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Figure 1. Conjectured QCD phase diagram with boundaries that define various
states of QCD matter based on S�B patterns.

The chiral transition is a notion independent of the deconfinement transition. In
section 3.2 we classify the chiral transition according to the S�B pattern.

2.2. Conjectured QCD phase diagram

Figure 1 summarizes our state-of-the-art understanding on the phase structure of QCD
matter including conjectures which are not fully established. At present, relatively firm
statements can be made only in limited cases – phase structure at finite T with small
baryon density (µB ⌧ T ) and that at asymptotically high density (µB � ⇤QCD).
Below we will take a closer look at figure 1 from a smaller to larger value of µB in
order.

Hadron-quark phase transition at µB = 0: The QCD phase transition at finite
temperature with zero chemical potential has been studied extensively in the numerical
simulation on the lattice. Results depend on the number of colours and flavours as
expected from the analysis of e↵ective theories on the basis of the renormalization
group together with the universality [35, 36]. A first-order deconfinement transition
for Nc = 3 and Nf = 0 has been established from the finite size scaling analysis
on the lattice [37], and the critical temperature is found to be Tc ' 270MeV. For
Nf > 0 light flavours it is appropriate to address more on the chiral phase transition.
Recent analyses on the basis of the staggered fermion and Wilson fermion indicate a
crossover from the hadronic phase to the quark-gluon plasma for realistic u, d and s
quark masses [38, 39]. The pseudo-critical temperature Tpc, which characterizes the
crossover location, is likely to be within the range 150MeV� 200MeV as summarized
in section 4.2.

Even for the temperature above Tpc the system may be strongly correlated and
show non-perturbative phenomena such as the existence of hadronic modes or pre-
formed hadrons in the quark-gluon plasma at µB = 0 [28, 40] as well as at µB 6= 0
[41, 42, 43]. Similar phenomena can be seen in other strong coupling systems such as
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Kondo effect

近藤効果: 磁性不純物の入った金の電気抵抗の低温で
の振る舞い

近藤効果
出典: フリー百科事典『ウィキペディア（Wikipedia）』

近藤効果（こんどうこうか、Kondo effect）と
は、磁性を持った極微量な不純物（普通磁性のある
鉄原子など）がある金属では、温度を下げていくと
ある温度以下で電気抵抗が上昇に転じる現象であ
る。これは通常の金属の、温度を下げていくとその
電気抵抗も減少していくという一般的な性質とは異
なっている。現象そのものは電気抵抗極小現象とよ
ばれ、1930年頃から知られていたが、その物理的
機構は1964年に日本の近藤淳が初めて理論的に解
明した[1]。近藤はこの仕事により1973年に日本学
士院恩賜賞を受章した。

目次
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3 理論の拡張と応用
4 脚注
5 参考文献
6 関連項目
7 外部リンク

現象
金属は電圧を加えると、金属内の伝導電子が加速され電流が流れる。これを電気伝導という。

一方で、この伝導電子には電気抵抗がはたらく。金属の電気抵抗の主な要因は、金属内に含まれる不純
物などによる格子欠陥と、原子の熱振動の2つである。不純物による抵抗は温度に依存せず一定であ
る。熱振動による抵抗は、温度を下げると小さくなり、低温では抵抗は温度Tの5乗に比例する。そのた
め、金属の電気抵抗は通常、温度を下げると減少し、絶対零度で、一定値(=不純物による抵抗値）に落
ち着く。

しかし、金属によっては、ある温度までは温度が下がると電気抵抗も減少するが、さらに温度を下げる
と電気抵抗は逆に増大するという、通常では起こりえないふるまいを見せる。この現象は、1933年、
ド・ハース、ド・ブール、ファン・デン・バーグが、金の電気抵抗を測定したときに初めて観測され
た[2]。

その後の研究により、この現象は金(Au)、銀(Ag)、銅(Cu)などに鉄(Fe)、マンガン(Mn)、クロム(Cr)な
どの磁性不純物を微量に加えた金属で起こることが明らかになった。

T 2 (Classical)
logT

(Quantum)

By “infrared divergence”

Kondo effect is firstly observed in experiment as an 
enhancement of electrical resistivity of impure metals.



