原子核物理における
 チャネル結合法と核反応研究

福井德朗

日本原子力研究開発機構 核データ研究グループ

Self－introduction

Ca Current position
－Postdoctoral Fellow at Nuclear Data Center，Japan Atomic Energy Agency（JAEA） \rightarrow Istituto Nazionale di Fisica Nucleare（INFN）Postdoctoral Fellow at Napoli （from September 2016）
（CBh．D（March 2015）
－Graduate School of Science，Osaka University （in actual Research Center for Nuclear Physics（RCNP），Osaka University）
（C）How to become postdoc（D3）
－Regular
\times JSPS Research Fellowship for Young Scientists（学振特別研究員（PD））
\times JSPS Postdoctoral Fellowship for Research Abroad（学振海外特別研究員）
\times RIKEN SPDR（理研基礎特研）
\times TRIUMF Postdoctoral Research Fellow
\checkmark JAEA Postdoctoral Fellow（原子力機構博士研究員）
－Irregular
\times CEA－Saclay Postdoctoral position

Self-introduction

(a) Nuclear Data

(a3) Systematically and globally
■ Nuclear level density

- Mass
- Spin and parity
- Deformation parameter
- β-decay data

Self-introduction

(a) Nuclear Data

Evaluated nuclear data library

(a3) Systematically and globally
■ Nuclear level density

- Mass
- Spin and parity
- Deformation parameter
- β-decay data

Theoretical and experimental study of nuclear physics is necessary.

1. Coupled channels method

Introduction

(0) "Channel" (terminology)

- e.g. Elastic scattering

"Channels" are classified by quantum states of nuclei and quantum numbers of relative motion (momenta and angular momenta).
(a) Coupled channels (CC)

■ e.g. Inelastic scattering
Total WF expressed by superposition

$$
\Psi=\chi_{\mathrm{EL}}(\boldsymbol{r})|a A\rangle+\chi_{\mathrm{IE}}(\boldsymbol{r})\left|a A^{*}\right\rangle
$$

Coupled-channels equations
$\left.\begin{array}{l}\langle a A| \\ \left\langle a A^{*}\right|\end{array}\right\} \begin{aligned} & {[h+K+V-E] \Psi=0 \quad \chi_{\mathrm{EL}}(\boldsymbol{r})|a A\rangle} \\ & \left\{\begin{array}{l}{\left[K+\langle a A| V|a A\rangle-E_{\mathrm{EL}}\right] \chi_{\mathrm{EL}}(\boldsymbol{r})=-\langle a A| V\left|a A^{*}\right\rangle \chi_{\mathrm{IE}}(\boldsymbol{r})} \\ {\left[K+\left\langle a A^{*}\right| V\left|a A^{*}\right\rangle-E_{\mathrm{IE}}\right] \chi_{\mathrm{IE}}(\boldsymbol{r})=-\left\langle a A^{*}\right| V|a A\rangle \chi_{\mathrm{EL}}(\boldsymbol{r})}\end{array}\right.\end{aligned}$

Inelastic channel

Introduction

Matrix representation

$$
\left.\left.\begin{array}{c}
\left\{\begin{array}{c}
{\left[K+\langle a A| V|a A\rangle-E_{\mathrm{EL}}\right] \chi_{\mathrm{EL}}(\boldsymbol{r})=-\langle a A| V\left|a A^{*}\right\rangle} \\
{\left[K+\left\langle a A^{*}\right| V\left|a A^{*}\right\rangle-E_{\mathrm{IE}}\right]}
\end{array} \chi_{\mathrm{IE}}(\boldsymbol{r})=-\left\langle a A^{*}\right| V|a A\rangle\right. \\
\chi_{\mathrm{EL}}(\boldsymbol{r})
\end{array}\right\} \begin{array}{cc}
K+\langle a A| V|a A\rangle-E_{\mathrm{EL}} & \langle a A| V\left|a A^{*}\right\rangle \\
\left\langle a A^{*}\right| V|a A\rangle & K+\left\langle a A^{*}\right| V\left|a A^{*}\right\rangle-E_{\mathrm{IE}}
\end{array}\right)\binom{\chi_{\mathrm{EL}}}{\chi_{\mathrm{IE}}}=0 .
$$

The off-diagonal components connect both channels.
■ How to solve coupled differential equations

Numerically

Modified Numerov method, Euler's method,
Störmer's 6-point method, Iteration, etc.

Introduction

Matrix representation

Euler's method,
Störmer's 6-point method, Iteration, etc.

Examples

(3) Deuteron

- One-pion exchange potential (OPEP)

$$
\begin{aligned}
& V_{\pi}=f\left(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\right)\left[\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}+\left(1+\frac{3}{\mu r}+\frac{3}{(\mu r)^{2}}\right) S_{12}\right] \frac{e^{-\mu r}}{\mu r} \\
& S_{12}=\frac{3}{r^{2}}\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{r}\right)\left(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{r}\right)-\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2} \\
& \text { Tensor term gives } \Delta l=\mathbf{2} \text { component. }
\end{aligned}
$$

■ D-state ($l=2$) admixture due to tensor force

Tensor

$\left(\begin{array}{cc}K+V_{00}-\varepsilon & V_{02} \\ V_{20} & K+V_{22}-\varepsilon\end{array}\right)\binom{u_{0}}{u_{2}}=0$
V_{00} : Central
$V_{22}:$ Central + spin-orbit + tensor + quadratic spin-orbit $\left(l^{2}\right)$

