

<u>馬場 智之</u>、木村 真明 北海道大学理学院 宇宙理学専攻 原子核理論研究室

エキゾチックな核構造

Introduction

Introduction

初め、¹²Cにおいてその存在が 提唱される

Morinaga, Phys. Rev. 101, 254 (1956).

α粒子が直線上に並んだ構造

現在、¹²Cでは bending motion に 対して不安定であると予測される

12Cの密度分布

Y. Kanada-En'yo, Phys. Rev. Lett. 81, 5291 (1998).

M. Chernykh et al., Phys. Rev. Lett. 98, 032501 (2007).

T. Suhara and Y. Kanada En'yo, Prog. Theor. Phys. 123, 303 (2010).

余剰中性子が"糊"の役割をすることで直鎖クラスター 構造が安定化する可能性が示唆される

この考えは当然、C同位体(3α) に拡張され、実際、¹⁴Cや¹⁶Cに おいてその存在可能性が議論さ れている

直鎖クラスター状態を探る実験

最近、直鎖クラスター構造の候補となりうる共鳴状態が ¹⁴Cや¹⁶Cにおいて相次いで観測されている

M. Freer *et al.*, Phys. Rev. C **90**, 054324 (2014). A. Fritsch *et al.*, Phys. Rev. C **93**, 014321 (2016).

T. Suhara and Y. Kanada-En'yo, Phys. Rev. C 82, 044301 (2010).

14Cの実験ではアルファ崩壊幅も測定されている

M. Freer et al., Phys. Rev. C 90, 054324 (2014).

アルファ粒子から成るクラスター 状態はアルファ崩壊を起こす確率	$\frac{E_x}{(\text{MeV})}$	J^{π}	Г (keV)	γ (MeV ^{1/2})
	17.30	3-	590	0.42
	17.99	2+	760	0.36
	18.22	4+	200	0.27
核子を放出	18.83	5-	500	0.61
	19.69	5-	100	0.21
α粒子を放出	20.80	6+	300	0.48
	1		ter and the second	

アルファ崩壊幅を計算し実験と比較することで、アルファ 粒子から成るクラスター状態を特定できる

クラスター構造は崩壊パターンを反映する

Y. Suzuki, H. Horiuchi, and K. Ikeda, Prog. Theor. Phys. Vol 47, No. 5 (1972).

ガス的クラスター構造 (弱結合状態) 直鎖クラスター構造 (強結合状態)

Beの0⁺に崩壊する

Beの2+に崩壊する

クラスター構造は崩壊パターンを反映する

Y. Suzuki, H. Horiuchi, and K. Ikeda, Prog. Theor. Phys. Vol 47, No. 5 (1972).

ガス的クラスター構造 (弱結合状態) 直鎖クラスター構造 (強結合状態)

崩壊後のBeの角運動量を調べれば、直鎖クラスター状態を 他のクラスター状態と区別できるのではないか

¹⁴Cにおいて直鎖クラスター構造の存在可能性を検証

Purpose

①より定量性のある有効相互作用を用いて¹⁴Cの 直鎖クラスター状態の励起エネルギーを精密に 求め、実験との対応を調べる

② 直鎖クラスター状態のアルファ崩壊幅を計算し、 観測されたアルファ崩壊幅と比較する

③ ¹⁴Cの直鎖クラスター状態が¹⁰Beの2+へ崩壊す るか調べ、直鎖クラスター構造の指標となりうる か検証する

反対称化分子動力学

2. 角運動量射影

 $\Phi^{J\pi}_{MK} = \widehat{P}^{J}_{MK} \Phi^{\pi}$

変分計算で得られた波動関数を角運動量の固有状態へ射影する

 $\widehat{P}_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d\Omega D_{MK}^{J*}(\Omega) \widehat{R}(\Omega)$

3. 生成座標法

波動関数を重ね合わせ、 Schrödinger方程式を解くことで、¹⁴Cの エネルギー固有値と固有関数を得る

$$\Psi_{Mn}^{J\pi} = \sum_{i} c_{Kin}^{J\pi} \Phi_{MK}^{J\pi}$$
$$\widehat{H} \Psi_{Mn}^{J\pi} = E_n \Psi_{Mn}^{J\pi}$$

14 Cのエネルギースペクトル

Results

14Cのエネルギースペクトル

14Cのエネルギースペクトル

アルファ崩壊換算幅

$$\gamma_{\alpha}^{2}(a) = \frac{\hbar}{2\mu a} |ay_{l}(a)|^{2}$$
換算幅振幅
$$ay_{l}(a) = a \sqrt{\frac{A!}{A_{1}!A_{2}!}} \langle Y_{l0}(a)\phi(He)\phi(Be)|\Psi\rangle$$

(チャネル半径:5.2 fm)

(チャネル半径: 5.2 fm)

①反対称化分子動力学を用いて、¹⁴Cの直鎖クラスター 構造の励起エネルギーとアルファ崩壊幅を求めた

②励起エネルギー、アルファ崩壊幅ともに実験と非常 に良い一致を示した

③特に、そのアルファ崩壊幅は¹⁰Beが2+のときにより大 きく、このことは直鎖クラスター構造である有力な 証拠となりうる

分子軌道模型

N. Itagaki, S. Okabe, K. Ikeda, and I. Tanihata, Phys. Rev. C 64, 014301 (2001).

Appendix

¹⁶C(π²σ²)のみbending motionに対して安定であるという示唆

反対称化分子動力学

T.B., Y. Chiba, and M. Kimura, Phys. Rev. C 90, 064319 (2014).

Appendix

π軌道

クラスター構造を仮定せず、¹⁶C(π²σ²)の 直鎖クラスター構造の存在を確かめた

¹⁴Cと同じ傾向が見られ、 直鎖クラスター状態のみ¹²Be(2⁺)への崩壊幅が大きい

角運動量が J=0 > 波動関数が球対称 $\begin{bmatrix} 10 \text{Be}(0^+) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \stackrel{\text{left}}{=} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Appendix

Appendix

もし14Cが10Beの0+のみに崩壊するなら...

もし14Cが10Beの0+のみに崩壊するなら...

直鎖クラスター状態には これらの項はない

Appendix