# Superposition and Grover algorithm in the presence of a closed timelike curve 

Ki Hyuk Yee (U. of Seoul),<br>with<br>Jeongho Bang(Korea Institue of Advance of Science), Doyeol Ahn (U. of Seoul)

The Relativistic Quantum Information North 2017 July 4-7, 2017, Yukawa Institute for Theoretical Physics

## NO-GOTheoren $\begin{aligned} & \text { Oszmaniec, Grudka, Horodecki and Wojcik, } \\ & \text { PRL 116, } 110403(2016)\end{aligned}$

Theorem 1.-Let $\alpha, \beta$ be nonzero complex numbers satisfying $|\alpha|^{2}+|\beta|^{2}=1$ and let $\operatorname{dim} \mathcal{H} \geq 2$. There exists no nonzero completely positive map $\Lambda \in \mathcal{C P}\left(\mathcal{H}^{\otimes 2}, \mathcal{H}\right)$ such that for all pure states $\mathbb{P}_{1}, \mathbb{P}_{2}$

$$
\begin{equation*}
\Lambda\left(\mathbb{P}_{1} \otimes \mathbb{P}_{2}\right) \propto|\Psi\rangle\langle\Psi| \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
|\Psi\rangle=\alpha|\psi\rangle+\beta|\phi\rangle \tag{4}
\end{equation*}
$$

and $|\psi\rangle\langle\psi|=\mathbb{P}_{1},|\phi\rangle\langle\phi|=\mathbb{P}_{2}$ and the representatives $|\psi\rangle$, $|\phi\rangle$ may in general depend on both $\mathbb{P}_{1}$ and $\mathbb{P}_{2}$.

## NO-GO Theoren $\begin{aligned} & \text { Oszmaniec, Grudka, Horodecki and Wojcik, } \\ & \text { PRL 116, } 110403(2016)\end{aligned}$

Theorem 1.-Let $\alpha, \beta$ be nonzero complex numbers satisfying $|\alpha|^{2}+|\beta|^{2}=1$ and let $\operatorname{dim} \mathcal{H} \geq 2$. There exists no nonzero completely positive map $\Lambda \in \mathcal{C P}\left(\mathcal{H}^{\otimes 2}, \mathcal{H}\right)$ such that for all pure states $\mathbb{P}_{1}, \mathbb{P}_{2}$

$$
\begin{equation*}
\Lambda\left(\mathbb{P}_{1} \otimes \mathbb{P}_{2}\right) \propto|\Psi\rangle\langle\Psi| \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
|\Psi\rangle=\alpha|\psi\rangle+\beta|\phi\rangle \tag{4}
\end{equation*}
$$

and $|\psi\rangle\langle\psi|=\mathbb{P}_{1},|\phi\rangle\langle\phi|=\mathbb{P}_{2}$ and the representatives $|\psi\rangle$, $|\phi\rangle$ may in general depend on both $\mathbb{P}_{1}$ and $\mathbb{P}_{2}$.

Theorem 2.-Let $\mathbb{P}_{\chi}$ be a fixed pure state on Hilbert space $\mathcal{H}$. There exists a $C P$ map $\Lambda_{\text {sup }} \in \mathcal{C} P\left(\mathbb{C}^{2} \otimes \mathcal{H}^{\otimes^{2}}, \mathcal{H}\right)$ such that for all pure states $\mathbb{P}_{\psi \psi}, \mathbb{P}_{\phi}$ on $\mathcal{H}$ satisfying

$$
\begin{equation*}
\operatorname{tr}\left(\mathbb{P}_{\chi} \mathbb{P}_{\psi}\right)=c_{1}, \quad \operatorname{tr}\left(\mathbb{P}_{\chi} \mathbb{P}_{\phi}\right)=c_{2}, \tag{9}
\end{equation*}
$$

we have

$$
\begin{equation*}
\Lambda_{\text {sup }}\left(\mathbb{P}_{\nu} \otimes \mathbb{P}_{\psi} \otimes \mathbb{P}_{\phi}\right) \propto|\Psi\rangle\langle\Psi|, \tag{10}
\end{equation*}
$$

where $\mathbb{P}_{\nu},|\nu\rangle=\alpha|0\rangle+\beta|1\rangle$, is an unknown qubit state and the vector $|\Psi\rangle$ is given by $|\Psi\rangle=\alpha|\psi\rangle+\beta|\phi\rangle$

$$
P_{\text {succ }}=\operatorname{tr}\left[\Lambda_{\text {sup }}\left(\mathbb{P}_{\nu} \otimes \mathbb{P}_{\psi} \otimes \mathbb{P}_{\phi}\right)\right]=\frac{c_{1} c_{2}}{c_{1}+c_{2}} \mathcal{N}_{\Psi}^{2}
$$

$\mathcal{N}_{\Psi}^{2}:$ Normalization Constant

## No-Go Theorem

Can we superpose two unknown states assisted by closed timelike curve?