Examples

- Calculation by T. My

AV'
$V_{\text {central }}$
$R_{m}(\mathrm{~s})=2.00 \mathrm{fm}$ $R_{m}(d)=1.22 \mathrm{fm}$

Energy	-2.24 MeV
Kinetic	19.88
Central	-4.46
Tensor	-16.64
LS	-1.02
$\mathrm{P}(L=2)$	5.77%
Radius	1.96 fm

d-wave is "spatially compact" (high momentum)

Examples

(a) Hartree-Fock (HF) method

- HF equation derived from variation principle

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \nabla^{2} \varphi_{i}(\boldsymbol{r})+\sum_{j} \int d \boldsymbol{r}^{\prime} v\left(\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|\right) \varphi_{j}^{*}\left(\boldsymbol{r}^{\prime}\right) \varphi_{j}\left(\boldsymbol{r}^{\prime}\right) \varphi_{i}(\boldsymbol{r}) \\
& -\quad-\sum_{j} \int d \boldsymbol{r}^{\prime} v\left(\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|\right) \varphi_{j}^{*}\left(\boldsymbol{r}^{\prime}\right) \varphi_{j}(\boldsymbol{r}) \varphi_{i}\left(\boldsymbol{r}^{\prime}\right)=\varepsilon_{i} \varphi_{i}(\boldsymbol{r}) \\
& \rightarrow\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+\sum_{j}\langle j| v|j\rangle-\varepsilon_{i}\right] \varphi_{i}(\boldsymbol{r})=\underline{\sum_{j}\langle j| v|i\rangle \varphi_{j}(\boldsymbol{r})}
\end{aligned}
$$

Fock (exchange) term connects different s.p. states.
(C) Hartree-Fock-Bogoliubov (HFB) method

- HF + Bogoliubov transformation to explicitly treat paring

$$
\left(\begin{array}{cc}
h & \Delta \\
-\Delta^{*} & -h^{*}
\end{array}\right)\binom{U_{k}}{V_{k}}=E_{k}\binom{U_{k}}{V_{k}} \quad \rightarrow \text { Talk by Y. Kobayashi }
$$

Paring potential connects different quasi-particle states.

Examples

(0) Shell model

- Configuration mixing

$$
|\Psi\rangle=c_{0}|0\rangle+c_{1}|1\rangle+\cdots=\sum_{i} c_{i}|i\rangle
$$

$$
H|\Psi\rangle=E|\Psi\rangle
$$

$$
\sum_{j}\langle i| H|j\rangle c_{j}=E c_{j}
$$

$\rightarrow[\langle i| H|i\rangle-E] c_{i}=-\sum_{j \neq i}\langle i| H|j\rangle c_{j}$

The off-diagonal matrix element provides configuration mixing.

- Superposition or basis expansion
- Matrix elements
\rightarrow Admixture of states $=\mathbf{C C}$

2. Reaction theory based on the $\mathbf{C C}$ method

Reaction model (CDCC)

(acx Excitation of projectile into continuum state

The x - b continuum state II
Based on the $x+b+A$ three body model
Breakup

Projectile can breakup in intermediate state
\rightarrow Superposition of elastic and breakup channels

Reaction model (CDCC)

(a) Continuum-discretized coupled-channels method (CDCC)

- How to treat breakup channels

$$
\Psi^{(+)}(\boldsymbol{r}, \boldsymbol{R})=\psi_{x b}\left(k_{0}, \boldsymbol{r}\right) \chi_{a A}\left(K_{0}, \boldsymbol{R}\right)+\int_{0}^{\infty} \psi_{x b}(k, \boldsymbol{r}) \chi_{a A}(K, \boldsymbol{R}) d k
$$

Truncation \& discretization

$$
\Psi^{(+)}(\boldsymbol{r}, \boldsymbol{R}) \approx \sum_{i} \psi_{x b}^{i}(\boldsymbol{r}) \chi_{a A}^{i i_{0}}(\boldsymbol{R})
$$

M. Kamimura et al., Prog. Theor. Phys. Suppl. No. 89, 1 (1986).
N. Austern et al., Phys. Rep. 154, 125 (1987) .
M. Yahiro et al., Prog. Theor. Exp. Phys. 2012, 01A209 (2012).

Infinite number of continuum states

- CDCC equation

$$
\begin{aligned}
& \left\langle\psi_{x b}^{i}\right|\left(\begin{array}{l}
{\left[h+K+U_{x A}(\boldsymbol{r}, \boldsymbol{R})+U_{b A}(\boldsymbol{r}, \boldsymbol{R})-E\right] \Psi^{(+)}(\boldsymbol{r}, \boldsymbol{R})} \\
{\left[K+U_{i i}(\boldsymbol{R})-E_{i}\right] \chi_{a A}^{i i_{0}}(\boldsymbol{R})=-\sum_{j \neq i} U_{i j}(\boldsymbol{R}) \chi_{a A}^{j i_{0}}(\boldsymbol{R})}
\end{array}\right. \\
& U_{i j}(\boldsymbol{R})=\left\langle\psi_{x b}^{i}\right| U_{x A}(\boldsymbol{r}, \boldsymbol{R})+U_{b A}(\boldsymbol{r}, \boldsymbol{R})\left|\psi_{x b}^{j}\right\rangle
\end{aligned}
$$

Reaction model (CDCC)

(a) How to discretize

Reaction model (CDCC)

(a) Equivalence of two methods for discretizationtion

■ Overlap with true scattering wave

■ Observables $\left({ }^{6} \mathrm{Li}+{ }^{40} \mathrm{Ca}\right.$ at 156 MeV$)$ T. Matsumoto et al., Phys. Rev. C 68, 064607 (2003).

