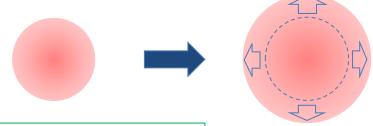
4α-OCMによる¹⁶0の isoscalar monopole 励起

T. Yamada, Y. Funaki, T. Myo *et al*. Phys Rev C.85.034315(2012)

京都大学 原子核理論修士1回 四方悠貴

- Introduction
 - •••monopole励起の集団運動的描像とクラスターモデル的描像
- theory
 - ••• 4α -OCM, Isoscalar monopole operator
- calculation
 - ・・・4α-OCMの計算結果(16Oの構造、monopole励起)
- summary

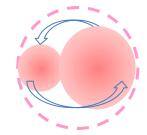
- Introduction
- theory
- calculation
- summary


Introduction

モノポール励起とは?

原子核の膨張

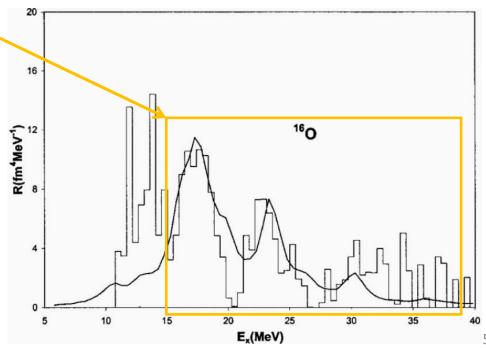
- ▶ 集団運動
 - ・・・原子核全体が均等に膨張


密度の飽和性を破るため比較的高エネルギーな励起

- クラスターモデル
 - ・・・クラスターの自由度を持つことにより膨張

比較的低エネルギーで励起可能

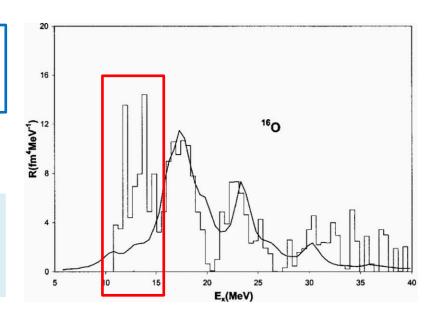
<u>Introduction</u>


• 16 OのIsoscalar monopole(ISM) strength function は $E_{\chi}\cong 40$ MeV まで測定されている。

• $16 < E_x < 40$ MeV のhigher energy では3つの巨大なこぶ構造が見られる。

mean field calculation によって再現

(実線)


<u>Introduction</u>

- 16 OのIsoscalar monopole(ISM) strength function は $E_x \cong 40$ MeV まで測定されている。
- $16 < E_x < 40$ MeV のhigher energy では3つの巨大なこぶ構造が見られる。

しかし、低エネルギー($E_x < 16 \text{ MeV}$) は再現できない。

4α-OCM(Orthogonality condition model)に よって低エネルギーでのモノポール励起がう まく再現されることを見る。

- Introduction
- theory
- calculation
- summary

Theory

Isoscalar monopole (ISM) strength function

$$S(E) = \sum_{n} \delta(E - E_n) |\langle 0_n^+ | \mathcal{O} | 0_1^+ \rangle|^2$$

$$= \frac{1}{\pi} \sum_{n} \frac{\Gamma_n / 2}{(E - E_n)^2 + (\Gamma_n / 2)^2} |\mathcal{M}(0_n^+ - 0_1^+)|^2$$

ISM 遷移行列要素

ISM operator

$$\mathcal{O} = \sum_{i=1}^{16} (\mathbf{r}_i - \mathbf{R}_{c.m.})^2$$

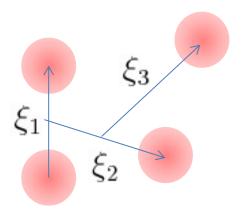
$$\mathcal{M}(0_n^+ - 0_1^+) = \langle 0_n^+ | \mathcal{O} | 0_1^+ \rangle$$

Isoscalar T =0より、E0遷移に対し

$$M(E0, 0_n^+ - 0_1^+) \equiv \langle 0_n^+ | \sum_{i=1}^{16} \frac{1 + \tau_{3i}}{2} (\mathbf{r}_i - \mathbf{R}_{c.m.})^2 | 0_1^+ \rangle$$
$$= \frac{1}{2} \mathcal{M}(0_n^+ - 0_1^+)$$

Theory

<u>4α-OCM</u>


● 波動関数

$$\widetilde{\Psi}(J^{\pi}) = \Psi(J^{\pi})\phi(\alpha_1)\phi(\alpha_2)\phi(\alpha_3)\phi(\alpha_4)$$

