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1.Wilsonian Renormalization Group

Exact renormalization group equations
e Wilson renormalization group eguation
e \Wegner-Houghton equation
e Polchinski eguation

are constructed by the loop correction term and rescaling part.



The WRG eguation (Wegner-Houghton equation) describes
the variation of effective action when energy scale A is
changed to A(dt)=A exp[-ot] .
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The effective action:
The Euclidean path integral Is

z = [[DQ]eapl- S]]

We divide all fields Q2 into two groups, high frequency
modes and low frequency modes. After the higher
modes are integrated out, the Wilsonian effective action
IS obtained as
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We assume that Z is cutoff independent:
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This equation corresponds to the following diagrams.




Renormalizability and continuum limit

e critical line EAB
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The renormalization group flow which can be extrapolated back
to critical surface defines arenormalized theory.



Approximation method:

Symmetry and Derivative expansion
Consider asingle real scalar field theory that is invariant under

0 — —@ (4> symmetry)

We expand the most generic action as

W AP Bl

In this work, we expand the action up to second order
in derivative and constraint it A/=2 supersymmetry.




2. Introduction

e \We consider the Wilsonian effective action
which has derivative interactions.

In bosonic theory, such action corresponds
to non-linear sigma models.
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e Three dimensional nonlinear sigma model Is
unrenormalizable in perturbation theory, and
we have to use nonperturbative methods.

Large-N expansion, WRG equation etc



D=3 N =2 supersymmetric non
linear sigma model
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I=1 N N isthedimensions of target spaces
Where K is Kaehler potential and @ is chiral superfield.
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We expand the action around the scalar fields.
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From eguation of motion, the auxiliary filed F can be vanished.
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3.WRG equation for non linear

sigma model
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Consider the bosonic part of the action.
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The second term of the right hand side vanishesin this

approximation O(§H2) .
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Thefirst term of the right hand side

From the bosonic part of the action using KNC
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From the fermionic kinetic term
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Non derivativeterm is cancelled.



Finally, we obtain the WRG eg. for bosonic part of the action as follow:
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The 3 function for the Kaehler metric Is
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4.Renormalization Group Flow

In 3-dimension, the 3 function for Kaehler metric is written:
1
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The 3 function and anomalous dimension of scalar field are given by
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There are two fixed points:

A = 0 IR fixed point

A2 = 27° UV fixed point




Einstan-K aehler manifolds

The Einstein-Kaehler manifolds satisfy the condition

L — 2.,
If his positive, the manifold is compact.
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The value of A for hermitian symmetric spaces.

G/H Dimensions(complex) h
SU(N+1)/[SU(N)> U(1)] N N+1
SU(N)/SU(N-M)x U(M) M(N-M) N

SO(N+2)/SO(N)x U(1) N N
SP(N)/U(N) N(N+1)/2 N+1
SO(2N)/U(N) N(N+1)/2 N-1

Ee/[SO(10) x U(1)] 16 12
Ez/[Eex U(1)] 27 18




Because only A depends on t, the WRG eg. can be rewritten
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We obtain the anomal ous dimension and 3 function of A:
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e Theconstant his positive (compact E-K)  Renormalizable

We have an IR fixed point at A=0 and aUV fixed point at
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If the constant h is positive, it is possible to take the continuum limit
by choosing the cutoff dependence of the bare coupling constant as

M
)\(/\) — )\c A . M is afinite mass scale.




e Theconstant his negative (example Disc with Poincare metric)
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We have only IR fixed point at A=0.



5.SU(N) symmetric solution of
WRG equatrion

We derive the action of the conformal field theory corresponding to
the fixed point of the 3 function.




To smplify, we assume SU(N) symmetry for Kaehler potential.
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n=1
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The function f(x) have infinite number of coupling constants.

f(z) =z + gox® + gaz> + - .



The Kaehler potential gives the Kaehler metric and tensor as follows:
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We substitute this metric and Riccl tensor into the 3 function and
compare the coefficientsof 0,z and 'p*J .
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We can derive an infinite number of coupled differential
equations relating the coupling constants g, .

To obtain the Lagrangian of the scale invariant field theory,
we have to solve the differential equation:
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We can fix all coupling constant (n, using (J2 order by order.

The following function satisfies =0 for any values of parameter
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If wefix thevalueof {2, we obtain aconformal field theory.



We take the specific values of the parameter, the function takes ssmple
form.

o (JO — O
Thistheory is egual to IR fixed point
f(fl?) — of CP" model
— 1 o2 _ 1

Thistheory isegual to UV fixed
point of CPN model.

Then the parameter describes a marginal deformation from the IR
to UV fixed points of the CPY model in the theory spaces.



6. Summary and Discussions

In this work, we argue that some N =2 supersymmetric nonlinear
sigma models are renormalizable in three dimensions.

When the target space is an Einstein-Kaehler manifold with
positive scalar curvature, there are nontrivial ultraviolet fixed
point, which can be used to define the nontrivial continuum theory.

Finally, we construct a class of conformal field theories with SU(N)
symmetry, defined at the fixed point of the nonperturbative 3
function. These conformal field theories have a free parameter, and
this parameter describe a marginal deformation from the IR to UV
fixed point CPY model in the theory spaces.
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