Jun Kondo
(1930-)

J. Kondo has explained the phenomenon based on the 
second order perturbation of interaction between
conduction electron and impurity.



Conditions for the appearance of Kondo effect

0) Heavy impurity

i) Fermi surface

ii) Quantum fluctuation (loop effect)

iii) Non-Abelian property of interaction

(spin-flip int.)



s-d model (Kondo model)
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Second order perturbation theory
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Asymptotic freedom in Kondo effect and QCD
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FIG. 2: The tree diagram. Solid and double solid lines are massless and heavy quarks, respectively.

Here ⇧(p2k/m
2) has a rather complicated form (see Refs. [11–15] for the explicit expression).

But in our analysis with the massless QCD, it is su�cient to know that ⇧(p2k/m
2) ! 1 in

the massless limit m ! 0. It should be emphasized that there is a strong screening e↵ect

in the first term of the gluon propagator (4) owing to the gluon mass. The propagator (4)

is an analog of that employed in analyses of the Schwinger model, namely, 1+1 dimensional

QED [16].

A. Tree amplitude

Now we compute the amplitude for scattering between a light (massless) quark near the

Fermi surface and a heavy quark impurity. Under the strong magnetic field, the light quark

moves only in the direction parallel to the magnetic field. In the LLL with e

q

> 0, the spin

of the light quark is fixed to the magnetic field direction. We set the momentum of the

initial quark as positive direction of the z-axis: q
z

> 0. Then, the leading order amplitude

as shown in Fig. 2 is given by
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contributes to the amplitude. Furthermore, as we will

see soon, only forward scattering is allowed in the massless limit of the light quark. Then,
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Asymptotic freedom in Kondo effect and QCD
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FIG. 2: The tree diagram. Solid and double solid lines are massless and heavy quarks, respectively.
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2) has a rather complicated form (see Refs. [11–15] for the explicit expression).
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LLL

�

µ

u

LLL

=

ū
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Asymptotic freedom in Kondo effect and QCD
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Conditions for the appearance of Kondo effect

0) Heavy impurity

i) Fermi surface

ii) Quantum fluctuation (loop effect)

iii) Non-Abelian property of interaction

(spin-flip int.)



Conditions for the appearance of QCD Kondo effect

0) Heavy quark impurity

i) Fermi surface of light quarks

ii) Quantum fluctuation (loop effect)

iii) Color exchange interaction in QCD



QCD Kondo effect

K. Hattori, K. Itakura, S. O. and S. Yasui, PRD92 (2015) 065003



Heavy quark impurity

(light) quark matter with 

charm or bottom quark

µ � ⇤QCD

Q



(light) quark matter with µ � ⇤QCD

Q

q q



q q’

P P’
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FIG. 2: The tree diagram. Solid and double solid lines are massless and heavy quarks, respectively.

Here ⇧(p2k/m
2) has a rather complicated form (see Refs. [11–15] for the explicit expression).
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FIG. 3: One-loop diagrams.

the momentum transfer q

0 � q carried by a gluon equals to zero. Accordingly, the gluon

propagator contributing to the leading order amplitude simplifies to

D
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, (8)

and the other componets are vanishing. Since in this study we concentrate on the quarks

near the Fermi surface, we set q3 = q

03 = k

F

. Then, the four momentum vectors of the initial

and final state quarks are given by q

0µ = (q00, 0, 0, q03) = q

µ = (q0, 0, 0, q3) = (✏
F

, 0, 0, k
F

) with

✏

F

= k

F

. [need to mention about transverse momentum] The leading scattering amplitude,

thus, reads
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where we have introduced a dimensionful coupling G as

G =
g

2

m

2

g

. (10)

In the large mass limit of the heavy quark impurity: M ! 1, the heavy-quark spin is frozen

as ⇠†
�

0⇠
�

= �

�

0
�

(thus does not play a role in the QCD Kondo e↵ect). The tree amplitude (9)

is proportional to the factor (1 + sgn(q0
z

)), and thus only the forward scattering is allowed.

