ハドロン共鳴状態と その構造

兵藤 哲雄

東京都立大学

2021, Aug. 10th 1

講義1:導入 - エキゾチックハドロンの現状 - カイラル対称性と有効場の理論 講義2:共鳴状態の記述 - ハミルトニアンの固有状態 - 散乱振幅と共鳴状態 講義3: A(1405)共鳴の構造 - *RN* 散乱振幅と共鳴状態 - ハドロンの複合性

強い相互作用で不安定なハドロン

安定な/不安定なハドロン

http://pdg.lbl.gov/

p	$1/2^{+}$	****	⊿(1232)	3/2+ ****	Σ^+	$1/2^{+}$	****	Ξ0	$1/2^{+}$	****	=++		***
п	$1/2^{+}$	****	△(1600)	3/2+ ****	Σ^0	1/2+	****	Ξ-	$1/2^{+}$	****			
N(1440)	$1/2^{+}$	****	△(1620)	1/2- ****	Σ^{-}	1/2+	****	Ξ(1530)	3/2+	****	Λ_b^0	$1/2^{+}$	***
N(1520)	3/2-	****	$\Delta(1700)$	3/2 ****	Σ(1385)	3/2+	****	Ξ(1620)		*	Λ _b (5912) ⁰	$1/2^{-}$	***
N(1535)	$1/2^{-}$	****	⊿(1750)	1/2+ *	Σ(1580)	3/2-	*	Ξ(1690)		***	$\Lambda_b(5920)^0$	$3/2^{-}$	***
N(1650)	$1/2^{-}$	****	⊿(1900)	1/2- ***	Σ(1620)	$1/2^{-}$	*	$\Xi(1820)$	3/2-	***	Л _b (6146) ⁰	3/2+	***
N(1675)	5/2-	****	⊿(1905)	5/2+ ****	Σ(1660)	$1/2^{+}$	***	Ξ(1950)		***	A _b (6152) ⁰	5/2+	***
N(1680)	5/2+	****	⊿(1910)	1/2+ ****	Σ(1670)	3/2-	****	Ξ(2030)	$\geq \frac{5}{2}$	***	Σ_b	$1/2^{+}$	***
N(1700)	3/2-	***	⊿(1920)	3/2+ ***	Σ(1750)	$1/2^{-}$	***	Ξ(2120)		*	Σ_b^*	3/2+	***
N(1710)	$1/2^{+}$	****	⊿(1930)	5/2- ***	Σ(1775)	5/2-	****	<i>Ξ</i> (2250)		**	$\Sigma_b(6097)^+$		***
N(1720)	3/2+	****	⊿(1940)	3/2 **	Σ(1780)	3/2+	*	Ξ(2370)		**	$\Sigma_{b}(6097)^{-}$		***
N(1860)	5/2+	**	⊿(1950)	7/2+ ****	Σ(1880)	$1/2^{+}$	**	Ξ(2500)		*	Ξ_{b}^{0}, Ξ_{b}^{-}	$1/2^{+}$	***
N(1875)	3/2-	***	⊿(2000)	5/2+ **	Σ(1900)	$1/2^{-}$	**				$\Xi_{b}^{\prime}(5935)^{-}$	$1/2^{+}$	***
N(1880)	$1/2^{+}$	***	⊿(2150)	1/2- *	Σ(1910)	3/2-	***	Ω^{-}	3/2+	****	$\Xi_b(5945)^0$	$3/2^{+}$	***
N(1895)	1/2-	****	∆(2200)	7/2 ***	Σ(1915)	5/2+	****	Ω(2012) [_]	?-	***	$\Xi_b(5955)^-$	3/2+	***
N(1900)	3/2+	****	⊿(2300)	9/2+ **	Σ(1940)	3/2+	*	$\Omega(2250)^{-}$		***	$\Xi_b(6227)$		***
N(1990)	7/2+	**	⊿(2350)	5/2 *	Σ(2010)	3/2-	*	Ω(2380) ⁻		**	Ω_{b}^{-}	$1/2^{+}$	***