## Closed Timelike Curve



Vollme 61, Number 13 Physical REView letters 26 September 1988 Wormholes, Time Machines, and the Weak Energy Condition Michael S. Morris, Kip S. Thorne, and Ulvi Yurtsever Theoretical Astrophysics, California Instiute of Technology, Pasadena, California 91125
(Received 21 I June 1988$)$

It is argued that, if the laws of physics permit an advanced civilization to create and maintain a wormhole in space for interstellar travel, then that wormhole can be converted into a time machine with
which causality might be violatable. Whether wormholes can be created and maintained entais deep, which causality might be violatable. Whether wormholes can be creazed and maintained entiils deep,
ill-understood issues about cosmic censorship, quantum gravity, and quantum field theory, including the
question of wheether field theory enforces an averazed version of the weak energy condition. question of whether field theory enforces an averaged version of the weak energy condition
PACS numbers: 04.60.+n, 03.70.+k, 04.20.Cv

- Closed timelike curves (CTCs) : space time objects allowed by general relativity theory
- Recent works have shown CTCs enhance tasks
- Solving NP-complete problems, the problem SAT Bacon, PRA 70, 032309 (2004).
- Distinguishing arbitrary states Brun, Harrington and Wilde, PRL 102, 210402 (2009).
- Unknown state cloning Ahn, Myers, Ralph and Mann, PRA 88, 022332 (2013).
- Photonic simulation of the self-consistency condition

Ringbauger, Broome, Myers, White and Ralph, Nat.Commun, 5, 2145 (2014).

## Deutsch's Closed Timelike Curve (D-CTC)

D. Deutsch, PRD 44, 3197 (1991)


## Postselected Closed Timelike Curve (P-CTC)




- A different approach to describing QM with CTCs invented by Bennett and Schumacher (never published)
- This approach based on teleportation.
- If guaranteed to postselect with certainty the outcomes of a measurement, one could teleport a copy of a state into the past.


## Distinguishing nonorthogonal states

Brun, Harrington and Wilde, PRL 102, 210402 (2009).


We can implement the following map

$$
\forall j\left|\psi_{j}\right\rangle \rightarrow|j\rangle
$$

$\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \otimes|j\rangle\langle j|\left(=\rho_{C T C}\right) \rightarrow S W A P \rightarrow|j\rangle\langle j| \otimes\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \rightarrow U \rightarrow|j\rangle\langle j| \otimes|j\rangle\langle j|$

## Distinguishing nonorthogonal states

Brun and Wilde, Found Phys 42, 341 (2012)


A P-CTC-assisted circuit that can distinguish.
Image credit : Brun and Wilde, Found Phys 42, 341 (2012)

- P-TCT also allows us to distinguish nonorthogonal states ( The same circuit works as with DCTCs)
- However, P-CTC can only distinguish sets of linearly independent states.


## Superposing two unknown states


$U_{\alpha, \beta}^{n, m}$ can be constructed by Gram Schmidt process on the set $S=\left|w_{\alpha, \beta}^{n, m}\right\rangle \cup\left\{\left|\psi_{n}\right\rangle\right\}_{n=0}^{N-1}$

- Using D-CTCs, superposing two unknown states is possible


## Superposing two unknown states


$U_{\alpha, \beta}^{n, m}$ can be constructed by Gram Schmidt process on the set $S=\left|w_{\alpha, \beta}^{n, m}\right\rangle \cup\left\{\left|\psi_{n}\right\rangle\right\}_{n=0}^{N-1}$

- Using D-CTCs, superposing two unknown states is possible
- Using P-CTC, superposing two unknown states in the set of linearly independent states is possible.


## Superposing two unknown states

- What can we do if superposing two unknown states is possible?


## No Superposition Theorem and Grover Algorithm

- Standard Grover Algorithm

- After k iterations
$\left|\psi_{k}\right\rangle=2\left\langle\psi \mid \psi_{k-1}^{O}\right\rangle|\psi\rangle-\left|\psi_{k-1}^{O}\right\rangle=\cos \frac{(2 k+1) \theta}{2}|\alpha\rangle+\sin \frac{(2 k+1) \theta}{2}|\beta\rangle$
- Total number of Iteration

$$
\begin{aligned}
R=\mathcal{O}\left(\sqrt{\frac{N}{M}}\right) \begin{array}{l}
\mathrm{N}: \# \text { of elements in data base } \\
\mathrm{M}: \# \text { of solutions of the search problem }
\end{array}
\end{aligned}
$$

## No Superposition Theorem and Grover Algorithm

- Standard Grover Algorithm

- Can we do better?