This is due to the helicity conservation of the massless quarks.
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Quark propagator at finite density
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FIG. 2: The tree diagram. Solid and double solid lines are massless and heavy quarks, respectively.

Here ⇧(p2k/m
2) has a rather complicated form (see Refs. [11–15] for the explicit expression).

But in our analysis with the massless QCD, it is su�cient to know that ⇧(p2k/m
2) ! 1 in
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in the first term of the gluon propagator (4) owing to the gluon mass. The propagator (4)

is an analog of that employed in analyses of the Schwinger model, namely, 1+1 dimensional

QED [16].
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Ū(P 0)�⌫(TB)

b

0
b

U(P )
⇤
, (7)

where the color indices of quarks can take a, a0, b, b0 = 1, 2, · · ·N
c

. The spinors are defined by

u

LLL

(q) = N
q

⇣
�",

�zqz

|qz | �"

⌘
t

with �

z

�" = +�", and U(P ) = N
Q

(⇠
�

, 0)t with �

z

⇠± = ±⇠±.

N
q

and N
Q

are normalization constants. By using these spinors, we find ū
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0

U . Then, in the gluon propagator (4), only

the first term proportional to g

k
00

contributes to the amplitude. Furthermore, as we will

see soon, only forward scattering is allowed in the massless limit of the light quark. Then,

7

g�0

gv0

iD00

gvj

iDij

g�i

Dominant contribution Q



Tree amplitude

q q’

P P’

q’-q

FIG. 2: The tree diagram. Solid and double solid lines are massless and heavy quarks, respectively.

Here ⇧(p2k/m
2) has a rather complicated form (see Refs. [11–15] for the explicit expression).

But in our analysis with the massless QCD, it is su�cient to know that ⇧(p2k/m
2) ! 1 in

the massless limit m ! 0. It should be emphasized that there is a strong screening e↵ect

in the first term of the gluon propagator (4) owing to the gluon mass. The propagator (4)

is an analog of that employed in analyses of the Schwinger model, namely, 1+1 dimensional

QED [16].

A. Tree amplitude

Now we compute the amplitude for scattering between a light (massless) quark near the

Fermi surface and a heavy quark impurity. Under the strong magnetic field, the light quark

moves only in the direction parallel to the magnetic field. In the LLL with e

q

> 0, the spin

of the light quark is fixed to the magnetic field direction. We set the momentum of the

initial quark as positive direction of the z-axis: q
z

> 0. Then, the leading order amplitude

as shown in Fig. 2 is given by

�iM
0

= (ig)2
⇥
ū
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0

U . Then, in the gluon propagator (4), only

the first term proportional to g

k
00

contributes to the amplitude. Furthermore, as we will

see soon, only forward scattering is allowed in the massless limit of the light quark. Then,

7

iD00(q
0 � q)

g�0(TA)a0a

g(TB)b0,b

�AB

�iM
Born

= �ig2D00(q
0 � q)(TA)

a

0
a

(TA)
b

0
b

�0 ⌦ 1 + �0

2



S-wave projection (partial wave decomposition)

�iMS�wave
Born

=

1

2

Z 1

�1
d(cos✓)P

l=0(cos✓) (�iM
Born

)

G =

1

2

Z 1

�1
d(cos✓)Pl=0(cos✓)g

2iD00(q
0 � q)

=

1

2

Z 1

�1
d(cos✓)Pl=0(cos✓)

�g2

(q0 � q)2 �m2
D

=

g2

4µ2
log

4µ2

m2
D

S-wave projected gluon exchange int.