 $\Psi(J^{\pi})$;相対波動関数

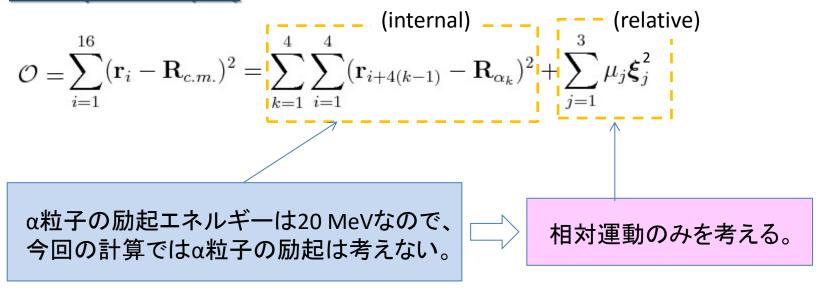
Jacobi座標

直交条件

$$\langle u_F | \Psi(J^{\pi}) \rangle = 0$$

 $u_F:$ パウリ禁止状態

ISM operator (4α)


$$\mathcal{O} = \sum_{i=1}^{16} (\mathbf{r}_i - \mathbf{R}_{c.m.})^2 = \sum_{k=1}^{4} \sum_{i=1}^{4} (\mathbf{r}_{i+4(k-1)} - \mathbf{R}_{\alpha_k})^2 + \sum_{j=1}^{3} \mu_j \xi_j^2$$
 (relative)

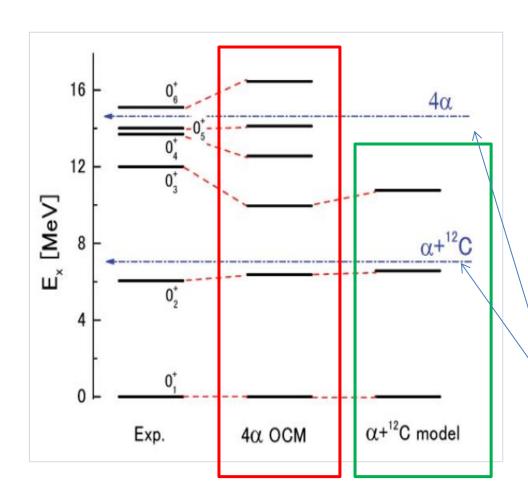
(reduced mass)

$$\mu_1 = 2$$
 , $\mu_2 = 8/3$, $\mu_3 = 3$

Theory

ISM operator (4α)

Hamiltonian(相対運動)


$$\mathcal{H} = \sum_{i=1}^{4} T_i - T_{c.m.} + \sum_{i < j}^{4} \left[V_{2\alpha}^{(N)}(i,j) + V_{2\alpha}^{(C)}(i,j) \right] + \sum_{i < j < k}^{4} V_{3\alpha}(i,j,k) + V_{4\alpha}(1,2,3,4)$$

- 相互作用はそれぞれ、α粒子間の2体、3体、4体相互作用を表す。
- 3体力と4体力は現象論的に導入されたもので、それぞれ¹²C、¹⁶O の基底状態を再現するように決められている。

- Introduction
- theory
- calculation
- summary

以下、4α-OCMによる計算結果を述べる。

▶ ¹⁶0の励起スペクトル

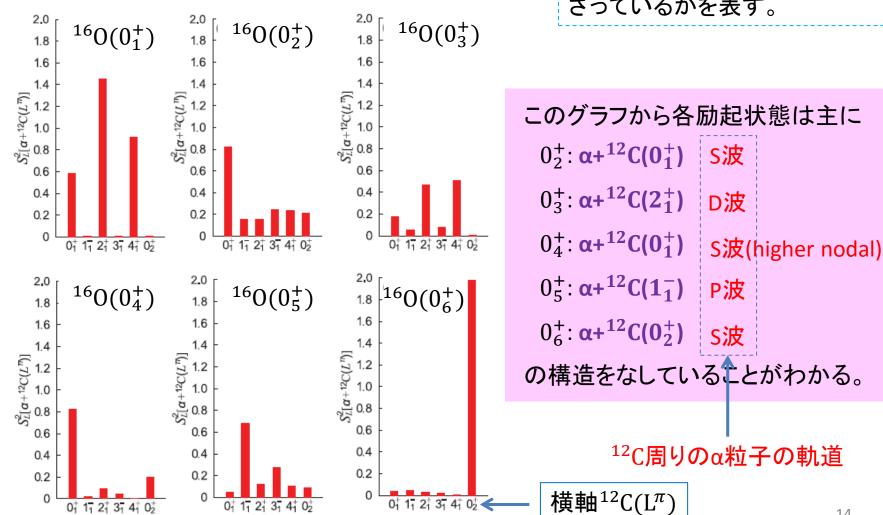
以前の α + 12 C modelでは $0_1^+ \sim 0_3^+$ までの3つのみ再現