N(2000)	5/2+	**	⊿(2390)	7/2+ *	Σ(2030)	7/2+	****	$\Omega(2470)^{-}$		**	5	_	
N(2040)	3/2+	*	⊿(2400)	9/2- **	Σ(2070)	5/2+	*				$P_{c}(4312)^{+}$		*
N(2060)	5/2-	***	⊿(2420)	11/2+ ****	Σ(2080)	3/2+	*	Λ_{c}^{+}	1/2+	****	$P_{c}(4380)^{+}$		*
N(2100)	$1/2^{+}$	***	$\Delta(2750)$	13/2 **	$\Sigma(2100)$	7/2-	*	$\Lambda_{c}(2595)^{+}$	$1/2^{-}$	***	$P_{c}(4440)^{+}$		*
N(2120)	3/2-	***	$\Delta(2950)$	15/2+ **	$\Sigma(2160)$	1/2-	*	$\Lambda_{c}(2625)^{+}$	3/2-	***	$P_{c}(4457)^{+}$		*
N(2190)	7/2-	****			Σ(2230)	3/2+	*	$\Lambda_{c}(2765)^{+}$		*			
N(2220)	9/2+	****	Λ	1/2+ ****	Σ(2250)		***	$\Lambda_{c}(2860)^{+}$	3/2+	***			
N(2250)	9/2-	****	Λ	1/2 **	Σ(2455)		**	$\Lambda_{c}(2880)^{+}$	5/2+	***			
N(2300)	1/2+	**	/1(1405)	1/2 ****	Σ(2620)		**	$\Lambda_{c}(2940)^{+}$	3/2-	***			
N(2570)	5/2-	**	/1(1520)	3/2 ****	Σ(3000)		*	$\Sigma_{c}(2455)$	1/2+	****			
N(2600)	11/2-	***	/(1600)	1/2 ****	Σ(3170)		*	$\Sigma_{c}(2520)$	3/2+	***			
N(2700)	13/2+	**	/(16/0)	1/2 ****				$\Sigma_{c}(2800)$	a /o+	***			
			/(1690)	3/2 ****				$=_{c}^{+}$	1/2	***			
			/(1/10)	1/2 *				- <u>c</u>	1/2+	****			
			/(1800)	1/2 ***				$=_{c}^{\prime+}$	1/2+	***			
			/(1810)	1/2 **** E/0+ ****				$=_{c}^{n_{0}}$	$1/2^{+}$	***			
			A(1020)	5/2 *****				$\Xi_{c}(2645)$	3/2+	***			
			A(1800)	2/2+ ****				$\Xi_{c}(2790)$	$1/2^{-}$	***			
			A(2000)	1/2 *				$\Xi_{c}(2815)$	3/2-	***			
			A(2000)	1/2 *				E _c (2930)		**			
			A(2050)	3/2 **				c(2970)		***			
			A(2070)	5/2 *				c(3055)		***			
			A(2080)	7/2 **				$E_{c}(3080)$		***			
			A(2005)	7/2 ***				$\Xi_{c}(3123)$		*			
			A(2100)	F/2 ***				Ω_c^0	1/2+	***			
			A(2225)	3/Z			-	0(0770)0	2/2+	***	1		
			A(2325)						- 1				
			A(2585)		17	Г 7	/	161	ノホ	==			
			(200)	/ / .				I UZ	_ 1	E			
				-		-							
					1			32 _C (3120)°		4.4.4			