⌘

�iMS�wave
Born

= �iG(TA)
a

0
a

(TA)
b

0
b



1-loop amplitudes (S-wave projected)
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and the other componets are vanishing. Since in this study we concentrate on the quarks

near the Fermi surface, we set q3 = q

03 = k
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. Then, the four momentum vectors of the initial

and final state quarks are given by q

0µ = (q00, 0, 0, q03) = q
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, 0, 0, k
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where we have introduced a dimensionful coupling G as
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In the large mass limit of the heavy quark impurity: M ! 1, the heavy-quark spin is frozen

as ⇠†
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0
�

(thus does not play a role in the QCD Kondo e↵ect). The tree amplitude (9)

is proportional to the factor (1 + sgn(q0
z

)), and thus only the forward scattering is allowed.

This is due to the helicity conservation of the massless quarks.
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Renormalization group equation of scattering amplitude
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QCD Kondo effect

The strength of the q-Q interaction increases as the energy scale decreases, 
and the system becomes non-perturbative one below the Kondo scale.

This indicates a change of mobility of light quarks.

Several transport coefficients will be largely affected by QCD Konde effect.

' kF exp

✓
� 8⇡

Nc↵slog(⇡/↵s)

◆
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Magnetically induced QCD Kondo effect

S. O., K. Itakura and Y. Kuramoto, arXiv:1509.06966



Why can Kondo effect occur in magnetic fields?



Because the magnetic field can play the same role 
as the chemical potential which makes Fermi surface.

Why can Kondo effect occur in magnetic fields?
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Conditions for the appearance of QCD Kondo effect

0) Heavy quark impurity

i) Fermi surface of light quarks

ii) Quantum fluctuation (loop effect)

iii) Color exchange interaction in QCD



0) Heavy quark impurity

i) Strong magnetic field

ii) Quantum fluctuation (loop effect)

iii) Color exchange interaction in QCD

The magnetic field does not affect color degrees of freedom.

“Magnetically induced QCD Kondo effect”
Conditions for the appearance of



q q’

P P’

q’-q

FIG. 2: The tree diagram. Solid and double solid lines are massless and heavy quarks, respectively.

Here ⇧(p2k/m
2) has a rather complicated form (see Refs. [11–15] for the explicit expression).

But in our analysis with the massless QCD, it is su�cient to know that ⇧(p2k/m
2) ! 1 in

the massless limit m ! 0. It should be emphasized that there is a strong screening e↵ect

in the first term of the gluon propagator (4) owing to the gluon mass. The propagator (4)

is an analog of that employed in analyses of the Schwinger model, namely, 1+1 dimensional

QED [16].

A. Tree amplitude

Now we compute the amplitude for scattering between a light (massless) quark near the

Fermi surface and a heavy quark impurity. Under the strong magnetic field, the light quark

moves only in the direction parallel to the magnetic field. In the LLL with e

q

> 0, the spin

of the light quark is fixed to the magnetic field direction. We set the momentum of the

initial quark as positive direction of the z-axis: q
z

> 0. Then, the leading order amplitude

as shown in Fig. 2 is given by
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⇥
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Ū(P 0)�⌫(TB)

b

0
b

U(P )
⇤
, (7)

where the color indices of quarks can take a, a0, b, b0 = 1, 2, · · ·N
c

. The spinors are defined by

u

LLL

(q) = N
q

⇣
�",

�zqz

|qz | �"

⌘
t

with �

z

�" = +�", and U(P ) = N
Q

(⇠
�

, 0)t with �

z

⇠± = ±⇠±.