Answer is negative
-C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, SIAM J. Comput. 26, 15101524 (1997)

- After k iterations

$$
\left|\psi_{k}\right\rangle=2\left\langle\psi \mid \psi_{k-1}^{O}\right\rangle|\psi\rangle-\left|\psi_{k-1}^{O}\right\rangle=\cos \frac{(2 k+1) \theta}{2}|\alpha\rangle+\sin \frac{(2 k+1) \theta}{2}|\beta\rangle
$$

- Total number of Iteration

$$
R=\mathcal{O}\left(\sqrt{\frac{N}{M}}\right) \begin{aligned}
& \mathrm{N}: \text { \# of elements in data base } \\
& \mathrm{M}: \text { \# of solutions of the search problem }
\end{aligned}
$$

## No Superposition Theorem and Grover Algorithm

- Standard Grover Algorithm
- What if superposition state $2\left\langle\psi_{k} \mid \psi_{k}^{O}\right\rangle\left|\psi_{k}\right\rangle-\left|\psi_{k}^{O}\right\rangle$ created from two unknown states $\left|\psi_{k}\right\rangle$ and $\left|\psi_{k}^{O}\right\rangle$ assisted by CTC is possible?

- After k iterations

$$
\left|\psi_{k}\right\rangle=2\left\langle\psi \mid \psi_{k-1}^{O}\right\rangle|\psi\rangle-\left|\psi_{k-1}^{O}\right\rangle=\cos \frac{(2 k+1) \theta}{2}|\alpha\rangle+\sin \frac{(2 k+1) \theta}{2}|\beta\rangle
$$

- Total number of Iteration


## No Superposition Theorem and Grover Algorithm

- Standard Grover Algorithm

- What if superposition state $2\left\langle\psi_{k} \mid \psi_{k}^{O}\right\rangle\left|\psi_{k}\right\rangle-\left|\psi_{k}^{O}\right\rangle$ created from two unknown states $\left|\psi_{k}\right\rangle$ and $\left|\psi_{k}^{O}\right\rangle$ assisted by CTC is possible?


Exponential speed up possible! Kumar and Paraoanu, EPL, 93, 20005, 2011

- After k iterations

$$
\left|\psi_{k}\right\rangle=2\left\langle\psi \mid \psi_{k-1}^{O}\right\rangle|\psi\rangle-\left|\psi_{k-1}^{O}\right\rangle=\cos \frac{(2 k+1) \theta}{2}|\alpha\rangle+\sin \frac{(2 k+1) \theta}{2}|\beta\rangle
$$

- Total number of Iteration


## No Superposition Theorem and Grover Algorithm

- Standard Grover Algorithm

- After k iterations

$$
\left|\psi_{k}\right\rangle=\cos \frac{(2 k+1) \theta}{2}|\alpha\rangle+\sin \frac{(2 k+1) \theta}{2}|\beta\rangle
$$

- Total number of Iteration

$$
R=\mathcal{O}\left(\sqrt{\frac{N}{M}}\right) \begin{aligned}
& \mathrm{N}: \# \text { of elements in data base } \\
& \mathrm{M}: \text { \# of solutions of the search problem }
\end{aligned}
$$

- Grover Algorithm if $2\left\langle\psi_{k} \mid \psi_{k}^{O}\right\rangle\left|\psi_{k}\right\rangle-\left|\psi_{k}^{O}\right\rangle$ can be created by superposing $\left|\psi_{k}\right\rangle$ and $\left|\psi_{k}^{O}\right\rangle$

- After k iterations

$$
\left|\psi_{k}\right\rangle=\cos \frac{3^{k} \theta}{2}|\alpha\rangle+\sin \frac{3^{k} \theta}{2}|\beta\rangle
$$

- Total number of Iteration
$R_{\text {mod }}=\mathcal{O}\left(\log _{3} \sqrt{\frac{N}{M}}\right)$
Exponential
reduction in \# of iteration!


## Conclusion

- We can show that the superposition of two unknown states is possible assisted by CTC.
- If the superposition of two unknown states is possible assisted by CTC, the exponential speed up of Grover search algorithm could be possible

Thank you for your attention!