			STRA	VGE	CHARMED, S	TRANGE	$c\overline{c}$ continued		
	$P(P^{C})$	= <i>B</i> = 0)	$P(P^{C})$	$(S = \pm 1, C)$	= B = 0) I(P)	(C = 5 =	(P)		$P^{-}(J^{-})$
• <i>π</i> [±]	1-(0-)	• To(1670)	$1^{-}(2^{-+})$	• K [±]	1/2(0-)	• D [±]	0(0-)	 ψ(3770) ψ₂(3823) 	0(1) 0(2)
• π^0	$1^{-}(0^{-+})$	 φ(1680) 	$0^{-}(1^{-})$	• K ⁰	1/2(0-)	• D _c ^{*±}	0(??)	 ψ₃(3842) 	0-(3)
• η	0+(0-+)	 ρ₃(1690) 	1+(3)	• K_S^0	1/2(0-)	• D [*] ₅₀ (2317) [±]	0(0+)	χ _{c0} (3860)	0+(0++)
• f ₀ (500)	0+(0++)	 ρ(1700) 	1+(1)	• K_L^0	1/2(0-)	• D ₅₁ (2460) [±]	0(1+)	• $\chi_{c1}(3872)$	$0^+(1^{++})$
 ρ(770) (700) 	$1^{+}(1^{-})$	• a ₂ (1700)	$1^{-}(2^{++})$	• $K_0^*(700)$	1/2(0+)	• $D_{s1}(2536)^{\pm}$	0(1+)	• Z _c (3900)	$1^+(1^+)$
• ω(782)	0(1)	• T ₀ (1710)	$0^+(0^-+)$	• K*(892)	$1/2(1^{-})$	• D _{s2} (2573)	$0(2^+)$	• X (2030)	$0^{+}(0/2^{+})$
• fo(980)	$0^{+}(0^{+}+)$	• $\pi(1800)$	1-(0-+)	$K_1(1210)$	$\frac{1}{2(1^+)}$	• $D_{s1}^*(2700)^+$	0(1) 0(1-)	X(3940)	?? <u>(</u> ??)
• a ₀ (980)	$1^{-}(0^{++})$	f2(1810)	$0^+(2^++)$	• K*(1410)	$1/2(1^{-})$	$D_{51}(2000)^{\pm}$	0(1) $0(3^{-})$	• X(4020) [±]	$1^{+}(?^{?-})$
 φ(1020) 	0-(1)	X(1835)	??(0 - +)	 K[*]₀(1430) 	$1/2(0^+)$	$D_{s3}(2000)^{\pm}$	0(?)	 ψ(4040) 	$0^{-}(1^{})$
 h₁(1170) 	$0^{-}(1^{+})$	 φ₃(1850) 	0-(3)	• K [*] ₂ (1430)	1/2(2+)	- 33()	-(.)	X(4050) [±]	$1^{-}(?^{!+})$
• $D_1(1235)$	$1^{+}(1^{+})$	• $\eta_2(1870)$	$0^+(2^-+)$ $1^-(2^-+)$	K(1460)	1/2(0-)	BOTT (B = -	JM -1)	X (4055)+ X (4100)±	$1^{+}(?^{-})$ $1^{-}(?^{?})$
$f_{1}(1200)$	$0^+(2^{++})$	• "2(1000) (1900)	$1^{+}(1^{-})$	$K_2(1580)$	1/2(2 ⁻)	● R [±]	1/2(0-)	• $\chi_{c1}(4140)$	$0^{+}(1^{+})$
• f ₁ (1285)	$0^{+}(1^{++})$	f5(1910)	$0^{+}(2^{+}+)$	K (1650)	$\frac{1}{2(1^+)}$	• B ⁰	$1/2(0^{-})$	 ψ(4160) 	$0^{-}(1^{-})$
 η(1295) 	0 ⁺ (0 ⁻ +)	a ₀ (1950)	$1^{-(0++)}$	• K*(1680)	$1/2(1^{-})$	• B [±] /B ⁰ ADN	IXTURE	X(4160)	? [?] (? ^{??})
• <i>π</i> (1300)	1-(0-+)	• f ₂ (1950)	0+(2++)	• K ₂ (1770)	1/2(2-)	• $B^{\pm}/B^0/B_s^0/$	<i>b</i> -baryon	$Z_{c}(4200)$	1+(1+-)
• a2(1320)	$1^{-}(2^{++})$	• a ₄ (1970)	$1^{-}(4^{++})$	• K ₃ (1780)	1/2(3-)	ADMIXTUR	E CKM Ma	 ψ(4230) Π 	$0^{-}(1^{-})$