N
q

and N
Q

are normalization constants. By using these spinors, we find ū

LLL

�

µ

u

LLL

=

ū

LLL

�

µ̄

u

LLL

where µ̄ = 0, 3, and Ū�

⌫

U = Ū�

0

U . Then, in the gluon propagator (4), only

the first term proportional to g

k
00

contributes to the amplitude. Furthermore, as we will

see soon, only forward scattering is allowed in the massless limit of the light quark. Then,
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P P+q-k P’

(a)

q-k q’-k

q k q’

P P-q’+k P’

q-k q’-k

(b)

FIG. 3: One-loop diagrams.

the momentum transfer q

0 � q carried by a gluon equals to zero. Accordingly, the gluon

propagator contributing to the leading order amplitude simplifies to

D

AB
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=
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00

m

2

g

�

AB

, (8)

and the other componets are vanishing. Since in this study we concentrate on the quarks

near the Fermi surface, we set q3 = q

03 = k

F

. Then, the four momentum vectors of the initial

and final state quarks are given by q

0µ = (q00, 0, 0, q03) = q

µ = (q0, 0, 0, q3) = (✏
F

, 0, 0, k
F

) with

✏

F

= k

F

. [need to mention about transverse momentum] The leading scattering amplitude,

thus, reads

�iM
0

= �iG

⇥
ū
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where we have introduced a dimensionful coupling G as

G =
g

2

m

2

g

. (10)

In the large mass limit of the heavy quark impurity: M ! 1, the heavy-quark spin is frozen

as ⇠†
�

0⇠
�

= �

�

0
�

(thus does not play a role in the QCD Kondo e↵ect). The tree amplitude (9)

is proportional to the factor (1 + sgn(q0
z

)), and thus only the forward scattering is allowed.

This is due to the helicity conservation of the massless quarks.
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FIG. 3: One-loop diagrams.
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propagator contributing to the leading order amplitude simplifies to
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and the other componets are vanishing. Since in this study we concentrate on the quarks

near the Fermi surface, we set q3 = q

03 = k

F

. Then, the four momentum vectors of the initial

and final state quarks are given by q

0µ = (q00, 0, 0, q03) = q

µ = (q0, 0, 0, q3) = (✏
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, 0, 0, k
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) with
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= k
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thus, reads
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In the large mass limit of the heavy quark impurity: M ! 1, the heavy-quark spin is frozen

as ⇠†
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0
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(thus does not play a role in the QCD Kondo e↵ect). The tree amplitude (9)

is proportional to the factor (1 + sgn(q0
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)), and thus only the forward scattering is allowed.

This is due to the helicity conservation of the massless quarks.
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Quark propagator of the Lowest Landau Level (LLL)
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FIG. 2: The tree diagram. Solid and double solid lines are massless and heavy quarks, respectively.

Here ⇧(p2k/m
2) has a rather complicated form (see Refs. [11–15] for the explicit expression).

But in our analysis with the massless QCD, it is su�cient to know that ⇧(p2k/m
2) ! 1 in

the massless limit m ! 0. It should be emphasized that there is a strong screening e↵ect

in the first term of the gluon propagator (4) owing to the gluon mass. The propagator (4)

is an analog of that employed in analyses of the Schwinger model, namely, 1+1 dimensional

QED [16].

A. Tree amplitude

Now we compute the amplitude for scattering between a light (massless) quark near the

Fermi surface and a heavy quark impurity. Under the strong magnetic field, the light quark

moves only in the direction parallel to the magnetic field. In the LLL with e

q

> 0, the spin

of the light quark is fixed to the magnetic field direction. We set the momentum of the

initial quark as positive direction of the z-axis: q
z

> 0. Then, the leading order amplitude

as shown in Fig. 2 is given by
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where the color indices of quarks can take a, a0, b, b0 = 1, 2, · · ·N
c

. The spinors are defined by
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where µ̄ = 0, 3, and Ū�
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U . Then, in the gluon propagator (4), only

the first term proportional to g

k
00

contributes to the amplitude. Furthermore, as we will

see soon, only forward scattering is allowed in the massless limit of the light quark. Then,
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Gluon propagator in strong magnetic fields

Magnetic screening effect

Gluon propagator 

Vacuum polarization
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QCD interaction in strong magnetic fields
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FIG. 2: The tree diagram. Solid and double solid lines are massless and heavy quarks, respectively.

Here ⇧(p2k/m
2) has a rather complicated form (see Refs. [11–15] for the explicit expression).

