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Theoretical and experimental study of 
nuclear physics is necessary. 
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“Channel” (terminology) 

Total WF expressed by superposition 
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n  e.g. Elastic scattering 

Coupled channels (CC) 
n  e.g. Inelastic scattering 

 = �EL(r) |aAi+ �IE(r) |aA⇤i

[h+K + V � E] = 0
Coupled-channels equations 

haA|
haA⇤|

“Channels” are classified by  
quantum states of nuclei and 
quantum numbers of relative motion 
(momenta and angular momenta). 

Elastic “channel” 

A

a

Ground “state” 

(
[K + haA |V | aAi � EEL]�EL(r) = �haA |V | aA⇤i�IE(r)

[K + haA⇤ |V | aA⇤i � EIE]�IE(r) = �haA⇤ |V | aAi�EL(r)

Inelastic channel 
a

r

A⇤

�IE(r) |aA⇤i

Elastic channel 

A

a

r

�EL(r) |aAi

+ 
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Matrix representation 

n  How to solve coupled differential equations  

✓
K + haA |V | aAi � EEL haA |V | aA⇤i

haA⇤ |V | aAi K + haA⇤ |V | aA⇤i � EIE

◆✓
�EL

�IE

◆
= 0

(
[K + haA |V | aAi � EEL]�EL(r) = �haA |V | aA⇤i�IE(r)

[K + haA⇤ |V | aA⇤i � EIE]�IE(r) = �haA⇤ |V | aAi�EL(r)

The off-diagonal components connect both channels. 

Numerically 
  Modified Numerov method, 
  Euler’s method, 
  Störmer’s 6-point method, 
  Iteration, etc. 

M. A. Melkanoff et al., Methods in Computational Physics, Vol. 6 (1966), Academic Press (New York). 
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(
[K + haA |V | aAi � EEL]�EL(r) = �haA |V | aA⇤i�IE(r)

[K + haA⇤ |V | aA⇤i � EIE]�IE(r) = �haA⇤ |V | aAi�EL(r)
n  Can the CC method be applied only for reaction studies? 

(Because “channel” is related to reactions…) 
 
→ No. Its essence and technique are same as in structural studies. 

Channel 

State 



Deuteron 
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✓
K + V00 � " V02

V20 K + V22 � "

◆✓
u0

u2

◆
= 0

Tensor 

Tensor 

V00

V22

: Central 
: Central + spin-orbit + tensor + quadratic spin-orbit (l2) 

n  D-state (l=2) admixture due to tensor force 

n  One-pion exchange potential (OPEP) 

V⇡ = f (⌧ 1 · ⌧ 2)


�1 · �2 +

✓
1 +

3

µr
+

3

(µr)2

◆
S12

�
e�µr

µr
,

S12 =
3

r2
(�1 · r) (�2 · r)� �1 · �2

Tensor term gives Δl = 2 component. ⇡
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S	


D	


Energy   -2.24 MeV 

Kinetic  19.88 

Central   -4.46 

Tensor  -16.64 

LS   -1.02 

P(L=2)    5.77% 

Radius    1.96 fm 

Rm(s)=2.00 fm 

Rm(d)=1.22 fm 

d-wave is  
“spatially compact” 
(high momentum) 

Vcentral 

Vtensor 

AV8’ 

r 

n   Calculation by T. Myo 

Examples	
 



Hartree-Fock (HF) method 
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n  HF equation derived from variation principle 

Hartree-Fock-Bogoliubov (HFB) method 
n  HF + Bogoliubov transformation to explicitly treat paring 

✓
h �

��⇤ �h⇤

◆✓
Uk

Vk

◆
= Ek

✓
Uk

Vk

◆

Fock (exchange) term connects different s.p. states. 

Paring potential connects different quasi-particle states. 

→ Talk by Y. Kobayashi 

2

4� ~2
2m

r2 +
X

j

hj |v| ji � "i

3

5'i(r) =
X

j

hj |v| ii'j(r)

� ~2
2m

r2'i(r) +
X

j

Z
dr0v(|r � r0|)'⇤

j (r
0)'j(r

0)'i(r)

�
X

j

Z
dr0v(|r � r0|)'⇤

j (r
0)'j(r)'i(r

0) = "i'i(r)

Examples	
 



Shell model 
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n  Configuration mixing 

H | i = E | i

[hi |H| ii � E] ci = �
X

j 6=i

hi |H| ji cj

Examples	
 

| i = c0 |0i+ c1 |1i+ · · · =
X

i

ci |ii + + 

|1i |2i|0iX

j

hi |H| ji cj = Ecj

The off-diagonal matrix element  
provides configuration mixing. 

n  Superposition or basis expansion 
n  Matrix elements 
→ Admixture of states = CC 



2. Reaction theory based on  
the CC method	
 



Reaction model (CDCC) 
Excitation of projectile into continuum state	
 

A
U
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UbAx

b

A

a

The x-b continuum state 

Breakup 

= 

Elastic 

Inel. 

Breakup 

Transfer 

…
 

	
  
	


Projectile can breakup in intermediate state 
→ Superposition of elastic and breakup channels 

 (+)(r,R) =  
xb

(k0, r)�aA

(K0,R)

+

Z 1

0
 
xb

(k, r)�
aA

(K,R)dk
b 

x 
A 

r R
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Based on the x + b + A three body model 



M. Kamimura et al., Prog. Theor. Phys.  Suppl. No. 89, 1 (1986). 
N. Austern et al., Phys. Rep. 154, 125 (1987) . 
M. Yahiro et al., Prog. Theor. Exp. Phys. 2012, 01A209 (2012). 

Reaction model (CDCC) 

truncate	
 discretize	


x  + b	


[K + Uii(R)� Ei]�
ii0
aA(R) = �

X

j 6=i

Uij(R)�ji0
aA(R)

U
ij

(R) =
⌦
 i

xb

��U
xA

(r,R) + U
bA

(r,R) | j

xb

i

Continuum-discretized coupled-channels method (CDCC)	
 
n  How to treat breakup channels 

 (+)(r,R) =  
xb

(k0, r)�aA

(K0,R) +

Z 1

0
 
xb

(k, r)�
aA

(K,R)dk

Infinite number of continuum states Truncation & discretization 

 (+)(r,R) ⇡
X

i

 i

xb

(r)�ii0
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(R)

n  CDCC equation 

h i
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x 
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r R
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[h+K + U
xA

(r,R) + U
bA

(r,R)� E] (+)(r,R) = 0



discretization	


bin (average) method 

pseudo state 

diagonalization	


" 
Hij

!
� "n

 
Nij

!# 
Cj

!
= 0

Nij = h i | ji

Hij =
D
 i

��� Ĥ
��� j

E

 ̂n`m(r) =
1p
�kn

Z kn

kn�1

 `m(k, r)dk

"̂n =
~2
2µr


(kn + kn�1)2

4
+

(�kn)2

12

�

 `m(r) = �`(r)i
`Y`m(

ˆr),

�`(r) =
i
maxX

i

ci'`i(r),

'`i(r) = Nir
`
exp

"
�
✓

r
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◆2
#

Reaction model (CDCC) 
How to discretize	
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average method 
D
�(k, r)

��� �̂(av)
n (r)

Ekn

kn�1

k̂n

k

pseudostate method 
D
�(k, r)

��� �̂(ps)
n (r)

E
k̂n

k

n  Overlap with true scattering wave 

n  Observables (6Li + 40Ca at 156 MeV) T. Matsumoto et al., Phys. Rev. C 68, 064607 (2003). 