Reaction model (CDCC)

(a) Truncation regarding momentum \& angular momentum spaces

- Momentum truncation

$$
\begin{aligned}
\Psi_{\mathrm{br}}(\boldsymbol{r}, \boldsymbol{R}) & \equiv \int_{0}^{\infty} \psi_{x b}(k, \boldsymbol{r}) \chi_{a A}(K, \boldsymbol{R}) d k \\
& \rightarrow \int_{0}^{k_{\max }} \psi_{x b}(k, \boldsymbol{r}) \chi_{a A}(K, \boldsymbol{R})
\end{aligned}
$$

■ Angular momentum truncation (Austern-Yahiro-Kawai theorem)
N. Austern et al., Phys. Rev. Lett. 63, 2649 (1989) .

CDCC with ang. mom. truncation

$$
\begin{aligned}
& P=\int d \hat{\boldsymbol{r}} \sum_{l=0}^{l_{m}} \sum_{m} Y_{l m}(\hat{\boldsymbol{r}}) Y_{l m}^{*}(\hat{\boldsymbol{r}}), \\
& {[E-K-V-P U P] \Psi^{\mathrm{CDCC}}=0}
\end{aligned}
$$

Distorted-Faddeev equations

$$
\begin{aligned}
& {[E-K-V-P U P] \hat{\Psi}_{a}=V\left(\hat{\Psi}_{x}+\hat{\Psi}_{b}\right),} \\
& {\left[E-K-U_{x}-U_{b}\right]\left(\hat{\Psi}_{x}+\hat{\Psi}_{b}\right)=\frac{(U-P U P)}{\text { Expected }} \hat{\Psi}_{a} .}
\end{aligned}
$$

to be small
Ψ_{CDCC} can be a good approximation of $\hat{\Psi}_{d}$ if l_{m} is large enough.

Reaction model (CDCC)

(a) Truncation regarding momentum \& angular momentum spaces

■ Momentum truncation

$$
\Psi_{\mathrm{br}}(\boldsymbol{r}, \boldsymbol{R}) \equiv \int_{0}^{\infty} \psi_{x b}(k, \boldsymbol{r}) \chi_{a A}(K, \boldsymbol{R}) d k
$$

$$
\rightarrow \int^{k_{\max }} \psi_{x b}(k, \boldsymbol{r}) \chi_{a A}(K, \boldsymbol{R})
$$

Model space should be set so that observables we want to see can be

CDCC with ang. mom. truncation
Distorted-Faddeev equations

$$
\begin{aligned}
& P=\int d \hat{\boldsymbol{r}} \sum_{l=0}^{l_{m}} \sum_{m} Y_{l m}(\hat{\boldsymbol{r}}) Y_{l m}^{*}(\hat{\boldsymbol{r}}) \\
& {[E-K-V-P U P] \Psi^{\mathrm{CDCC}}=0}
\end{aligned}
$$

$$
\begin{aligned}
& {[E-K-V-P U P] \hat{\Psi}_{a}=V\left(\hat{\Psi}_{x}+\hat{\Psi}_{b}\right)} \\
& {\left[E-K-U_{x}-U_{b}\right]\left(\hat{\Psi}_{x}+\hat{\Psi}_{b}\right)=\frac{(U-P U P)}{\text { Expected }} \hat{\Psi}_{a}}
\end{aligned}
$$

Ψ_{CDCC} can be a good approximation of $\hat{\Psi}_{d}$ if l_{m} is large enough.

Reaction model (CDCC)

(0) Breakup effects on elastic scattering (1)

M. Kamimura et al., Prog. Theor. Phys. Suppl. 89, 1 (1986).

Breakup states of d is essential to reproduce experimental data.

Reaction model (CDCC)

(0) Breakup effects on elastic scattering (2)

It is necessary to include the continuum states of the projectiles to reproduce measured CS.

$$
\begin{gathered}
\chi_{\mathrm{CDCC}}\left(\boldsymbol{r}_{i}\right)=\frac{\chi_{0}\left(\boldsymbol{r}_{i}\right)}{\text { Elastic }}+\frac{\chi_{c}\left(\boldsymbol{r}_{i}\right)}{\text { Breakup }} \\
\left(\begin{array}{cc}
K_{i}+U_{00}-E_{0} & U_{0 c} \\
U_{c 0} & K_{i}+U_{c c}-E_{c}
\end{array}\right)\binom{\chi_{0}}{\chi_{c}}=0 \\
\sigma_{\mathrm{EL}} \propto\left|\chi_{0}\left(\boldsymbol{r}_{\text {asy }}\right)\right|^{2} \quad\left(\boldsymbol{r}_{\text {asy }} \gg \boldsymbol{r}_{N}\right)
\end{gathered}
$$

The coupling back to the elastic channel (back coupling; BC) is essential.
N. Keeley, K. Kemper, and K. Rusek, Phys. Rev. C 88, 017602 (2013).