But in our analysis with the massless QCD, it is su�cient to know that ⇧(p2k/m
2) ! 1 in

the massless limit m ! 0. It should be emphasized that there is a strong screening e↵ect

in the first term of the gluon propagator (4) owing to the gluon mass. The propagator (4)

is an analog of that employed in analyses of the Schwinger model, namely, 1+1 dimensional

QED [16].

A. Tree amplitude

Now we compute the amplitude for scattering between a light (massless) quark near the

Fermi surface and a heavy quark impurity. Under the strong magnetic field, the light quark

moves only in the direction parallel to the magnetic field. In the LLL with e

q

> 0, the spin

of the light quark is fixed to the magnetic field direction. We set the momentum of the

initial quark as positive direction of the z-axis: q
z

> 0. Then, the leading order amplitude

as shown in Fig. 2 is given by
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where the color indices of quarks can take a, a0, b, b0 = 1, 2, · · ·N
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Leading order amplitude

The 1+1 dimensional gluon exchange int.
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FIG. 3: One-loop diagrams.

the momentum transfer q

0 � q carried by a gluon equals to zero. Accordingly, the gluon

propagator contributing to the leading order amplitude simplifies to

D
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=
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2

g

�
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, (8)

and the other componets are vanishing. Since in this study we concentrate on the quarks

near the Fermi surface, we set q3 = q

03 = k

F

. Then, the four momentum vectors of the initial

and final state quarks are given by q

0µ = (q00, 0, 0, q03) = q

µ = (q0, 0, 0, q3) = (✏
F

, 0, 0, k
F

) with

✏

F

= k

F

. [need to mention about transverse momentum] The leading scattering amplitude,

thus, reads
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where we have introduced a dimensionful coupling G as

G =
g

2

m

2

g

. (10)

In the large mass limit of the heavy quark impurity: M ! 1, the heavy-quark spin is frozen

as ⇠†
�

0⇠
�

= �

�

0
�

(thus does not play a role in the QCD Kondo e↵ect). The tree amplitude (9)

is proportional to the factor (1 + sgn(q0
z

)), and thus only the forward scattering is allowed.

This is due to the helicity conservation of the massless quarks.
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and final state quarks are given by q

0µ = (q00, 0, 0, q03) = q
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, 0, 0, k
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is proportional to the factor (1 + sgn(q0
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Scales in QCD in a strong magnetic field
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Renormalization group equation in region (I)

with the initial coupling at ⇤ = ⇤0

At lower limit of region (I), ⇤ = mg
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Scales in QCD in a strong magnetic field
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Renormalization group equation in region (II)

Kondo scale (from the Landau pole)
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Magnetically induced QCD Kondo effect

We have found the QCD Kondo effect induced by strong magnetic fields.

Non-perturbative
region

Λ

G(Λ)

ΛK m (e B)g q
1/2ΛQCD

Perturbative
region

eqBeqBeqB

The Kondo scale slowly but monotonically increases as eB increases, 
so the Kondo dynamics appears in high energy region with sufficiently large B.



Where can we observe QCD Kondo effect?

Heavy ion collisions

Non-central heavy ion collisions
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Lattice QCD simulation (Numerical experiment of QCD)

Charmed Nuclei (Isospin exchange int.)

S. Yasui and K.Sudoh, PRC88(2013) 015201

Isospin exchange int. 
mediated by pion

N

Hc

D ⌃c

S. Yasui, arXiv:1602.00227
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Summary

We found the characteristic behavior of Kondo effect, 
a logarithmic enhancement of the scattering amplitude
of a light quark off a heavy quark impurity near the Fermi surface.

QCD Kondo effect

We also found that QCD Kondo effect induced by strong 
strong magnetic fields.

Magnetically induced QCD Kondo effect

Outlook

Non-perturbative analysis below the Kondo scale
from conformal field theory (with Taro Kimura @Keio Univ.)

Several observables near the IR fixed point.