(step line) in the lower k region that corresponds to the main
components of the breakup S-matrix elements, but inaccurate
in the higher k region around k=0.8 fm−1. The deviation at
higher k stems from the fact that real-range Gaussian basis
poorly reproduces the continuum breakup state !!!k, r" at the
higher k. Figure 5 shows that this problem can be solved by
using the complex-range Gaussian basis (solid line) instead.

B. 6Li+40Ca scattering at 156 MeV

Characteristic to this scattering, the projectile 6Li has
d-wave triplet resonance states !3+, 2+, 1+". For simplicity, we
neglect the intrinsic spin of 6Li, following Refs. [1,5,6]. Then
the projectile has only one d-wave resonance state with "res
=2.96 MeV and #=0.62 MeV. Obviously the energy and the
width do not reproduce experimental data, but at least the
elastic cross section of 6Li is not affected much by the ne-
glect of the spin [23].
In this scattering, the three-body system consists of deu-

teron, $, and 40Ca. The interactions between each pair of the
constituents are the optical potential of $+40Ca scattering at
104 MeV [24], that of d+40Ca scattering at 56 MeV [25],
and v$d=v0 exp#−!r/r0"2$ with v0=−74.19 MeV and r0
=2.236 fm. Table II shows the parameters of the optical po-
tentials.
The model space sufficient for describing breakup pro-

cesses in this scattering is kmax=2.0 fm−1 and !max=2; the

model space is composed of two k-continua for !=0 and 2.
Since there exists a resonance in !=2, the d-wave
k-continuum is further divided in the Av method into the
resonant part #0%k%0.55$ and the nonresonant part
#0.55%k%2.0$. In the former region the k continuum of
!i,!=2!k, r" varies rapidly with k. The Av method can simulate
this rapid change by taking fi,!=2!k"=1 with bins of an ex-
tremely small width. In fact, clear convergence is found for
both the elastic and the breakup S-matrix elements, when the
resonance part is described by 30 bins and the nonresonance
part of the d-wave and the s-wave k-continua by 20 bins.
Another Av discretization, which has been widely used as a
convenient prescription [1,5,6,8,10], is also made for com-
parison, in which the resonance region is represented by a
single state with the weight factor of Breit-Wigner type given
by Eq. (12). The two sorts of Av discretization are compared
with the real- and complex-range Gaussian PS methods.
With the PS methods, convergence of the S-matrix elements
is found with 21 s-wave breakup channels and 22 d-wave
ones. The level sequences of the resulting discrete eigen-
states are shown in Fig. 6 for both the basis functions, which
have the same properties as in Fig. 3. The parameter sets of
the basis functions, finally taken in the PS methods, are !a1
=1.0, an=30.0, n=30" for the real-range Gaussian basis and

TABLE II. The same as in Table I but for $+40Ca at 104 MeV and d+58Ca at 56 MeV.

System V0 (MeV) r0 (fm) a0 (fm) W0 (MeV) rW (fm) aW (fm) WD (MeV) rWD (fm) aWD (fm)

$+40Ca 219.30 1.21 0.713 98.8 1.40 0.544
d+58Ca 75.470 1.20 0.769 2.452 1.32 0.783 9.775 1.32 0.783

FIG. 6. The same as in Fig. 4 but for 6Li; kcut is taken to be
2.0 fm−1. The horizontal dashed line corresponds to the border mo-
mentum between the resonance and nonresonance parts used in the
Av method.

FIG. 7. Angular distribution of the elastic differential cross sec-
tion (Rutherford ratio) for 6Li+40Ca scattering at 156 MeV. The
results of the complex-range Gaussian PS method and the approxi-
mate treatment of the resonance of 6Li, i.e., the conventional Av
method with the weight factor of Breit-Wigner type, are shown by
the dashed and dash-dotted lines, respectively. The solid line is the
exact solution calculated by the Av method with dense bins and the
dotted line is the result of Watanabe model, i.e., without breakup
effects.

NEW TREATMENT OF BREAKUP CONTINUUM IN THE… PHYSICAL REVIEW C 68, 064607 (2003)

064607-7

!a1=1.0, an=20.0, 2n=40, b=!/2" for the complex-range one.
For both bases kcut is taken to be 2.0 fm−1.
Figure 7 shows the differential cross section of the elastic

scattering. The result with the precise Av discretization based
on dense bins, considered to be the exact solution, is denoted
by the solid line. The dotted line represents the result of the
Watanabe model, i.e., with no breakup channels. The con-
ventional Av discretization, based on the weight factor of
Breit-Wigner type (dash-dotted line), well describes the
breakup effects, particularly at forward angles !"#20°", but
deviates considerably from the exact solution at larger angles
!"$30°". The complex-range Gaussian PS discretization
(dashed line) well reproduces the exact solution with a num-
ber of channels being suitable for practical use. The real-
range Gaussian PS method gives just the same result as the
complex-range one.
Figure 8 represents breakup S-matrix elements at grazing

total angular momentum J=43. The real- and complex-range
Gaussian PS discretization well reproduces the exact solution
calculated by the Av discretization with dense bins. The re-
sults of the two PS methods turn out to coincide within the
thickness of the line. The resonance peak can be expressed
by only 8 (12) breakup channels in the complex-range (real-
range) Gaussian PS method, while the corresponding number
of breakup channels is 30 in the Av method, as mentioned
above. Thus, one can conclude that the real- and complex-
range Gaussian PS methods are very useful for describing
not only nonresonant states but also resonant ones.

V. DISCUSSIONS ON FOUR-BODY BREAKUP REACTION

In the past CDCC calculations the projectile was assumed
to be a two-body system, dealing only with three-body

breakup reactions. In this section, we investigate the appli-
cability of CDCC to four-body breakup reactions of the pro-
jectile consisting of three particles, b+c+x (Fig. 9). The Av
method needs the exact three-body wave functions being im-
possible to obtain. We can circumvent this problem with the
present PS method; one can prepare an approximate com-
plete set #%̂i!$ by diagonalizing the Hamiltonian of the pro-
jectile in a space spanned by a set of basis functions of L2

type. With #%̂i!$ as the wave functions of the breakup chan-
nels, one can obtain an approximate total wave function
&CDCC by solving CDCC equations (7). Inserting &CDCC into
the exact form of breakup T-matrix elements in place of the
exact total wave function, one reaches an approximate form:

T4 = %ei!P·R+k·r+q·y"&U4&&CDCC'R,r,y, !25"

where U4 is the sum of all interactions in the four-body
system !A+b+c+x", r and y are two Jacobi coordinates of
the three-body !b+c+x" system, and k!q" is the momen-
tum being conjugate to r!y". The accuracy of Eq. !25"

FIG. 8. The same as in Fig. 5 but for 6Li
+40Ca scattering at 156 MeV. The corresponding
grazing total angular momentum is 43. The step
line is the result of the Av method with dense
bins. Note that the difference between the results
of the real- and complex-range Gaussian PS
methods is not visible since it is less than about
1%.

FIG. 9. Illustration of a four-body !A+b+c+x" system. The pro-
jectile consists of b, c, and x, and A is the target.

T. MATSUMOTO et al. PHYSICAL REVIEW C 68, 064607 (2003)

064607-8

Equivalence of two methods for discretizationtion	
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n  Momentum truncation 

 br(r,R) ⌘
Z 1

0
 
xb

(k, r)�
aA

(K,R)dk

!
Z

k

max

0
 
xb

(k, r)�
aA

(K,R)

truncate	


x  + b	


N. Austern et al., Phys. Rev. Lett. 63, 2649 (1989) . 

                can be a good approximation of         if       is large enough.  CDCC  ̂d lm

n  Angular momentum truncation (Austern-Yahiro-Kawai theorem) 

CDCC with ang. mom. truncation 

P =

Z
dr̂

lmX

l=0

X

m

Ylm (r̂)Y ⇤
lm (r̂) ,

[E �K � V � PUP ] CDCC = 0.