3. Transfer reaction with the CC method

Background

(1) Physics through transfer reactions

Transfer reaction: is sensitive to nuclear states in the initial and final channels. useful to generate states selectively due to matching condition.
\rightarrow Probe single-particle structures

Background

(0) Description of transfer reactions (conventional approach)

- The transition matrix for the $A(a, b) B$ reaction within the distorted-wave Born approximation (DWBA).

$$
T_{\mathrm{DWBA}}=\left\langle\Psi_{\beta}^{(-)}\right| V_{x b}\left|\Psi_{\alpha}^{(+)}\right\rangle
$$

- The optical potential $U_{a A}\left(U_{b B}\right)$ for the $a+A(b+B)$ 2-body system generates the distorted wave.
- One-step transition induced by the residual interaction $V_{x b}\left(V_{x A}\right)$ for the post (prior) form is assumed.

Background

(a) Beyond DWBA (CC on transfer reactions)

- To take into account channel-couplings due to the three-body dynamics, the coupled-channels Born approximation (CCBA) was proposed.
S. K. Penny and G. R. Satchler, Nucl. Phys. 53, 145 (1964).
P. J. Iano and N. Austern, Phys. Rev. 151, 853 (1966).

K. Low, T. Tamura, and T. Udagawa, Phys. Lett. B67, 5 (1977).

Background

(0) Beyond DWBA (CC on transfer reactions)

- To take into account channel-couplings due to the three-body dynamics, the coupled-channels Born approximation (CCBA) was proposed.
S. K. Penny and G. R. Satchler, Nucl. Phys. 53, 145 (1964).
P. J. Iano and N. Austern, Phys. Rev. 151, 853 (1966).

CCBA were able to achieve to reproduce experimental data. by including the channel-couplings among a few excited states.

However Continuum states were not taken into account for stable nuclei.
\rightarrow They are expected to be essential for loosely bound system.

Model (CCBA)

(0) Beyond DWBA

M. Kamimura et al., Prog. Theor. Phys. Suppl. No. 89, 1 (1986). N. Austern et al., Phys. Rep. 154, 125 (1987) .
M. Yahiro et al., Prog. Theor. Exp. Phys. 2012, 01A209 (2012).

■ Coupled-channels Born approximation (CCBA) with the continuum-discretized coupled-channels (CDCC) method.

$$
T_{\mathrm{CCBA}}=\left\langle\Psi_{\beta(\mathrm{CDCC})}^{(-)}\right| V_{x b}\left|\Psi_{\alpha(\mathrm{CDCC})}^{(+)}\right\rangle
$$

■ The optical potential $U_{x A}\left(U_{b A}\right)$ for the subsystem $x+A(b+A)$ generates the distorted wave based on the 3-body model.

- The CDCC wave functions both in the initial and final channels.
\rightarrow Remnant term is canceled out exactly.
\rightarrow Rearrangement component is involved implicitly.

Model (CCBA)

(3) Breakup process

- Decomposition of the transition matrix

Model (CCBA)

(a) Breakup process

- Decomposition of the transition matrix
\checkmark BC is implicitly taken into account in DWBA as "absorption". BT is never involved in DWBA.

$$
\begin{aligned}
T_{\mathrm{CCBA}} & =\left\langle\Psi_{\beta(\mathrm{el})}^{(-)}+\Psi_{\beta(\mathrm{br})}^{(-)}\right| V_{x b}\left|\Psi_{\alpha(\mathrm{el})}^{(+)}+\Psi_{\alpha(\mathrm{br})}^{(+)}\right\rangle \\
& =\underline{T_{\beta(\mathrm{el}), \alpha(\mathrm{el})}}+T_{\beta(\mathrm{el}), \alpha(\mathrm{br})}+T_{\beta(\mathrm{br}), \alpha(\mathrm{el})}+T_{\beta(\mathrm{br}), \alpha(\mathrm{br})}
\end{aligned}
$$

3. 1. ${ }^{8} \mathrm{~B}(d, n){ }^{9} \mathrm{C}$

Model (numerical setup)

(0) Numerical setting

■ Initial channel
$V_{p n}\left(r_{p n}\right): 1$ range Gaussian (Ohmura potential)
$U_{x \mathrm{~B}}^{(\alpha)}\left(r_{x \mathrm{~B}}\right)$: Global optical potentials (Woods-Saxon)
■ Final channel

$U_{p \mathrm{~B}}^{(\beta)}\left(r_{p \mathrm{~B}}\right)$: Woods-Saxon potential (reproduces the ground state energy of ${ }^{9} \mathrm{C}$) $U_{n \mathrm{~B}}^{(\beta)}\left(r_{n \mathrm{~B}}\right)$: Same as that in the initial channel
T. Ohmura et al., Prog. Theor. Phys. 43, 347 (1970).
B. A. Watson et al., Phys. Rev. 182, 997 (1969).
J. H. Dave and C. R. Gould, Phys. Rev. C 28, 2212 (1983).

Interactions are phenomenologically determined.

- Discretization (pseudostate method)
\rightarrow The internal Hamiltonians are diagonalized with Gaussian basis functions.
$\left(h_{p n}-\varepsilon_{p n}^{i}\right) \psi_{p n}^{i}\left(\boldsymbol{r}_{p n}\right)=0$
$\left(h_{p \mathrm{~B}}-\varepsilon_{p \mathrm{~B}}^{j}\right) \psi_{p \mathrm{~B}}^{j}\left(\boldsymbol{r}_{p \mathrm{~B}}\right)=0$.

ReSult 1 T. Fukui et al., Phys. Rev. C 91, 014604 (2015).

