三体計算によるK中間子重水素スペ クトルの研究

星野翼(M2), 大西祥太, 堀内渉 (北海道大学)

Quark model

 <u>It is difficult to</u> <u>reproduce A(1405)</u> mass

Meson-Baryon description

 $\Lambda(1405)$ can be understand as a <u>quasi-bound state</u> of nucleon

and anti-kaon R.H.Dalitz et al., PRI53 (1967)

- Quasi-bound state \rightarrow strong $\overline{K}N$ interaction
- Kaonic nucleus is suggested

Kaonic atom

Kaonic atom

- A kaonic atom can be de-excited with X-ray emissions like as an ordinary atom
- There is difference between calculated X-ray energy with only the Coulomb interaction and the experimental value

 \rightarrow Short ranged $\overline{K}N$ interaction affects the X-ray energy

Studies for kaonic atoms

Kaonic hydrogen was researched and measured its Is level-shift and decay width precisely.

(2011, SIDDHARTA experiment , DA Φ NE) Bazzi et al., NPA881 (2012) $\epsilon_{1s} = 283 \pm 36(\text{stat}) \pm 6(\text{syst})\text{eV}$ $\Gamma_{1s} = 541 \pm 89(\text{stat}) \pm 22(\text{syst})\text{eV}$

- $\overline{K}N$ interaction has isospin I = 0 and I = 1 components
- The data of a <u>kaonic hydrogen</u> and a <u>kaonic deuterium</u> may decompose isospin components of the $\overline{K}N$ interaction.

$$|K^{-}p\rangle = |\uparrow\downarrow\rangle$$

= $|I = 0\rangle + |I = 1\rangle$
 $|K^{-}n\rangle = |\uparrow\uparrow\rangle$
= $|I = 1\rangle$

Kaonic deuterium

Method

YONUPA school 2016, 04/08/2016, Nagano Kurohime

Hamiltonian

Hamiltonian

$$H = T + V = \sum_{i=1}^{3} \frac{p_i^2}{2m_i} - T_{cm} + V^{NN} + V^{N\overline{K}} + V^{coul}$$

- V^{NN} (Minnesota potential) D. R. Thompson, M. Lemere and Y. C. Tang, NPA286 (1977)
- $\succ V^{N\overline{K}}$ (MH potential) <u>K.Miyahara, T.Hyodo, arXiv:1506.05724 [nucl-th]</u>
 - It reproduces the <u>scattering amplitude</u> calculated by <u>Y.Ikeda, T.Hyodo, W.Weise.</u>
 - That amplitude derived from NLO chiral SU(3) dynamics.
 - I. Scattering length extracted from the energy shift measured in SIDDHARTA experiment.
 - 2. Cross section of a $N\overline{K}$ two-body scattering
 - 3. Branching ratio of the $\overline{K}p$ decay

Y.Ikeda, T.Hyodo, W.Weise, NPA881 (2012)

Three body calculation

Variational Method

Wave function

Correlated Gaussian basis

$$\Psi = \sum_{i=1}^{N} c_i \phi_i, \qquad \phi_i = A_{NN} \left\{ e^{-\frac{1}{2} \widetilde{\mathbf{x}} A_i \mathbf{x}} y_{LM_L}(\widetilde{\mathbf{u}} \mathbf{x}) \chi_{iJM} \eta_{iTM_t} \right\}$$

(1995).

K.Varga and Y. Suzuki, PRC52, 2885

 $A_i: 2 \times 2$ matrix(paramaters of coordinates)

$$\begin{aligned} \boldsymbol{x} &= \{\boldsymbol{x}_1, \boldsymbol{x}_2\}, \ \boldsymbol{u}\boldsymbol{x} = \sum_{i}^{N} u_i \boldsymbol{x}_i \\ y_{lm} &= (\boldsymbol{u}\boldsymbol{x})^l Y_{lm}(\widehat{\boldsymbol{u}\boldsymbol{x}}) \\ \chi_{iJM} : \text{spin function, } \eta_{iTM_t} : \text{isospin function} \end{aligned}$$

Geometric progression

E. Hiyama Y. Kino and M. Kamimura, PPNP51 (2003)

- $|K^{-}pn\rangle = |\uparrow\downarrow\uparrow\rangle \\ |\overline{K^{0}}nn\rangle = |\downarrow\uparrow\uparrow\rangle \} \underline{5MeV}$

Results 2body (**p**-**K**⁻)

Results (kaonic hydrogen)

 $V^{\overline{K}N} = V_{I=0} + \alpha_{I=1} \cdot V_{I=1}$

	Energy shift (eV)	Decay width (eV)
Experiment (SIDDHARTA)	283 ± 36 (stat) ± 6 (syst)	541 \pm 89(stat) \pm 22(syst)
Bare ($\alpha_{I=1} = 1.00$)	307	606
$\alpha_{I=1} = 1.12$	320	652
$\alpha_{I=1} = 0.37$	293	430

Cross section

Results 3body (pn-K⁻)

YONUPA school 2016, 04/08/2016, Nagano Kurohime

Results (kaonic deuterium)

Results (kaonic deuterium) 0 Energy shift from ٠ deuteron structure -2 2*s*, 2*p* $\Delta E = 95.3 \text{ eV}$ -4 -6 -8 -10 1*s* w/o $\overline{K}N$ w/o $\overline{K}N$ (anly.)

Results (kaonic deuterium)

Results (kaonic deuterium)

Kaonic deuterium	Energy shift (eV)	Decay width (eV)
$\alpha_{I=1} = 1.00$	651	1030
$\alpha_{I=1} = 1.12$	668	999
$\alpha_{\rm I=1}=0.90$	647	1022

- Range of the basis function is $0.1 \sim 300$ fm.
- The number of basis is about <u>3000</u>.
- Energy shift may change about 3% originated in ambiguity of I = 1 component .

Summary

> Three-body calculation for the kaonic deuterium is performed.

```
\begin{aligned} \epsilon_{1\text{s}} &= 747\text{eV}, \\ \Gamma_{1\text{s}} &= 1030\text{eV} \end{aligned}
```

- > The effect originated in a structure of the deuteron is 95.3 eV
- Energy shift may change about 3% from an ambiguity of I = 1 component .

Future work

• More particles systems (${}^{3}\text{He} + \text{K}^{-}$, ${}^{4}\text{He} + \text{K}^{-}$)