Distorted-Faddeev equations 

Expected 
to be small 

[E �K � V � PUP ]  ̂
a

= V
⇣
 ̂

x

+  ̂
b

⌘
,

[E �K � U
x

� U
b

]
⇣
 ̂

x

+  ̂
b

⌘
= (U � PUP )  ̂

a
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Model space should be set so that 
observables we want to see can be 
described properly. 
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2 Chapter 1. Introduction

(a) (b)

Figure 1.1: (a) Rutherford ratio of the elastic cross section as a function of the scattering
angle of d for the d+58Ni at 56 MeV. (b) Same as in panel (a) but for the d+208Pb system.
In each panel the solid line stands for the result of the CDCC calculation, which explicitly
takes into account the virtual breakup process of d with its s- and d-wave states. The
dashed (dotted) line stands for the result which dose not include the breakup states of d
with (without) the d-wave component in the ground state of d. This figure is taken from
Ref. [3]. In each panel, circles are the experimental data taken from Ref. [4].

in Fig. 1.1 we show the Rutherford ratio of the elastic cross section as a function of the
scattering angle of d for (a) the d+58Ni at 56 MeV and (b) d+208Pb at 56 MeV [3]. In
each case, if one neglects any effects of the breakup states of d, the dashed and dotted
lines are obtained. Note that the former (latter) includes (does not include) the d-wave
component in the s-wave ground state of d. They cannot well reproduce the experimen-
tal data (circles) [4]. The solid line is for the result calculated with the method of the
continuum-discretized coupled-channels (CDCC) [3, 5, 6], which explicitly takes into ac-
count the channel-couplings of the breakup channels. In Chap. 2 we mention CDCC in
detail. It reproduces well the experimental data even at backward angles. This fact indi-
cates the importance of treating the virtual breakup process of d. Note that it is called the
virtual breakup that a projectile breaks up in intermediate states of elastic scattering.

To understand the virtual breakup, we show the behavior of the dynamical polarization
potential (DPP) of unstable nuclei reported in Ref. [7]. The optical potential Uopt, which
describes the elastic scattering, and the DPP are defined by

Uopt = PV P + UDPP, (1.1)

UDPP = PV Q lim
ε→0

1

E + iε−QHQ
QV P, (1.2)

M. Kamimura et al., Prog. Theor. Phys. Suppl. 89, 1 (1986). 

Breakup states of d is essential to reproduce experimental data. 

d 
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N. Keeley, K. Kemper, and K. Rusek, Phys. Rev. C 88, 017602 (2013). 

BRIEF REPORTS PHYSICAL REVIEW C 88, 017602 (2013)
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FIG. 1. CDCC calculations compared to the elastic scattering data
for: (a) 29.8 MeV 11Li + 208Pb, (b) 29 MeV 6Li + 208Pb, and
(c) 18 MeV 6He + 208Pb. The solid and dashed curves represent the
results of the full CDCC and no-coupling calculations, respectively.
The dotted curves denote the results of CDCC calculations with no
Coulomb couplings (but retaining the diagonal Coulomb potentials).
The dot-dashed curves denote the results of optical model calculations
with the bare potentials + DPPs, see text. Note the linear cross
section scale.

curves), for 6Li the Coulomb coupling has a negligible effect,
as found previously [14,15] [the dotted curve on Fig. 1(b)
is barely visible]. The total (Coulomb plus nuclear) coupling
effect is also qualitatively different for 6Li, which may be
ascribed to the absence of strong Coulomb dipole coupling in
this nucleus.

Coupling effects may be represented by a potential term—
the dynamic polarization potential or DPP—added to the
“bare” optical potential used as input to the coupled chan-
nels calculation. This DPP is intrinsically nonlocal and L-
dependent, but local, L-independent equivalents may always
be found. In this work we use one such local equivalent DPP,
the so-called trivially equivalent local potential of Ref. [16],
as implemented in the code FRESCO [4]. In Fig. 2 we present
the TELP-type DPPs derived from the CDCC calculations for
11Li, 6He and 6Li at large radii. As a check on the validity of
these DPPs, at least in the region where the elastic scattering
is sensitive to the potential, we plot in Fig. 1 as the dot-dashed
curves the angular distributions predicted by optical model
calculations employing the bare potential plus the DPP. The
agreement with the CDCC calculations is good (in the case of
6Li so good that the dot-dashed curve is completely hidden)
thus validating the DPPs as a representation of the coupling
effects. A significant qualitative difference between the DPPs
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Coulomb polarization potential of Eq. (1) with values of α = 5.7 fm3

and 1.3 fm3 for 11Li and 6He, respectively.

for 11Li and 6He and that for 6Li is immediately apparent:
while the 11Li and 6He DPPs both exhibit the long attractive
and absorptive tails characteristic of strong dipole Coulomb
couplings [8,17–19], the 6Li DPP is essentially zero for radii
r > 20 fm (r > 15 fm for the imaginary part). Given that in
the α + d model of 6Li dipole couplings are identically zero
this behavior is to be expected and may be adduced as further
evidence that the long tails in the 11Li and 6He DPPs do indeed
result from the Coulomb dipole coupling to the continuum.

The long-range tails of the 11Li and 6He real DPPs may
therefore be represented by the Coulomb polarization potential
given by

VPol(r) = −1
2
α

Z2
Te2

r4
, (1)

where α is the Coulomb dipole polarizability parameter, ZT the
target atomic number, and e the charge on the electron. The 6He
real DPP is consistent with a value of α ∼ 1.3 fm3, somewhat
smaller than the theoretical values of 1.88 fm3 [20] or 1.99 fm3

[21] but close to the value of 1.2 fm3 obtained in Ref. [2],
while the 11Li real DPP is consistent with the theoretical
value of α = 5.7 fm3 [22]. The good agreement of the
“empirical” dipole polarizability with theory suggests that the
dineutron model is a much better approximation for 11Li than
it is for 6He, implying a stronger correlation between the two
valence neutrons in 11Li (it will be recalled that we have
used the improved dineutron model of Ref. [9] for 6He which
better matches the wave functions from more sophisticated
three-body models; the “pure” dineutron model significantly
overpredicts the dipole strength for 6He, as was demonstrated
in Ref. [9])

The long-range absorptive tail of the 11Li imaginary DPP
also extends to much larger radii than that for 6He, suggesting
that the Coulomb breakup of 11Li takes place further from the
target. This may be explained as due to the larger size of 11Li.
However, since the difference between the rms matter radii of
11Li and 6He is only of the order of 1.4 fm or so, the difference
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3. Transfer reaction with  
the CC method	
 



Transfer reaction: is sensitive to nuclear states in the initial and final channels. 
                              useful to generate states selectively due to matching condition. 

→ Probe single-particle structures 

p p 

n n 
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α
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α

One-nucleon transfers 
          Ex. (d,p) 

Two-nucleon transfers 
          Ex. (t,p) 

α transfers 
Ex. (6Li,d) 

single-particle states nucleon-nucleon correlations clustering 

Background 
Physics through transfer reactions	
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Description of transfer reactions (conventional approach)	
 

n  The transition matrix for the A(a, b)B reaction 
within the distorted-wave Born approximation (DWBA). 