今回の4α-OCMでは実験的 に測定されている0₆⁺までを 再現することが出来た。

クラスター分解のthreshold

	4α ΟСΜ				Experiment			
	$E_{x}(MeV)$	R _c (fm)	M(E0)(fm ²)	Γ	$E_{x}(MeV)$	R _c (fm)	M(E0)(fm ²)	Γ
01+	0.00	2.7			0.00	2.70		
02+	6.37	3.0	3.9		6.05		3.55 <u>+</u> 0.21	
03+	9.96	3.1	2.4		12.05		4.03 <u>±</u> 0.09	
04+	12.56	4.0	2.4	0.60	13.60			0.6
05+	14.12	3.1	2.6	0.20	14.01		3.3±0.7	0.185
06+	16.45	5.6	1.0	0.14	15.10			0.166

M(E0):E0遷移の行列要素 $(=rac{1}{2}\mathcal{M}$)

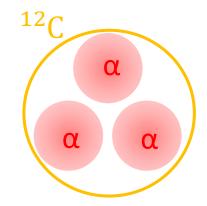

Γ:崩壊幅

R_c: ¹⁶0の荷電半径

- ¹⁶0の基底状態の*R_c*を良く再現
- M(E0)は0½と0½ でよく再現
- 「は0⁺₄ ~ 0⁺₆ で良く一致している。

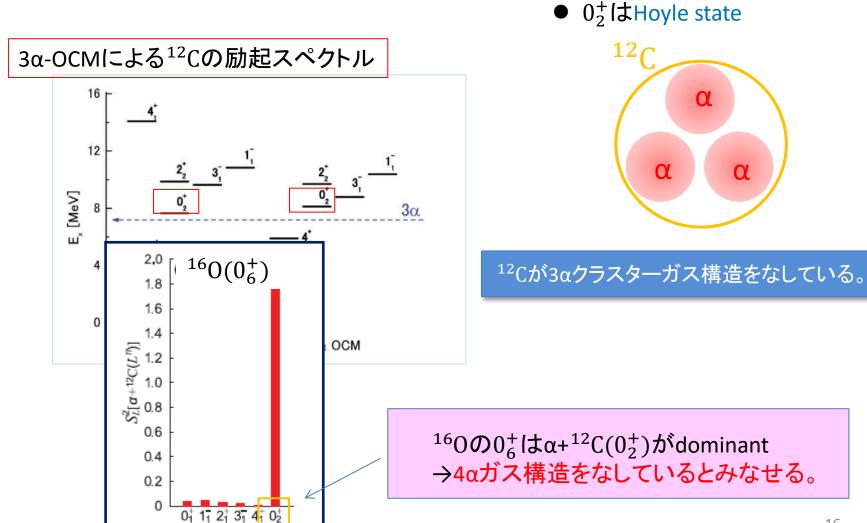
 $\triangleright [\alpha + {}^{12}C(L^{\pi})]_{I=0}$ Ospectroscopic factor S_L^2

¹⁶0の各0+ 状態にα+¹²C(L^π) 状態がそれぞれどれくらい混 ざっているかを表す。

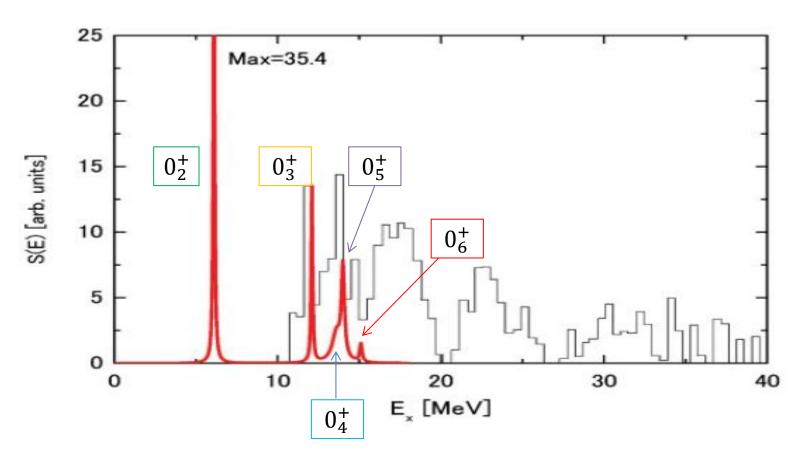

14

> 160の4αクラスター構造

3α-OCMによる12Cの励起スペクトル



● 0⁺はHoyle state



¹²Cが3αクラスターガス構造をなしている。

¹⁶0の4αクラスター構造

▶ 0⁺₂ ~ 0⁺₆のISM強度関数

- mean field で再現できなかった低エネルギーでのピークを再現。
- 実験で 0⁺のモノポール励起は観測出来てない。

- Introduction
- theory
- calculation
- summary

<u>Summary</u>

- α + 12 C OCMでは再現できなかったstate(0_4^+ ~ 0_6^+)を 4α -OCMでは再現できた。
- ¹⁶0の0⁺は4α構造をなしていると見なされる。
- mean fieldでは再現できなかったISM強度関数の低エネルギー($E_x < 16 \text{ MeV}$)部分が 4α -OCMによって良く再現できた。