4α-OCMによる¹⁶0の isoscalar monopole 励起

T. Yamada, Y. Funaki, T. Myo *et al*. Phys Rev C.85.034315(2012)

京都大学 原子核理論 修士1回 四方悠貴

Introduction

・・・monopole励起の集団運動的描像とクラスターモデル的描像

theory

••••4 α -OCM, Isoscalar monopole operator

calculation

・・・4α-OCMの計算結果(¹⁶0の構造、monopole励起)

summary

- Introduction
- theory
- calculation
- summary

Introduction

- 集団運動
 - ・・・原子核全体が均等に膨張

密度の飽和性を破るため比較的高エネルギーな励起

● クラスターモデル

・・・クラスターの自由度を持つことにより膨張

比較的低エネルギーで励起可能

Introduction

- ${}^{16}O\mathcal{O}$ Isoscalar monopole(ISM) strength function は $E_x \cong 40$ MeV まで測定されている。
- 16 < *E_x* < 40 MeV のhigher energy では3つの巨大な こぶ構造が見られる。

Introduction

- ¹⁶0のIsoscalar monopole(ISM) strength function は $E_x \cong 40$ MeV まで測定されている。
- 16 < *E_x* < 40 MeV のhigher energy では3つの巨大な こぶ構造が見られる。

- Introduction
- theory
- calculation
- summary

Isoscalar monopole (ISM) strength function

$$S(E) = \sum_{n} \delta(E - E_n) |\langle 0_n^+ | \mathcal{O} | 0_1^+ \rangle|^2$$
$$= \frac{1}{\pi} \sum_{n} \frac{\Gamma_n / 2}{(E - E_n)^2 + (\Gamma_n / 2)^2} |\mathcal{M} (0_n^+ - 0_1^+)|^2$$

 $\frac{\text{ISM operator}}{\mathcal{O} = \sum_{i=1}^{16} (\mathbf{r}_i - \mathbf{R}_{c.m.})^2}$

ISM 遷移行列要素 $\mathcal{M}(0_n^+ - 0_1^+) = \langle 0_n^+ | \mathcal{O} | 0_1^+ \rangle$ Isoscalar T =0より、EO遷移に対し $M(E0, 0_n^+ - 0_1^+) \equiv \langle 0_n^+ | \sum_{i=1}^{16} \frac{1 + \tau_{3i}}{2} (\mathbf{r}_i - \mathbf{R}_{c.m.})^2 | 0_1^+ \rangle$ $= \frac{1}{2} \mathcal{M}(0_n^+ - 0_1^+)$

<u>4α-ΟCΜ</u>

• 波動関数 $\widetilde{\Psi}(J^{\pi}) = \Psi(J^{\pi})\phi(\alpha_1)\phi(\alpha_2)\phi(\alpha_3)\phi(\alpha_4)$ $\Psi(J^{\pi})$;相対波動関数 <u>直交条件</u> $\langle u_F | \Psi(J^{\pi}) \rangle = 0$ Jacobi座標

u_F:パウリ禁止状態

 $\mathcal{O} = \sum_{i=1}^{16} (\mathbf{r}_i - \mathbf{R}_{c.m.})^2 = \sum_{k=1}^{4} \sum_{i=1}^{4} (\mathbf{r}_{i+4(k-1)} - \mathbf{R}_{\alpha_k})^2 + \sum_{j=1}^{3} \mu_j \boldsymbol{\xi}_j^2$

(reduced mass) $\mu_1=2$, $\mu_2=8/3$, $\mu_3=3$ 9

<u>Hamiltonian(相対運動)</u>

$$\mathcal{H} = \sum_{i=1}^{4} T_i - T_{c.m.} + \sum_{i< j}^{4} [V_{2\alpha}^{(N)}(i,j) + V_{2\alpha}^{(C)}(i,j)] + \sum_{i< j< k}^{4} V_{3\alpha}(i,j,k) + V_{4\alpha}(1,2,3,4)$$

- 相互作用はそれぞれ、α粒子間の2体、3体、4体相互作用を表す。
- 3体力と4体力は現象論的に導入されたもので、それぞれ¹²C、¹⁶0 の基底状態を再現するように決められている。

- Introduction
- theory
- <u>calculation</u>
- summary

以下、4α-OCMによる計算結果を述べる。

▶ ¹⁶0の励起スペクトル

Calculation

	4α ΟϹΜ				Experiment			
	E_{χ} (MeV)	R _c (fm)	M(E0)(fm ²)	Г	E_x (MeV)	R _c (fm)	M(E0)(fm ²)	Г
01+	0.00	2.7			0.00	2.70		
02+	6.37	3.0	3.9		6.05		3.55 <u>+</u> 0.21	
0_{3}^{+}	9.96	3.1	2.4		12.05		4.03±0.09	
0_{4}^{+}	12.56	4.0	2.4	0.60	13.60			0.6
0_{5}^{+}	14.12	3.1	2.6	0.20	14.01		3.3±0.7	0.185
0_{6}^{+}	16.45	5.6	1.0	0.14	15.10			0.166

M(E0):E0遷移の行列要素 ($=rac{1}{2}\mathcal{M}$)

Γ:崩壊幅

R_c: ¹⁶0の荷電半径

- ¹⁶0の基底状態の*R*_cを良く再現
- M(E0)は0⁺と0⁺5 でよく再現
- 「は0⁺₄~0⁺₆で良く一致している。

Calculation

¹⁶0の4αクラスター構造

• 0^+_2 (the Hoyle state

¹²Cが3αクラスターガス構造をなしている。

¹⁶0の4αクラスター構造

> 0⁺₂ ~ 0⁺₆のISM強度関数

- mean field で再現できなかった低エネルギーでのピークを再現。
- 実験で 0⁺₂のモノポール励起は観測出来てない。

- Introduction
- theory
- calculation
- <u>summary</u>

<u>Summary</u>

- α+¹²C OCMでは再現できなかったstate(0⁺₄~
 0⁺₆)を4α-OCMでは再現できた。
- ¹⁶0の0⁺₆は4α構造をなしていると見なされる。
- mean fieldでは再現できなかったISM強度関数の低エネルギー($E_x < 16$ MeV)部分が4 α -OCMによって良く再現できた。