TDWBA =
D
 (�)

�

���V
xb

��� (+)
↵

E

UaA UbB
V
xb

x

A

a b

B

b

V
xb

n   The optical potential         (       ) for the a + A (b + B) 2-body system  
generates the distorted wave. 

n   One-step transition induced by the residual interaction        (       ) 
for the post (prior) form is assumed. 

UaA UbB

V
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n  To take into account channel-couplings due to the three-body dynamics,  
     the coupled-channels Born approximation (CCBA) was proposed. 

S. K. Penny and G. R. Satchler, Nucl. Phys. 53, 145 (1964). 
P. J. Iano and N. Austern, Phys. Rev. 151, 853 (1966). 

Beyond DWBA (CC on transfer reactions)	
 

K. Low, T. Tamura, and T. Udagawa, Phys. Lett. B67, 5 (1977). 
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Figure 1.4: (a) The cross section of the 40Ca(13C,14N)39K reaction at 68 MeV. Horizontal
axis is the emitting angle of 14N in the c.m. frame. The solid (dashed) line is the CCBA
result including the channel-couplings among 0+, 3−, and 5− (between 0+ and 3−) states
of 40Ca. Experimental data are taken from Ref. [102]. (b) A schematic picture of the path
of the transfer process with the CC effects. See Ref. [101] for more detail.

we show the cross section of the 40Ca(13C,14N)39K reaction at 68 MeV as a function of
the 14N emitting angle. If one neglects all channel-couplings regarding the excited states
of 40Ca, the dashed line, which corresponds to the DWBA result, is obtained. It is not able
to reproduce the oscillation pattern of the experimental data [102]. The dotted line is the
result for the CCBA calculation, which takes into account the channel-couplings between
0+ and 3− states of 40Ca. When the couplings to the 5− state of 40Ca is also added, the
solid line is obtained. Note that these excites states are bound states since the proton sepa-
ration energy of 40Ca is 8.33 MeV. They agree with the experimental data even at forward
angles, where the DWBA calculation fails to reproduce the data. Thus CCBA has been
achieved success. Though the importance of the CC effects was argued by these works,
the continuum states of a and/or B were not taken into account owing to a limitation of the
computational power at that time.

After establishment of CDCC in the end of 1980s, several CCBA calculations with
CDCC were performed to treat breakup states involving both resonant and non resonant
states of loosely bound nuclei by using computer codes FRESCO [103, 104], RANA [105],
and so on. Note that, in CDCC, infinite number of states, not only resonance states but
also non resonant continuum states, of the projectile a and/or the residual nucleus B are in
principle considered. For instance, in Ref. [106], the effects of the 6Li breakup into α and
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CCBA were able to achieve to reproduce experimental data. 
by including the channel-couplings among a few excited states. 
 
However Continuum states were not taken into account  
for stable nuclei. 
→ They are expected to be essential for loosely bound system. 
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n   Coupled-channels Born approximation (CCBA)  
with the continuum-discretized coupled-channels (CDCC) method. 

n   The optical potential         (       ) for the subsystem x + A (b + A)  
generates the distorted wave based on the 3-body model. 

n   The CDCC wave functions both in the initial and final channels. 
→ Remnant term is canceled out exactly. 
→ Rearrangement component is involved implicitly. 

U
xA
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Beyond DWBA	
 M. Kamimura et al., Prog. Theor. Phys.  Suppl. No. 89, 1 (1986). 
N. Austern et al., Phys. Rep. 154, 125 (1987) . 
M. Yahiro et al., Prog. Theor. Exp. Phys. 2012, 01A209 (2012). 

A. M. Moro et al., Phys. Rev. C 80, 064606 (2009). 
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n  Decomposition of the transition matrix 
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Model (CCBA) 22 
ü  BC is implicitly taken into account 

in DWBA as “absorption”. 
ü  BT is never involved in DWBA. 



3. 1. 8B(d, n)9C	
 



T. Ohmura et al., Prog. Theor. Phys. 43, 347 (1970).  
B. A. Watson et al., Phys. Rev. 182, 997 (1969).  
J. H. Dave and C. R. Gould, Phys. Rev. C 28, 2212 (1983).  

1 range Gaussian (Ohmura potential)	


Global optical potentials (Woods-Saxon)	


V
pn

(r
pn

) :

U (↵)
xB (r

xB) :

Woods-Saxon potential (reproduces the ground state energy of  9C)	
U (�)
pB (rpB) :

U (�)
nB (rnB) : Same as that in the initial channel	


Model (numerical setup)	
 

n  Initial channel 

n  Final channel 
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Interactions are phenomenologically determined. 

Numerical setting	
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n  Discretization (pseudostate method) 
     → The internal Hamiltonians are diagonalized with Gaussian basis functions. 

Result 1	
 T. Fukui et al., Phys. Rev. C 91, 014604 (2015). 25 



n  Significant breakup effect (58%) can be 
seen at the forward angles of the angular 
distribution of the cross section. 

Result 1	
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Breakup effect on 8B(d, n)9C	
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n  The BC is weak and the ET result can be regarded as that of DWBA. 

d	
 9C	


p 

8B n 
p 

ET ~ DWBA	


Result 1	
 T. Fukui et al., Phys. Rev. C 91, 014604 (2015). 

Breakup effects of each path	
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n  The BC is weak and the ET result can be regarded as that of DWBA. 
n  Strong interferences between the ET and the BT in each channel enhance the 

cross section. → Never involved in DWBA. 

Result 1	
 T. Fukui et al., Phys. Rev. C 91, 014604 (2015). 

Breakup effects of each path	
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n  The BC is weak and the ET result can be regarded as that of DWBA. 
n  Strong interferences between the ET and the BT in each channel enhance the 

cross section. → Never involved in DWBA. 
n  The BT among continuum states is negligible. 

Result 1	
 T. Fukui et al., Phys. Rev. C 91, 014604 (2015). 

Breakup effects of each path	
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n   A 25% increase due to CC  
      with the d-wave of 9C is confirmed. 
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Result 1	
 T. Fukui et al., Phys. Rev. C 91, 014604 (2015). 

Dynamical change of transferred angular momentum l	
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n  Ignition of the hot pp chain 

      → Important process to produce nuclei  
           heavier than A=8. 

M. Wiescher et al., Astrophys. J. 343, 352 (1989).	


9C 

8B p-p chain 

CNO 

8B(p, �)9C(↵, p)12N(p, �)13O(�+⌫)13N(p, �)14O.
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Determination of the astrophysical reaction rate	
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n  Transition matrix for the radiative capture 
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D
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n  Astrophysical reactions are a low-energy scattering. 
      → Scattering wave is suppressed in interior region. 
      → Only the surface of φl (ANC)  
           contributes on the cross section and  
           determine the reaction rate. 
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determined  
from observables 

(Cl)
2 = Sl(b

(sp)
l )2

calculated with  
the single particle w. f. 

A. M. Mukhamedzhanov and N. K. Timofeyuk, Yad. Fiz. 51, 679 (1990)  
[Sov. J. Nucl. Phys. 51, 431 (1990)].	


p 

8B 

r	


Sl: spectroscopic factor 
bl

(sp): single particle ANC 

In the model        is calculated  
as a single particle wave function. 
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n  We obtain the value of ANC,  
          (Cl)2 = 0.59  
                   ± 0.02 (theor.)  
                   ± 0.13 (exp.) fm-1, 
      which is about 51% smaller        
      than that of the previous DWBA    
      result. 

