

閾値近傍における⁴He(α,n)⁷Be反応の断面積測定2

Review

2/10 Page

Cosmological ⁷Li Problem

宇宙初期の⁷Liの存在量について、 予測値が観測量の約4倍大きい

Our Solution Method

⁷Liの材料⁷Beを壊す反応率が大きいと解決? \rightarrow ⁷Be(n, α)⁴He 反応に着目!

Experiment Setup

測定	逆反応 ⁴ He(α,n) ⁷ Be の断面積 ビームエネルギー
標的	⁴ He(ガスセルに封入), ^{nat} C
角度	0, 5, 10, 15, 20 度
検出器	液体シンチレータ(PSD可能)

O Members O RCNP

⑦ Detector

Beam Energy

3/10 Page

◎<u>ビームエネルギーの測定</u> … C と He 、二つの標的で測定。

※反応エネルギーが非常に重要。

※同様なことがHe標的にも適用できる

Beam Energy

◎ビームエネルギーの測定値 … C と He 、二つの標的で測定。 反応時(標的中心)での値。

4/10 Page

・測定値

標的	E _a (反応時)	E _α (入射時)	−−−−−−−−−−+++++++++++++++++++++++++++
C He	39.45 39.30	39.55 39.56	り着くまでに 誤差は 30 KeV程度 が減衰する。 で測定できている!!
Не	39.64	39.89	反応地点
C He	39.00 38.90	39.10 39.15	
C He	38.61 38.50	38.71 38.76	ビームエネルギの減衰

(単位はMeV)

Differential Cross Section

・微分断面積は以下の式より求められる。

$d\sigma$ _	求めた収量
$\overline{d\Omega}$ =	標的数×ビーム量×有効立体角

Differential Cross Section

◎ <u>微分断面積の結果</u>

Cross Section

Cross Section

8/10 Page

Conclusion

© ⁷Be(n, α)⁴Heの断面積

C. H. King et al., Phys. Rev. **C** 16, 1712 (1977). S. Q. Hou et al., Phys. Rev. **C** 91, 055802 (2015). より引用

2. 反応閾値近傍では<mark>強い共鳴は</mark>
発見されなかった

Motivation 7Li問題の解決

⁷Li生成の主要経路(⁷Beのβ崩壊)の分岐反応⁷Be(n,a)⁴He この断面積が予測値より多ければ7Li問題を解決する可能性がある。

Method 逆反応⁴He(α ,n)⁷Beの全断面積測定

閾値近くの4点のビームエネルギーで微分断面積を測定。 この微分断面積より逆反応⁴He(α,n)⁷Beの全断面積を導出。 詳細釣り合いの原理より順反応⁷Be(n,a)⁴Heの全断面積に変換。

Conclusion 予測値より低かった!

⁷Li問題を解決するような強い共鳴は発見されなかった。 断面積は今までの予測値より低いことがわかった。