26
(a) Breakup effect on ${ }^{8} \mathrm{~B}(d, n)^{9} \mathrm{C}$

No breakup

■ Significant breakup effect (58\%) can be seen at the forward angles of the angular distribution of the cross section.

ReSu1t 1 T. Fukui et al., Phys. Rev. C 91, 014604 (2015).

27
(a) Breakup effects of each path

d

${ }^{9} \mathrm{C}$

- The BC is weak and the ET result can be regarded as that of DWBA.

Resutt 1 T. Fukui et al., Phys. Rev. C 91, 014604 (2015).

28
(a) Breakup effects of each path

- The BC is weak and the ET result can be regarded as that of DWBA.
- Strong interferences between the ET and the BT in each channel enhance the cross section. \rightarrow Never involved in DWBA.

Resutt 1 T. Fukui et al., Phys. Rev. C 91, 014604 (2015).

(C) Breakup effects of each path

- The BC is weak and the ET result can be regarded as that of DWBA.
- Strong interferences between the ET and the BT in each channel enhance the cross section. \rightarrow Never involved in DWBA.
- The BT among continuum states is negligible.

Resutt 1 T. Fukui et al., Phys. Rev. C 91, 014604 (2015).

(0) Dynamical change of transferred angular momentum l

- A $\mathbf{2 5} \%$ increase due to CC

DWBA: $l=1$ (unique)
CCBA: l can dynamically change with the d-wave of ${ }^{9} \mathrm{C}$ is confirmed.

Nuclear astrophysics

(a) Determination of the astrophysical reaction rate

- Ignition of the hot $p p$ chain

$$
{ }^{8} \mathrm{~B}(p, \gamma)^{9} \mathrm{C}(\alpha, p)^{12} \mathrm{~N}(p, \gamma)^{13} \mathrm{O}\left(\beta^{+} \nu\right)^{13} \mathrm{~N}(p, \gamma)^{14} \mathrm{O} .
$$

\rightarrow Important process to produce nuclei heavier than $\mathrm{A}=8$.

Nuclear astrophysics

(0) Determination of the astrophysical reaction rate

- Transition matrix for the radiative capture

$$
\begin{aligned}
& T=\left\langle\psi_{p \mathrm{~B}}\right.\left.\left|\hat{O}_{\mathrm{EM}}\right| \chi_{p \mathrm{~B}}^{(+)}\right\rangle \\
& \begin{aligned}
\psi_{p \mathrm{~B}}(\boldsymbol{r}) & =\left\langle\Phi_{p} \Phi_{\mathrm{B}} \mid \Phi_{\mathrm{C}}\right\rangle \quad \chi_{p \mathrm{~B}}^{(+)}(\boldsymbol{k}, \boldsymbol{r})=\frac{4 \pi}{k r} \sum_{L M} \chi_{L}(k, r) Y_{L M}^{*}(\hat{\boldsymbol{k}}) Y_{L M}(\hat{\boldsymbol{r}}) \\
& =\phi_{l}(r) Y_{l m}(\hat{\boldsymbol{r}}) \\
& \xrightarrow{\text { asy. }} C_{l} \frac{W_{l}(r)}{r} Y_{l m}(\hat{\boldsymbol{r}})
\end{aligned}
\end{aligned}
$$

■ Astrophysical reactions are a low-energy scattering.
\rightarrow Scattering wave is suppressed in interior region.
\rightarrow Only the surface of ϕ_{l} (ANC) contributes on the cross section and determine the reaction rate.

Nuclear astrophysics

(a) Asymptotic normalization coefficient from observables

$$
\phi_{l}(r) \xrightarrow{\text { asy. }} C_{l} \frac{W_{l}(r)}{r}
$$

A. M. Mukhamedzhanov and N. K. Timofeyuk, Yad. Fiz. 51, 679 (1990) [Sov. J. Nucl. Phys. 51, 431 (1990)].

$$
\begin{aligned}
\phi_{l}(r) & \approx \sqrt{S_{l}} \frac{u_{l}(r)}{r} \\
& \xrightarrow{\text { asy. }} \sqrt{S_{l}} b_{l}^{(\mathrm{sp})} \frac{W_{l}(r)}{r}
\end{aligned}
$$

$$
\begin{aligned}
& S_{l}: \text { spectroscopic factor } \\
& b_{l}^{\text {(sp) }}: \text { single particle ANC }
\end{aligned}
$$

$$
\begin{aligned}
& \qquad\left(C_{l}\right)^{2}=S_{l}\left(b_{l}^{(\mathrm{sp})}\right)^{2} \\
& \text { determined } \\
& \text { calculated with } \\
& \text { from observables the single particle w. f. }
\end{aligned}
$$

ReSutt 1 T. Fukui et al., Phys. Rev. C 91, 014604 (2015).

(0) ANC from transfer cross section

- We obtain the value of ANC,

$$
\begin{aligned}
\left(C_{l}\right)^{2} & =0.59 \\
& \pm 0.02 \text { (theor.) } \\
& \pm 0.13 \text { (exp.) } \mathrm{fm}^{-1},
\end{aligned}
$$

which is about 51% smaller than that of the previous DWBA result.
D. Beaumel et al., Phys. Lett. B514, 226 (2001).

Resutt 1 т. Fukui et al., Phys. Rev. C 91, 014604 (2015).