D. Beaumel et al., Phys. Lett. B514, 226 (2001). 

4

By definition, εipn is negative for the ground state (i = i0) and
positive for the breakup states (i ̸= i0). Thus, we can see from
Eq. (30) that for the transfer process through the deuteron
ground state, the elastic transfer (ET), the FRC increases the
T -matrix element. On the other hand, for the transfer process
through the breakup states of d, the breakup transfer (BT), the
correction gives decrease in the T -matrix element. This be-
havior is useful to interpret the difference between the results
of the ZR and FR calculations as shown below. It should be
noted that ρ2i can be negative when εipn is very large. How-
ever, the contribution of such state to the T matrix is found
to be negligibly small. Note also that in the actual calculation
we use Eq. (21); Eq. (30) is used just for interpretation of the
numerical result.

III. RESULTS AND DISCUSSION

A. Model setting

We adopt the one-range Gaussian interaction [14] for Vpn.
The pseudo state method with the real-range Gaussian basis
functions [15] is used for obtaining the discretized-continuum
states of d; we include the s- and d-states with neglecting
the intrinsic spin of d. The number of the basis functions
taken is 20, and the minimum (maximum) range parameter of
Gaussian is 1.0 (30.0) fm. We include in CDCC pseudostates
with εipn < 65 MeV and εipn < 80 MeV for the s- and d-
states, respectively. To obtain Ψ(+)

α , ψi
pn is calculated up to

rpn = 100.0 fm.
In the calculation of ψj

pB in the final channel, we adopt
a Woods-Saxon central potential as U (β)

pB with the radial pa-
rameter R0 = 1.25 × 81/3 fm and the diffuseness parameter
a0 = 0.65 fm. Its depth is determined to reproduce the proton
separation energy of 1.30 MeV in the p-state. The interaction
between a point charge and a uniformly charged sphere with
the charge radius 2.5 fm is used as VC, which is used also
in the CDCC calculation in the initial channel. The pseudo
state method is also used for the final channel. For the ex-
pansion of ψj

pB we take 20 Gaussian basis functions with the
minimum (maximum) range parameter of 1.0 (20.0) fm. We
take into account the s-, p-, d-, f -, and g-waves of ψj

pB with
the maximum values of εjpB of 70, 75, 85, 90, and 70 MeV,
respectively. ψj

pB is calculated up to rpB = 100.0 fm.
As for U (α)

pB , U (α)
nB , and U (β)

nB , we adopt the nucleon global
optical potential for p-shell nuclei by Watson et al. [16] (WA).
The non-local correction suggested by Timofeyuk and John-
son [17–19] to the nucleon distorting potentials of the initial
channel is used. The calculated energy shift [17–19] with
the above mentioned p-n model is 17.8 MeV in the c.m.
frame. Then we evaluate U (α)

pB and U (α)
nB at 29.3 MeV, which

is shifted from the incident energy 11.5 MeV/nucleon. While
the non-local correction to U (β)

nB is made following Perey and
Buck [20] with the non-local parameter β = 0.85 fm.

For describing the transfer reaction, Eq. (2) is integrated

over rα and rβ up to 25.0 and 20.0 fm, respectively. The
number of the partial waves for χii0(+)

α and χjj0(−)
β is 25. As

mentioned above, we include only the s-states of the deuteron,
consisting of the ground and discretized-continuum states, in
the calculation of the T matrix of the transfer process. It
should be noted that the coupling between the s- and d-states
of the deuteron is taken into account in the calculation of Ψ(+)

α

with CDCC. It is found that Di
pn is negligibly small for the d-

states of the deuteron, which justifies the neglect of them in
the transfer process.

B. Asymptotic normalization coefficient (ANC) and
astrophysical factor S18(0)

We show in Fig. 2 the cross section of the transfer reaction
8B(d,n)9C at 14.4 MeV/nucleon as a function of the neutron
emission angle in the c.m. frame. The solid line shows the
CCBA result. We have normalized the result to reproduce the
experimental data [4] by multiplying S = 0.361. Note that
from this transfer reaction S cannot be determined because the
reaction is peripheral as confirmed below. Even though S can-
not be determined, the asymptotic normalization coefficient
(ANC) [5, 12, 21] C

9C
p8B for the overlap of the 9C wave func-

tion with the p-8B configuration is well determined. From S
and the so-called single-particle ANC of ψj0

pB, one can obtain
the ANC; (C

9C
p8B)

2 = 0.59 fm−1.
Accuracy of the value of the ANC depends on how the

transfer reaction 8B(d,n)9C is peripheral with respect to rpB.
This can be examined by estimating the dependence of C

9C
p8B

on the parameters of U (β)
pB ; each of R0 and a0 is changed by

20%. As mentioned above, we put a constraint on the depth
of the potential so that the proton separation energy is repro-
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FIG. 2. (Color online) Cross section of the transfer reaction
8B(d,n)9C at 14.4 MeV/nucleon as a function of the neutron emis-
sion angle in the c.m. frame. Result of CCBA (solid line) is normal-
ized to the experimental data [4].

8B(d,n)9C at 14.4 MeV/nucleon 

ANC from transfer cross section	
 

Result 1	
 T. Fukui et al., Phys. Rev. C 91, 014604 (2015). 34 



What we can say is that the 
breakup effect enhances the 
transfer cross section. 

Breakup effect on S18 of 8B(p, γ)9C	
 

(1) Inclusion of the 3-body configuration in 9C (p + p + 7Be). 
(2) The CCBA analysis of the mirror reaction 8Li(d, p)9Li. 

[12] B. Guo et al., Nucl. Phys. A761, 162 (2005). 

Future work	
 

Result 1	
 T. Fukui et al., Phys. Rev. C 91, 014604 (2015). 

S18("pB) = �p�("pB)"pB exp[2⇡⌘]

D. Beaumel et al., Phys. Lett. B 514 226 (2001).  
L. Trache et al., Phys. Rev. C 66 035801 (2002). 
T. Motobayashi, Nucl. Phys. A 718 101c (2003). 
T. Fukui et al., Phys. Rev. C 86 022801(R) (2012). 
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By definition, εipn is negative for the ground state (i = i0) and
positive for the breakup states (i ̸= i0). Thus, we can see from
Eq. (30) that for the transfer process through the deuteron
ground state, the elastic transfer (ET), the FRC increases the
T -matrix element. On the other hand, for the transfer process
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numerical result.
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3. 2. 16O(6Li, d)20Ne	
 



Background	
 
α-transfer reaction to investigate clustering in 20Ne (g.s.) 

6Li d 

20Ne16Ο

16O(6Li, d)20Ne n  There is NO direct evidence of the clustering 
(surface manifestation) in a ground state of nuclei.  
 

n  Measurements and their analyses with the  
Distorted-wave Born Approximation (DWBA 
of the (6Li,d) or (d,6Li) reaction have been done. 

[1] N. Anantaraman et al., Nucl. Phys. A313, 445 (1979). 
[2] F. D. Becchetti et al., Nucl. Phys. A303, 313 (1978). 
[3] T. Tanabe et al., Phys. Rev. C 24, 2556 (1981). 
[4] W. Oelert et al., Phys. Rev. C 20, 459 (1979). 

These are due to the ambiguities of 

   (1) the optical model potential (OMP) of 6Li 
   (2) the α-16O wave function (WF). 

ELi (MeV) S↵

20 [1] 2.7
32 [1] 10.3
38 [1] 7.4
42 [2] 2.59
75 [3] 0.24
95 [4] 0.23

n  Unphysical normalizations (spectroscopic  
factor (SF)              ) are needed to fit  
calculated cross sections to the data. 

S↵ > 1
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Background	
 

(1) The SF is defined as a norm of the cluster-overlap function. 

