Study of cluster structure by GCM

Ryosuke Imai and Masaaki Kimura (Hokkaido Univ.)

Introduction Cluster structure and α gas-like states

 $^{12}C(3\alpha)$ $N\alpha$ threshold

≈-7[MeV]

 $^{16}O(4\alpha)$

Recent studies for gas-like states.

 $> {}^{8}\text{Be}(2\alpha), {}^{12}\text{C}(3\alpha), {}^{16}\text{O}(4\alpha)$ are studied in detail

A. Tohsaki et.al PRL, 87.192501 (2001) Y. Funaki et.al PRC, 82.024312 (2010) Y. Kanada-En'yo PRC, **89**.024304 (2014)

 \geq ²⁰Ne(5 α), ²⁴Mg(6 α) and heavier systems are also expected to have gas-like state.

 \bigcirc How many α particles can form dilute-gas like state?

≈-14[MeV]

Introduction Theoretical study for many α system

T. Yamada and P. Schuck, PRC 69, 024309 (2004)

 \odot Gas-like state possibility exist up to ${\sim}10lpha$ system .

Boson approximation is applied (Gross-Pitaevskii equation)
 The prediction should be verified by the microscopic cluster model without Boson approximation.

 \Rightarrow We need microscopic model that can describe gas-like states of many α particles

Introduction microscopic description of gas-like state

Gas-like state is described by the superposition of "many" Slater determinants

> Number of Slater determinants becomes huge as the number of α increases

 \Rightarrow We need effective way to generate basis wave functions.

Several methods to genarate $N\alpha$ wave functions

- Random generation
 T. Ichikawa et.al PRC, 83.061301 (2011)
- Imaginary time evolution Y. Fukuoka et.al PRC, 88.014321 (2013)
- Real time evolution

Introduction microscopic description of gas-like state

Gas-like state is described by the superposition of "many" Slater determinants

 \vec{Z}_2

 $\psi(\vec{r}_1, \dots, \vec{r}_{16}) = \int d\vec{Z}_1 \cdots d\vec{Z}_4 F(\vec{Z}_1, \dots, \vec{Z}_4) \phi(\vec{Z}_1, \dots, \vec{Z}_4)$

 $\perp F_2$

 $|\psi\rangle = F_1$

- In this talk, we introduce a method based on the real time evolution
- > The new method is applied to 3α , 4α systems
- > Number of Slater determinants becomes huge as the number of α increases

 \Rightarrow We need effective way to generate basis wave functions.

Several methods to genarate $N\alpha$ wave functions

- Random generation
 T. Ichikawa et.al PRC, 83.061301 (2011)
- Imaginary time evolution Y. Fukuoka et.al PRC, 88.014321 (2013)
- \succ Real time evolution \leftarrow Our method

Framework Wave function and Hamiltonian Hamiltonian \vec{Z}_2 $H = \sum_{i} T_i - t_{c.m} + \sum_{i < j} V_{ij} + \sum_{\text{proton}} V_c$ Volkov No. 2 Y.Funaki PRC.92 021302(2015) Basis wave function (Brink-wave function) $\phi(\vec{Z}_1,\cdots,\vec{Z}_N) = \mathcal{A}\left\{\phi_\alpha(\vec{Z}_1)\phi_\alpha(\vec{Z}_2)\cdots\phi_\alpha(\vec{Z}_N)\right\}$ $\phi_{\alpha}(\vec{Z}_i)$; α particle wave function (wave packet) located at \vec{Z}_i Equation of motion for wave packet $i\hbar \sum_{i} C_{i\rho j\sigma} \frac{\partial Z_{j\sigma}}{\partial t} = \frac{\partial H}{\partial \vec{Z}_{i\sigma}^*}$ $\delta \frac{\langle \phi \mid i \frac{\partial}{\partial t} - H \mid \phi \rangle}{\langle \phi \mid \phi \rangle} = 0$ Time dependent variational principle Equation of motion for wave packets

Framework New generator coordinate method

The time evolution generates all important configurations

Superposition of the wave functions obtained by the time evolution should give a good description for the gas-like state

In other words, we perform GCM calculation using the real time *t* as the generator coordinate

Step1: Time evolution to generate basis wave function

$$i\hbar \sum_{j,\sigma} C_{i\rho j\sigma} \frac{\partial \vec{Z}_{j\sigma}}{\partial t} = \frac{\partial H}{\partial \vec{Z}_{i\rho}^*}$$