(3) Breakup effect on S_{18} of ${ }^{8} \mathrm{~B}(p, \gamma)^{9} \mathrm{C}$

$$
S_{18}\left(\varepsilon_{p \mathrm{~B}}\right)=\sigma_{p \gamma}\left(\varepsilon_{p \mathrm{~B}}\right) \varepsilon_{p \mathrm{~B}} \exp [2 \pi \eta]
$$

What we can say is that the breakup effect enhances the transfer cross section.

(Cat Future work

(1) Inclusion of the 3-body configuration in ${ }^{9} \mathrm{C}\left(p+p+{ }^{7} \mathrm{Be}\right)$.
(2) The CCBA analysis of the mirror reaction ${ }^{8} \mathrm{Li}(d, p)^{9} \mathrm{Li}$.
[12] B. Guo et al., Nucl. Phys. A761, 162 (2005).
3. 2. ${ }^{16} \mathrm{O}\left({ }^{6} \mathrm{Li}, \boldsymbol{d}\right){ }^{20} \mathrm{Ne}$

Background

α-transfer reaction to investigate clustering in ${ }^{20} \mathrm{Ne}$ (g.s.)
■ There is NO direct evidence of the clustering (surface manifestation) in a ground state of nuclei.

■ Measurements and their analyses with the Distorted-wave Born Approximation (DWBA of the $\left({ }^{6} \mathrm{Li}, d\right)$ or $\left(d,{ }^{6} \mathrm{Li}\right)$ reaction have been done.

■ Unphysical normalizations (spectroscopic factor (SF) $S_{\alpha}>1$) are needed to fit calculated cross sections to the data.

$\left.\begin{array}{cc}\hline \hline E_{\mathrm{Li}}(\mathrm{MeV}) & S_{\alpha} \\ \hline 20[1] & 2.7 \\ 32[1] & 10.3 \\ 38[1] & 7.4 \\ 42[2] & 2.59 \\ 75[3] & 0.24 \\ 95[4] & 0.23 \\ \hline \hline\end{array}\right\}$

These are due to the ambiguities of
(1) the optical model potential (OMP) of ${ }^{6} \mathrm{Li}$
(2) the $\alpha-{ }^{-16} \mathrm{O}$ wave function (WF).

Background

- SF is NOT suitable to discuss surface manifestation

(1) The SF is defined as a norm of the cluster-overlap function.

$$
S_{\alpha} \equiv \int d r r^{2}\left|\phi_{l}(r)\right|^{2}
$$

\rightarrow It involves the information of $\phi_{l}(r)$ at the interior region.

(2) Shell-cluster duality (Bayman-Bohr theorem) B. F. Bayman and A. Bohr, Nucl. Phys. 9, 596 (1958/1959). Even if there is no spatial manifestation, S_{α} can reach unity.
\rightarrow Shell model wave function is equivalent to that of cluster model in ground state.

Model

- Reaction model

- CCBA with CDCC only in the initial channel

$$
T_{\mathrm{CCBA}}=\left\langle\Psi_{f}^{(-)}\right| V_{\mathrm{tr}}\left|\Psi_{i}^{(+)}\right\rangle
$$

M. Kamimura et al., Prog. Theor. Phys. Suppl. No. 89, 1 (1986). N. Austern et al., Phys. Rep. 154, 125 (1987) .
M. Yahiro et al., Prog. Theor. Exp. Phys. 2012, 01A209 (2012).

CDCC

1ch potential model

- The CC among bound and discretized-continuum (DC) states of the projectile is explicitly taken into account.

Model

© Difference between CCBA and DWBA
CCBA (three-body model, present work)

OMPs (phenomenological)

$$
U_{\alpha A} U_{d A}
$$

F. Michel et al., Phys. Rev. C 28, 1904 (1983).
J. H. Dave and C. R. Gould, Phys. Rev. C 28, 2212 (1983). Y. Han et al., Phys. Rev. C 74, 044615 (2006).
${ }^{6} \mathrm{Li}-\mathrm{OMP}$ is needless.

DWBA (two-body model, conventional approach)

OMPs (phenomenological)

$U_{\mathrm{Li} A} U_{d A}$
$U_{\mathrm{Li} A}$ has large ambiguity.

- A part of the CC effect is implicitly taken into account as an imaginary part of $U_{\mathrm{Li} A}$.

Model

- Structure model

- Microscopic cluster model (MCM) with GCM

$\left|\Phi_{\mathrm{GCM}}\right\rangle=\left|\sqrt{\frac{M_{\alpha}!M_{A}!}{M_{B}!}} \mathcal{A}\left[\phi_{l}^{(\mathrm{GCM})}(r) Y_{l 0}(\hat{\boldsymbol{r}}) \varphi_{\alpha} \varphi_{A} \varphi_{\mathrm{c} . \mathrm{m} .}\right]\right\rangle$ $B=\alpha+A$
$\phi_{l}^{(\mathrm{GCM})}(r) \xrightarrow[\text { Antisym. }]{ } \phi_{l}^{(\mathrm{MCM})}(r)$
Input of the reaction calculation. Norm is unity.
- The Volkov No. 2 effective interaction of the Majorana para. $m=0.62$ with the width para. $\nu=0.16 \mathrm{fm}^{-1}$ is adopted.
A. B. Volkov, Nucl. Phys. 74, 33 (1965).
T. Matsue et al., Prog. Theor. Phys. 53, 706 (1975).
- Consistency of the calculated quantities with the measured ones:
(1) Root-mean-square radius of ${ }^{16} \mathrm{O}$
Y. Kanada-En'yo et al., Prog. Theor. Exp. Phys. 2014, 073D02 (2014).
D. R. Tilley et al., Nucl. Phys. A636, 249 (1993).