SF is NOT suitable to discuss surface manifestation 

Independent particles 
in mean field 

Cluster excitation 
SHELL CLUSTER Cluster formation 

S↵ ⌘
Z

drr2 |�l(r)|2

→ It involves the information of          at the interior region. �l(r) r
r

r�l(r)

(2) Shell-cluster duality (Bayman-Bohr theorem) 
      Even if there is no spatial manifestation,       can reach unity. 
      → Shell model wave function is equivalent to that of cluster model  
           in ground state. 

B. F. Bayman and A. Bohr, Nucl. Phys. 9, 596 (1958/1959). 

S↵
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Model	
 
Reaction model 

TCCBA =
D
 (�)

f |Vtr| (+)
i

E

CDCC 

6Li 

A 

α

d 

+ 

 (+)
i

M. Kamimura et al., Prog. Theor. Phys.  Suppl. No. 89, 1 (1986). 
N. Austern et al., Phys. Rep. 154, 125 (1987) . 
M. Yahiro et al., Prog. Theor. Exp. Phys. 2012, 01A209 (2012). 

n  The CC among bound and discretized-continuum (DC) states  
of the projectile is explicitly taken into account. 

d 

B(α + A) 

 (�)
f

1ch potential model 

n   CCBA with CDCC only in the initial channel 
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DWBA (two-body model, conventional approach) 

Model	
 
Difference between CCBA and DWBA	
 

CCBA (three-body model, present work) 

A 

α

d 

U↵A

UdA Vtra

B 

UdA

A 

6Li 

Vtra

B 

UdAULiA

n  A part of the CC effect is implicitly  
taken into account as an imaginary part of         . ULiA

6Li-OMP is needless. 

OMPs (phenomenological) 
U↵A UdA

F. Michel et al., Phys. Rev. C 28, 1904 (1983). 
J. H. Dave and C. R. Gould, Phys. Rev. C 28, 2212 (1983). 
Y. Han et al., Phys. Rev. C 74, 044615 (2006). 

OMPs (phenomenological) 
UdAULiA

         has large ambiguity. ULiA
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Model	
 
Structure model 

n   Microscopic cluster model (MCM) with GCM 

B = α + A 

A αr

|�GCMi =

�����

r
M↵!MA!

MB !
A
h
�(GCM)
l (r)Yl0 (r̂)'↵'A'c.m.

i+

Y. Kanada-En’yo et al., Prog. Theor. Exp. Phys. 2014, 073D02 (2014). 
D. R. Tilley et al., Nucl. Phys. A636, 249 (1993). 

n  Consistency of the calculated quantities with  
the measured ones: 
(1) Root-mean-square radius of 16O 

PTEP 2014, 073D02 Y. Kanada-En’yo et al.

Fig. 1. Energies of the ground and excited states of 20Ne obtained with the cluster-GCM, AMD(VAP), and
the hybrid (AMD+cluster) calculations. The energies measured from the 16O + α threshold energy are com-
pared with the experimental data [88]. The adopted effective interaction is Volkov No.2 with m = 0.62 for the
cluster-GCM, and with m = 0.66 supplemented by the spin-orbit term of the G3RS force with the strength
uI = −uI I = 2400 MeV for the AMD(VAP) and hybrid calculations.

of the cluster-GCM calculation, ten BB wave functions with the 16O − α distance Sk = 1, 2, . . . , 10
fm are adopted. This corresponds to a bound-state approximation.

As another test, we also do a similar analysis of the RWA using AMD wave functions of 20Ne.
This is a test to check the applicability of the method for the case that the system is not a pure cluster
state because the AMD wave function can contain non-cluster components as well as the cluster
component. We perform the AMD(VAP) calculation to obtain the optimum solution of the AMD
wave functions for the Jπ = 0+, 2+, . . . , 8+ states in the ground band of 20Ne. As for the effective
interaction, Volkov No.2 with m = 0.66 supplemented by the spin-orbit force of the G3RS [86,87]
with the strength uI = −uI I = 2400 MeV is chosen so as to reproduce the ground band spectra
measured from the threshold energy of the H.O. shell-closed 16O and α clusters. In the AMD(VAP)
calculation, a larger Majorana parameter m than that used in the cluster-GCM calculation is needed
to avoid the overbinding problem, because extra energy is gained by the spin-orbit interaction and the
cluster dissociation in the AMD(VAP) calculation. We also perform the hybrid AMD(VAP) + cluster
calculation by superposing AMD(VAP) wave functions and 16O + α cluster BB wave functions using
the same interaction.

The calculated energy levels measured from the 16O + α threshold are shown in Fig. 1 compared
with the experimental energy levels of the ground, the K π = 0−, and the higher-nodal (hn) K π = 0+

bands. The Jπ = 0+
2 , 2+

2 , and 4+
2 states obtained with the cluster-GCM calculation correspond to

the higher-nodal band members, 0+
hn, 2+

hn, and 4+
hn starting from the 0+

4 state in the experimental
data. It should be noted that the experimental 0+

2 and 0+
3 states cannot be described within 16O + α

cluster models because they are not simple 16O + α cluster states. The cluster-GCM calculation
shows reasonable results for the energy levels, except for the 6+ − 8+ level spacing, as already shown
in preceding works with 16O + α cluster models [71,73]. The AMD(VAP) and hybrid calculations
reproduce the ground band spectra. In particular, the small level spacing between the 6+ and 8+

states is described well by the cluster-breaking component in the 8+ state at the band terminal, and
is consistent with the results of the cranking AMD calculation [75].

We first discuss the results of the cluster-GCM calculation. In Figs. 2, 3, and 4, the approximated
RWA ayapp

l (a) for #GCM are compared with the exact values of ayl(a). The approximated RWA
agrees reasonably well with ayl(a) for bound states and resonance states in the region outer than
the surface peak. The 6+

2 and 8+
2 states obtained by the cluster-GCM calculation have a feature of

non-resonant continuum states, for which the approximation also works in the outer region.
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the hybrid (AMD+cluster) calculations. The energies measured from the 16O + α threshold energy are com-
pared with the experimental data [88]. The adopted effective interaction is Volkov No.2 with m = 0.62 for the
cluster-GCM, and with m = 0.66 supplemented by the spin-orbit term of the G3RS force with the strength
uI = −uI I = 2400 MeV for the AMD(VAP) and hybrid calculations.

of the cluster-GCM calculation, ten BB wave functions with the 16O − α distance Sk = 1, 2, . . . , 10
fm are adopted. This corresponds to a bound-state approximation.

As another test, we also do a similar analysis of the RWA using AMD wave functions of 20Ne.
This is a test to check the applicability of the method for the case that the system is not a pure cluster
state because the AMD wave function can contain non-cluster components as well as the cluster
component. We perform the AMD(VAP) calculation to obtain the optimum solution of the AMD
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(2) Spectra of 20Ne 

A. B. Volkov, Nucl. Phys. 74, 33 (1965). 
T. Matsue et al., Prog. Theor. Phys. 53, 706 (1975). 

n   The Volkov No. 2 effective interaction of the  
 Majorana para.                  with the width para. 
                           is adopted. 

m = 0.62
⌫ = 0.16 fm�1

�(GCM)
l (r) �(MCM)

l (r)Antisym. 
Input of the reaction calculation. 
Norm is unity. 
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Present CCBA 

Improvement 
(1) Diffraction pattern of the 1st and 2nd peaks 
(2) Reasonable values of the normalization factors 
      → Governed by reliabilities of both 
           the α-16O WF and OMP 

N. Anantaraman et al., Nucl. Phys. A313, 445 (1979). 
F. D. Becchetti et al., Nucl. Phys. A303, 313 (1978). 

Previous DWBA 
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i n t ab l e 1 as Q~xP .