Step2: Superpose basis wave function and solve GCM equation

$$\psi(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_{4N}) = \int_0^\infty dt \underline{F_{MK}^{J\pi}(t)} P_{MK}^{J\pi} \phi(\vec{Z}_1(t), \vec{Z}_2(t), \cdots, \vec{Z}_N(t))$$

Determined by diagonalization of Hamiltonian

 $P_{MK}^{J\pi}$; Projection operator of parity and angler momentum

Results & Discussions for 3α and 4α systems

Result for 3α system (¹²C) M.Kamimura NPA.**351,** 456 (1981) Y.Funaki PRC.92 021302(2015) $E_x - E_{3\alpha}$ [MeV] 8 4^{+} 1+ THSR RGM This work $\overline{\langle r^2 \rangle} [\text{fm}]$ E_x [MeV] $\langle r^2 \rangle$ J^{π} E_x [MeV] [fm] E_x [MeV] [fm] $\langle r^2 \rangle$ 0^{+}_{1} -7.48-7.632.42.39-7.36 2.40 2^+_1 -5.102.36-4.82 2.4-4.66 2.38 4_{1}^{+} 1.012.292.182.32.042.31 0^{+}_{2} 3.70.273.64 0.230.343.47 3^{-}_{1} 0.422.770.582.76**4**1 2^{+}_{1} 2^{+}_{1} The real time method works well. -6 It's comparable with THSR and better than the ordinary GCM -8 This work THSR RGM Exp.

Discussion The convergence energy and r.m.s

For bound states or sharp resonances, real time method works well.
For broad resonances, the results were not converged.

Result for 4α system (¹⁶0)

Е _х [Мо ¹⁰ [eV]	Ν	M.Dufour , P.Descouvement Nucl Hoyle + α		ucl. Phys A. 927 (. Phys A. 927 (2014). 134-146	
8 -]	Hoyle + α	-	=
	$E_x[\text{MeV}]$		$\sqrt{\langle r^2 \rangle}$ [fm]		M(E)	$M(E0)[\text{Im}^2]$	
J^{π}	This work	M.Dufour et al	This work	Exp.	This work	Exp.	
0^{+}_{1}	-17.0	-15.2	2.32	$2.71 {\pm} 0.02$			- Ľ
0_{2}^{+}	-1.6	-1.1	2.83		5.89	$3.55 {\pm} 0.21$	
0^{+}_{3}	2.73	2.1	3.03		3.48		
0_{4}^{+}	7.43	8.0	3.40		0.39		_

-18 [[]

Exp.

M.Dufour et al

This work

]

Summary

- For ⁸ Be(2 α), ¹²C(3 α), ¹⁶O(4 α), gas state is well known but those of ²⁰Ne(5 α), ²⁴Mg(6 α) \cdots are not known.
- To solve the difficulty for generating wave function increasing number of α particles, we introduced real time evolution using time t as a generator coordinate.
- For ${}^{12}C(3\alpha)$, ${}^{16}O(4\alpha)$ nuclei, this method gives consistent result with previous research.

Future work

Separate from continuum state.

Y.Funaki PRC.92 021302(2015)

$$\sum_{t} \langle \phi_{i,M,K}^{J\pi}(t) \mid \frac{1}{4N} \sum_{i=1}^{4N} (\vec{r_i} - \vec{X_G})^2 - R^{(\gamma)^2} \mid \phi_{j,M',K'}^{J\pi}(t) \rangle c_{M,K}^{J\pi}(t) = 0$$

• For ⁸Be(2α) in Brink wave function, this method goes well, so we try to adopt it to ¹²C(3α) system.

Thank you for your attention.

Discussion Check of the convergence of calc.

Our method is based on the ergodic nature ⇒ Following two pointes should be checked.

- 1. When the time evolution is long enough, the result should be converged.
- 2. The result should be independent of the initial configuration of α particles at t = 0.

Discussion The convergence energy and r.m.s

1. When the time evolution is long enough, the result should be converged.

$$\psi(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_{4N}) = \int_0^{\Delta t} dt F_{MK}^{J\pi}(t) P_{MK}^{J\pi} \phi(\vec{Z}_1(t), \vec{Z}_2(t), \cdots, \vec{Z}_N(t))$$

