in LTA are defined from the 
propagators of corresponding QFT


• In (3+1)D free massless scalar field theory, the QFT result 
can be described with an model of quasi-particle which is 
propagating spherically.

Thank you very much!