Da t a f or t 60( 6 L i , d ) Z° Ne a r e shown i n f i g . 6. The ca l cu l a t ed cur ves a r e d i scussed
i n t he f o l l ow i ng sec t i ons .
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T. Fukui et al., Prog. Theor. Phys. 125, 1193 (2011) 
T. Fukui et al., Phys. Rev. C 91, 014604 (2015). 
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n   Full ~ Elastic transfer (ET)  
         ≠ No back coupling (BC) 
 

→ Breakup transfer (BT) is negligible.    
     Only the BC (CC due to off-diagonal  
     potentials) is essential. 

n  Decomposition of the CDCC distorted  
wave into elastic and breakup channels. 

→ DWBA can provide reasonable results,  
     if an appropriate 6Li-OMP, in which 
     BC is implicitly taken into account as  
     its imaginary part, is given. 

✓
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Breakup effects of 6Li 
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Potential model (PM) to investigate radial distribution of WF	
 

n   PM1 describes the tail behavior of the MCM WF (PM2 and PM3 shift it to 
 inside and outside respectively) with the Woods-Saxon potential. 

n   All of the WFs are normalized to be unity. 4

TABLE I. The potential parameters of V (N)
xA . Its depth V0 is deter-

mined so as to reproduce the binding energy 4.73 MeV.
r0 (fm) a0 (fm)

PM1 1.25× (16)1/3 0.76
PM2 1.25× (16)1/3 0.52
PM3 1.40× (16)1/3 0.85

imum value of the total angular momentum J regarding the
partial waves of χcc0(+)

i and χ(−)
f is 35. In the present cal-

culation, the transition from the 6Li channel with the state of
li ̸= 0 into the d channel is omitted. Note that, however, the
channel-couplings among every possible states of li for solv-
ing the CDCC equation are explicitly take into account. It is
validated that the T -matrix elements of the breakup transfer
(BT) process from the higher partial-wave states is expected
to be small [29] since, within the range of V (N)

xb , the product
of V (N)

xb and ψc
xb of li ̸= 0, which appears in the T matrix, has

very small amplitude compared with that of li = 0. In addi-
tion, we emphasize that no reasonable result is obtained when
one adopts the zero-range approximation in which the product
of V (N)

xb and ψc
xb appearing in the T matrix is approximated as

the δ-function in order to easily perform the radial integration
in Eq. (1).

As for the cluster-GCM calculation for ψCMC
xA is performed

with the Volkov No. 2 effective interaction of the Majorana
parameter m = 0.62 [30] and with the width parameter
ν = 0.16 fm−2 [31] for both α and 16O nuclei. The Coulomb
interaction between clusters is explicitly taken into account
by expanding it with the multi-range Gaussian basis func-
tions. To obtain ψxA, the number of BB cluster wave func-
tions kmax we take is 10 with the α-16O relative distance
Sk = 1, 2, ..., and 10 fm. As shown in Ref. [32], not only
the energy spectra for the ground-state band of 20Ne but also
the root-mean-square radius of 16O calculated with the present
setups are consistent with the measured ones.

In the calculation of the PM, by varying the parameters r0
and a0 as listed in Table. I, we have three types of ψ(PM)

xA .
Note that the depth V0 for each setup is adjusted to reproduce
the α-16O binding energy 4.73 MeV.

B. Comparison of MCM with PM on cross section

In Fig. 2, the CMC wave function φ(MCM)
l is compared with

φ(PM)
l which is the radial part of ψ(PM)

xA . The all of norms for
each wave function are unity. φ(PM)

l with the setup PM1 is
calculated to fit the behavior of the MCM wave function at
tail region, say r ! 5.0 fm, whereas the behavior of that
with PM2 (PM3) is shifted to outside (inside), in particular at
the surface region. The development of the cluster structure is
characterized by the behavior of the peak of the wave function
around 4.0 " r " 5.0 fm; we call this behavior of the
peak the α-cluster distribution. The amplitude and position of
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FIG. 2. Comparison of the radial part of the α-16O relative wave
function calculated by the MCM (solid line) and PM with the setups
PM1 (dashed lines), PM2 (dotted line), and PM3 (dash-dotted line).
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data [7, 8] as a function of the deuteron emitting angle θ in the c.m.
frame. Each line corresponds to the cross section calculated with the
α-16O wave function of MCM, PM1, PM2, or PM3.
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V0: adjusted to reproduce the 
binding energy of 4.73 MeV. 

h
K↵A + V (N+C)

↵A (r)� "f
i
�(PM)
l (r) = 0

V (N)
↵A (r) = � V0

1 + exp

⇣
r�r0
a0

⌘

T. Fukui et al., Phys. Rev. C 93, 034606 (2016). Result 2	
 44 



Result 2	
 
Transfer CS with PM	
 

N. Anantaraman et al., Nucl. Phys. A313, 445 (1979). 
F. D. Becchetti et al., Nucl. Phys. A303, 313 (1978). 
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n   PM1 provides the CS similar to MCM’s. 
n   Failure of the result with PM2 and PM3. 
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Result 2	
 
WF with normalization	
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n  WFs are multiplied by the normalization 
factors. 

n  Similar behaviors at the surface region. 
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Result 2	
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TABLE I. The potential parameters of V
(N)
αA . Its depth V0 is

determined so as to reproduce the binding energy 4.73 MeV.

r0 (fm) a0 (fm)

PM1 1.25 × (16)1/3 0.76
PM2 1.25 × (16)1/3 0.52
PM3 1.40 × (16)1/3 0.85

B. Discussion of the calculation with the PM

Here we introduce the PM in order to clarify which region of
the α- 16O wave function is probed on the transfer cross section
and to elucidate the physical meaning of the normalization
factor. For this purpose, we prepare three types of φ

(PM)
l as

trial α- 16O wave functions by varying the parameters r0 and
a0 as listed in Table I. Note that the depth V0 for each setup is
adjusted to reproduce the α- 16O binding energy of 4.73 MeV.
In Fig. 3, the MCM wave function φ

(MCM)
l is shown along

with φ
(PM)
l . The norm of each wave function is consistently

chosen to be unity. The PM1 parameters are chosen to fit the
behavior of the MCM wave function in the tail region, say,
r ! 5.0 fm, whereas the PM2 (PM3) parameters are chosen
to shift the behavior to inside (outside), in particular at the
surface region.

In Figs. 4(a) and 4(b) we show the theoretical results
employing the MCM and PM wave functions with the χ2

fit to the measured angular distribution at 20.0 and 42.1 MeV,
respectively. The factors SMCM and SPM extracted from the
fit are listed in Table II. At both incident energies, the MCM
and the PM1 give consistent results for not only the angular
distribution in Fig. 4 but also SMCM and SPM in Table II.
Therefore we can regard the results of the MCM and PM1
as nearly identical. PM3 (PM2) at 20.0 (42.1) MeV gives an
angular distribution consistent with the experimental data at
the forward angles θ < 40◦. On the other hand, PM2 (PM3) at
20.0 (42.1) MeV underestimates the data at the second (first)
peak. Obviously, the angular distribution and SPM depend on

FIG. 3. The radial part of the α- 16O relative wave function:
φ

(MCM)
l of the MCM (solid line) and φ

(PM)
l of the PM, with the setups

PM1 (dashed lines), PM2 (dotted line), and PM3 (dash-dotted line).
Each wave function is normalized to have the norm one.