Result 2 т. Fukui et al., Phys. Rev. C 93, 034606 (2016).

(a) ${ }^{16} \mathbf{O}\left({ }^{6} \mathbf{L i}, d\right)^{\mathbf{2 0}} \mathbf{N e}($ g.s. $)$ to search surface manifestation of cluster

Improvement

(1) Diffraction pattern of the $1^{\text {st }}$ and $2^{\text {nd }}$ peaks
(2) Reasonable values of the normalization factors
\rightarrow Governed by reliabilities of both the $\alpha_{-}{ }^{16} \mathrm{O}$ WF and OMP

Previous DWBA

N. Anantaraman et al., Nucl. Phys. A313, 445 (1979). F. D. Becchetti et al., Nucl. Phys. A303, 313 (1978).

Resutt 2 т. Fukui et al., Phys. Rev. C 93, 034606 (2016).

(C) Breakup effects of ${ }^{6} \mathbf{L i}$

- Decomposition of the CDCC distorted wave into elastic and breakup channels.

$$
\chi_{\mathrm{CDCC}}\left(\boldsymbol{r}_{i}\right)=\underline{\chi_{0}\left(\boldsymbol{r}_{i}\right)}+\underline{\chi_{c}\left(\boldsymbol{r}_{i}\right)}
$$

Full ~ Elastic transfer (ET)

\neq No back coupling (BC)
\rightarrow Breakup transfer (BT) is negligible. Only the BC (CC due to off-diagonal potentials) is essential.
\rightarrow DWBA can provide reasonable results, if an appropriate ${ }^{6} \mathrm{Li}-\mathrm{OMP}$, in which BC is implicitly taken into account as its imaginary part, is given.
T. Fukui et al., Prog. Theor. Phys. 125, 1193 (2011) T. Fukui et al., Phys. Rev. C 91, 014604 (2015).

- Potential model (PM) to investigate radial distribution of WF

$$
\left[K_{\alpha A}+V_{\alpha A}^{(\mathrm{N}+\mathrm{C})}(r)-\varepsilon_{f}\right] \phi_{l}^{(\mathrm{PM})}(r)=0
$$

- PM1 describes the tail behavior of the MCM WF (PM2 and PM3 shift it to inside and outside respectively) with the Woods-Saxon potential.
- All of the WFs are normalized to be unity.

| $V_{\alpha A}^{(\mathrm{N})}(r)=-\frac{V_{0}}{1+\exp \left(\frac{r-r_{0}}{a_{0}}\right)}$ | |
| :---: | :---: | :---: |
| $r_{0}(\mathrm{fm})$ $a_{0}(\mathrm{fm})$
 PM1 $1.25 \times(16)^{1 / 3}$ 0.76
 PM2 $1.25 \times(16)^{1 / 3}$ 0.52
 PM3 $1.40 \times(16)^{1 / 3}$ 0.85 | |

V_{0} : adjusted to reproduce the binding energy of 4.73 MeV .

- Transfer CS with PM

- PM1 provides the CS similar to MCM's.
- Failure of the result with PM2 and PM3.
N. Anantaraman et al., Nucl. Phys. A313, 445 (1979).
F. D. Becchetti et al., Nucl. Phys. A303, 313 (1978).

Resutt 2 т. Fukui et al., Phys. Rev. C 93, 034606 (2016).

\Leftrightarrow WF with normalization

$$
\begin{aligned}
\tilde{\phi}_{l}^{(\mathrm{MCM})}(r) & =\left(N_{\mathrm{MCM}}\right)^{1 / 2} \phi_{l}^{(\mathrm{MCM})}(r) \\
\tilde{\phi}_{l}^{(\mathrm{PM})}(r) & =\left(N_{\mathrm{PM}}\right)^{1 / 2} \phi_{l}^{(\mathrm{PM})}(r)
\end{aligned}
$$

■ WFs are multiplied by the normalization factors.

- Similar behaviors at the surface region.

Resutt 2 т. Fukui et al., Phys. Rev. C 93, 034606 (2016).

ReSutt 2 т. Fukui et al., Phys. Rev. C 93, 034606 (2016).

© WF with normalization

- PM1 and PM2 give CSs consistent with the measured data $\left(\theta \lesssim 40^{\circ}\right)$.
- PM3 gives the small CS at $\theta=0^{\circ}$.
\rightarrow CS probes WF at $r \gtrsim 4 \mathbf{f m}$, in which the integrated values of WF for PM1 and PM2 are consistent with each other, whereas that for PM3 is significantly small.

ReSutt 2 т. Fukui et al., Phys. Rev. C 93, 034606 (2016).

- WF with normalization

- Angular distributed CS at the forward angles ($\theta \lesssim 40^{\circ}$) can extract NOT SF but only the surface manifestation of the WF.
- The normalization factor for the improper WFs (PM2 and PM3) involves an artificial renormalization, even if it has correct asymptotic behavior.
* Normalization of cross section

$E_{\mathrm{Li}}=20.0 \mathrm{MeV}$				
	MCM	PM1	PM2	PM3
N	0.261	0.258	0.407	0.156

※ 2.7 from DWBA analysis
N. Anantaraman et al., Nucl. Phys. A313, 445 (1979).

$$
E_{\mathrm{Li}}=42.1 \mathrm{MeV}
$$

	MCM	PM1	PM2	PM3
N	0.769	0.667	1.276	0.297

$※ 2.59$ from DWBA analysis
F. D. Becchetti et al., Nucl. Phys. A303, 313 (1978).