FIG. 4. Calculated cross section with the χ 2 fit to be consistent
with the experimental data at (a) 20.0 and (b) 42.1 MeV. Each line
corresponds to the cross section calculated with the α- 16O wave
function shown in Fig. 3.

the PM parameters at both energies. This fact indicates the
high sensitivity of the transfer cross section to the spatial
distribution of the α- 16O relative wave function.

Now, we introduce the wave functions φ̃
(MCM)
l ≡

(SMCM)1/2φ
(MCM)
l and φ̃

(PM)
l ≡ (SPM)1/2φ

(PM)
l , where the values

of (SMCM)1/2 and (SPM)1/2 are listed in Table II; they behave as
shown in Fig. 5. The normalization factors extracted from the
transfer reaction at Ein = 20.0 and 42.1 MeV are adopted in
Figs. 5(a) and 5(b), respectively. In each panel, the amplitudes
of the PM1 and PM3 wave functions at the surface region, r !
6 fm, are similar, while that of PM2 is smaller. At r ∼ 4 fm,
there is a large difference in the amplitude of each wave func-
tion. In the following, through Fig. 5, we discuss what region
of φ̃

(PM)
l is sensitive to the angular distribution shown in Fig. 4.

When we look at Fig. 4(a) for Ein = 20.0 MeV, we can
see that, in terms of how well the calculation describes the
behavior of the experimental cross section at the forward

TABLE II. Normalization factor extracted from the χ 2 fit of the
calculated cross section.

Ein (MeV) SMCM SPM (PM1) SPM (PM2) SPM (PM3)

20.0 0.261 0.258 0.407 0.156
42.1 0.769 0.667 1.276 0.297

034606-5

n   PM1 and PM3 give the CSs which are  
 consistent with the measured data 
(             ). 

n   PM2 gives the small CS and the  
 diffraction pattern different from others.  

→ CS probes WF at           fm, 
      in which PM1 and PM3 behave similarly, 
      whereas PM2 has the small amplitude.  

✓ . 40�

r & 5

WF with normalization	
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Result 2	
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WF with normalization	
 n   PM1 and PM2 give CSs consistent  
 with the measured data (             ). 

n   PM3 gives the small CS at           .  
 

→ CS probes WF at            fm, 
     in which the integrated values of WF  
     for PM1 and PM2 are consistent with  
     each other, whereas that for PM3 is 
     significantly small.  
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Result 2	
 

n  Angular distributed CS at the forward 
angles (             ) can extract NOT SF 
but only the surface manifestation  
of the WF. 
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n  The normalization factor for the 
improper WFs (PM2 and PM3) 
involves an artificial renormalization, 
even if it has correct asymptotic 
behavior. 

WF with normalization	
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Normalization of cross section	
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F. D. Becchetti et al., Nucl. Phys. A303, 313 (1978). 
※ 2.59 from DWBA analysis 

ELi = 42.1 MeV

MCM PM1 PM2 PM3
N 0.769 0.667 1.276 0.297

※ 2.7 from DWBA analysis 
N. Anantaraman et al., Nucl. Phys. A313, 445 (1979). 

ELi = 20.0 MeV

MCM PM1 PM2 PM3
N 0.261 0.258 0.407 0.156

T. Fukui et al., Phys. Rev. C 93, 034606 (2016). Result 2	
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Normalization of cross section	
 

Artificial enhancement 
(decrease) due to 
improper behavior of 
the w.f. 

F. D. Becchetti et al., Nucl. Phys. A303, 313 (1978). 
※ 2.59 from DWBA analysis 

ELi = 42.1 MeV

MCM PM1 PM2 PM3
N 0.769 0.667 1.276 0.297

※ 2.7 from DWBA analysis 
N. Anantaraman et al., Nucl. Phys. A313, 445 (1979). 

ELi = 20.0 MeV

MCM PM1 PM2 PM3
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Summary	
 
CC method 

Analyses of 8B(d, n)9C and 
16O(6Li, d)20Ne with CCBA 

Only the BC plays 
an important role. 

16O(6Li, d)20Ne 

BT 

ET 

BC 

Small BC effect. 
The BT is important. 

8B(d, n)9C 

BT 

ET 

BC BC 

Why is the breakup effect large? Why opposite? 
→ Explained in detail in T. Fukui et al., Phys. Rev. C 91, 014604 (2015). 

CCBA analyses 

n  A common concept in nuclear physics. 

a

A⇤A

a

+ 

Reaction 

⇡

Tensor 

+ 

Shell model 
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3. 3. Future work 
(transfer to unbound state)	
 



T (post)

DWBA =
D
�(�)

�  n

���Vpn

��� d�
(+)

↵

E

=

Z
dr↵

Z
drd�

⇤(�)

� (r↵, rd) 
⇤
n(r↵, rd)Vpn(rd) d(rd)�

(+)

↵ (r↵).

attenuate oscillate 

n  The transition matrix of the post-form representation for (d, p) reaction 

Future work	
 

p

n 20C

rrd

rα
rn

βd

21C

rp

5He α

Transfer reaction to unbound state (ex. 4He(d, p)5He)	
 

The      integration does not converge! r↵

p d 

4He 5He 
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     (1) Introduce “convergence factor”　　　 , and then take            .  
                                                                                                     R. Huby and J. R. Mines, Rev. Mod. Phys. 37, 406 (1965). 

 
     (2) Integrate in the complex plane with          . 
                                                                                                     C. M. Vincent and H. T. Fortune, Phys. Rev. C 2, 782 (1970). 

 
     (3) Divide T-matrix into three parts with an channel radius. 
                                                                                       G. Baur and D. Trautmann, Phys. Rep. 25, 293 (1976). 

 
     (4) Approximate it as a bound state. 

� ! 0e��r

e��rZR	
 

n  Some treatments have been suggested under some approximations: 

Future work	
 
Previous approaches	
 

     (5) Reduce the dimension to surface integration with an channel radius.  
                                                                                                                              V. E. Bunakov, Nucl. Phys. A140, 241 (1970). 

 
     (6) Modification of (5) with CDCC framework. 
                                                                                                          A. M. Mukhamedzhanov, Phys. Rev. C 84, 044616 (2011). 

n  More precise treatments 
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T (post)

DWBA =
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n(r↵, rd)Vpn(rd) d(rd)�

(+)

↵ (r↵).

attenuate oscillate 

n  The transition matrix of the post-form representation for (d, p) reaction 

These respectively attenuate  
for two independent coordinates. 
→ The integration does converge. 

Future work	
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T (prior)

DWBA =
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Z
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� (r↵, rd) 
⇤
n(r↵, rd)Vn↵(r↵, rd) d(rd)�

(+)

↵ (r↵).

n   The prior form 

attenuate oscillate attenuate 

New approach	
 

The      integration does not converge! r↵
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T (post)
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n  The transition matrix of the post-form representation for (d, p) reaction 

These respectively attenuate  
for two independent coordinates. 
→ The integration does converge. 

p

n 20C

rrd

rα
rn

βd

21C

rp

5He α

T (prior)

DWBA =
D
�̃(�)

�  n

���Vn↵

��� d�
(+)

↵

E

=

Z
dr↵

Z
drd�̃

⇤(�)

� (r↵, rd) 
⇤
n(r↵, rd)Vn↵(r↵, rd) d(rd)�

(+)

↵ (r↵).

attenuate oscillate attenuate 

The      integration does not converge. r↵

The distorted wave         should be exact. 
 

→ The CCBA approach is necessary for the final channel. 

�̃(�)
�

T (prior)

DWBA ! T (prior)

CCBA

Future work	
 

n   The prior form 

New approach	
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