Normalization of cross section
$E_{\mathrm{Li}}=20.0 \mathrm{MeV}$

	MCM	PM1	PM2	PM3
N	0.261	0.258	0.407	0.156

※ 2.7 from DWBA analysis
N. Anantaraman et al., Nucl. Phys. A313, 445 (1979).

Artificial enhancement (decrease) due to improper behavior of the w.f.
$※ 2.59$ from DWBA analysis
F. D. Becchetti et al., Nucl. Phys. A303, 313 (1978).

Summary

(3) CC method

- A common concept in nuclear physics.

${ }^{8} \mathrm{~B}(d, n){ }^{9} \mathrm{C}$
Small BC effect.
The BT is important.

${ }^{16} \mathrm{O}\left({ }^{6} \mathrm{Li}, d\right){ }^{20} \mathrm{Ne}$
Only the BC plays an important role.

Why is the breakup effect large?
Why opposite?
\rightarrow Explained in detail in T. Fukui et al., Phys. Rev. C 91, 014604 (2015).
3. 3. Future work (transfer to unbound state)

Future work

(ac) Transfer reaction to unbound state (ex. $\left.{ }^{4} \mathrm{He}(d, p)^{5} \mathrm{He}\right)$

- The transition matrix of the post-form representation for (d, p) reaction

$$
\begin{aligned}
T_{\mathrm{DWBA}}^{(\mathrm{post})} & =\left\langle\chi_{\beta}^{(-)} \psi_{n}\right| V_{p n}\left|\psi_{d} \chi_{\alpha}^{(+)}\right\rangle \\
& =\int d \boldsymbol{r}_{\alpha} \int d \boldsymbol{r}_{d} \chi_{\beta}^{*(-)}\left(\boldsymbol{r}_{\alpha}, \boldsymbol{r}_{d}\right) \frac{\psi_{n}^{*}\left(\boldsymbol{r}_{\alpha}, \boldsymbol{r}_{d}\right)}{\text { oscillate }} \frac{V_{p n}\left(\boldsymbol{r}_{d}\right) \psi_{d}\left(\boldsymbol{r}_{d}\right)}{\text { attenuate }} \chi_{\alpha}^{(+)}\left(\boldsymbol{r}_{\alpha}\right) .
\end{aligned}
$$

Future work

(3) Previous approaches

- Some treatments have been suggested under some approximations:
> (1) Introduce "convergence factor" $e^{-\gamma r}$, and then take $\gamma \rightarrow 0$. R. Huby and J. R. Mines, Rev. Mod. Phys. 37, 406 (1965).

> ZR
> (2) Integrate in the complex plane with $e^{-\gamma r}$.
> C. M. Vincent and H. T. Fortune, Phys. Rev. C 2, 782 (1970).
> (3) Divide T-matrix into three parts with an channel radius.
> G. Baur and D. Trautmann, Phys. Rep. 25, 293 (1976).
> (4) Approximate it as a bound state.

- More precise treatments
(5) Reduce the dimension to surface integration with an channel radius.
V. E. Bunakov, Nucl. Phys. A140, 241 (1970).
(6) Modification of (5) with CDCC framework.

Future work

(0) New approach

■ The transition matrix of the post-form representation for (d, p) reaction

$$
\begin{aligned}
T_{\mathrm{DWBA}}^{(\mathrm{post})} & =\left\langle\chi_{\beta}^{(-)} \psi_{n}\right| V_{p n}\left|\psi_{d} \chi_{\alpha}^{(+)}\right\rangle \quad \text { The } \boldsymbol{r}_{\alpha} \text { integration does not converge! } \\
& =\int d \boldsymbol{r}_{\alpha} \int d \boldsymbol{r}_{d} \chi_{\beta}^{*(-)}\left(\boldsymbol{r}_{\alpha}, \boldsymbol{r}_{d}\right) \frac{\psi_{n}^{*}\left(\boldsymbol{r}_{\alpha}, \boldsymbol{r}_{d}\right.}{\text { oscillate }} \frac{V_{p n}\left(\boldsymbol{r}_{d}\right) \psi_{d}\left(\boldsymbol{r}_{d}\right)}{\text { attenuate }} \chi_{\alpha}^{(+)}\left(\boldsymbol{r}_{\alpha}\right) .
\end{aligned}
$$

- The prior form

These respectively attenuate for two independent coordinates.
\rightarrow The integration does converge.

Future work

(a) New approach

- The transition matrix of the nost-form renresentation for ($d n$) reaction $T_{\mathrm{DW}}^{(\mathrm{p}}$ The distorted wave $\tilde{\chi}_{\beta}^{(-)}$should be exact. \rightarrow The CCBA approach is necessary for the final channel.

$$
T_{\mathrm{DWBA}}^{(\text {prior })} \rightarrow T_{\mathrm{CCBA}}^{(\text {prior })}
$$

$$
{ }_{x}^{+)}\left(\boldsymbol{r}_{\alpha}\right) .
$$

- The prior form

These respectively attenuate for two independent coordinates.
\rightarrow The integration does converge.