• $f_0(1370)$	0'(0'') 1-(1-+)	$\rho_3(1990)$	$1^+(3^-)$ $1^-(2^-)$	• K ₂ (1820)	1/2(2-)	trix Element	Gravi Ma-	$K_{c0}(4240)$ $X(4250)^{\pm}$	$1^{-}(0^{+})$
• n(1405)	$0^+(0^-+)$	π ₂ (2005) ■ f ₂ (2010)	$0^+(2^{++})$	K(1830)	1/2(0-)	• B*	1/2(1-)	v(4250)	$0^{-}(1^{-})$
 h₁(1415) 	$0^{-}(1^{+}-)$	$f_0(2020)$	$0^+(0^{++})$	$K_0(1950)$	$1/2(0^+)$ $1/2(2^+)$	• B ₁ (5/21) ⁺ • B (5721)0	$1/2(1^+)$ $1/2(1^+)$	• χ _{C1} (4274)	$0^{+}(1^{++})$
$a_1(1420)$	$1^{-(1++)}$	 f₄(2050) 	$0^{+}(4^{+}+)$	K*(2045)	$\frac{1}{2(2^{+})}$	• D1(5721)* B*(5732)	7(7?)	X(4350)	$0^{+}(?^{?+})$
• f ₁ (1420)	0+(1++)	π ₂ (2100)	1-(2-+)	$K_2(2250)$	1/2(7)	• B ₅ (5747) ⁺	1/2(2+)	 ψ(4360) 	0-(1)
 ω(1420) 	$0^{-}(1^{-})$	$f_0(2100)$	$0^+(0^{++})$	K ₃ (2320)	1/2(3+)	• B2(5747)0	1/2(2+)	$\psi(4390)$	$0^{-}(1^{-})$
$T_2(1430)$	$1^{-}(0^{+}^{+})$	f2(2150)	$1^{+}(2^{-})$	K ₅ (2380)	$1/2(5^{-})$	B _J (5840) ⁺	$1/2(?^{?})$	• ψ(4415)	0(1)
• a(1450)	$1^{+}(1^{-})$	$\phi(2130)$ • $\phi(2170)$	$0^{-}(1^{-})$	K4(2500)	$1/2(4^{-})$	B _J (5840) ⁰	$1/2(?^{?})$	× σ(4500)	$0^{+}(0^{+}^{+})$
 η(1475) 	$0^{+}(0^{-}+)$	f ₀ (2200)	$0^+(0^{++})$	K(3100)	?'(?'')	• B _J (5970) ⁺	1/2(?')	 ψ(4660) 	$0^{-}(1^{-})$
• f ₀ (1500)	0+(0++)	f_(2220)	0+(2++)	CHARM	ЛED	• BJ(5970)°	1/2(?`)	χ _{c0} (4700)	$0^{+}(0^{+}+)$
$f_1(1510)$	$0^+(1^{++})$		or 4 + +)	(C = :	⊧1)	BOTTOM, S	TRANGE	6	7
• f'_2(1525)	$0^+(2^{++})$	$\eta(2225)$	$0^+(0^-)$ $1^+(2^-)$	• D [±]	1/2(0-)	$(B = \pm 1, 5)$	i = ∓1)	(+ possibly n	on-qq states)
$I_2(1565)$ (1570)	$1^+(1^-)$	$\rho_3(2250)$ • $f_6(2300)$	$1^{+}(3^{-})$	• D ⁰	1/2(0 ⁻)	• B ⁰ _S	$0(0^{-})$	• n _b (15)	$0^{+}(0^{-}+)$
$h_1(1595)$	$0^{-}(1^{+})$	$f_4(2300)$	$0^{+}(4^{+}+)$	• D*(2007)*	$\frac{1}{2(1-)}$	• B [*] _S	0(1-)	• T(15)	$0^{-}(1^{-})$
 π₁(1600) 	$1^{-}(1^{-}+)$	f ₀ (2330)	$0^+(0^{++})$	• D=(2300) ⁰	$1/2(1^{-})$ $1/2(0^{+})$	A (5968) ⁻	$0(1^{\pm})$	• $\chi_{b0}(1P)$	$0^{+}(0^{+}+)$
• a1(1640)	$1^{-}(1^{++})$	• f ₂ (2340)	0+(2++)	$D_0^*(2300)^{\pm}$	$1/2(0^+)$	• B _m (5840) ⁰	0(2+)	• $\chi_{b1}(1P)$	0+(1++)
$f_2(1640)$	0+(2++)	0 (0050)	1+(5)	 D₁(2420)⁰ 	$1/2(1^+)$	B* (5850)	?(??)	• h _b (1P)	$0^{-}(1^{+})$
• η ₂ (1645)	$0^+(2^-+)$		(6++)	$D_1(2420)^{\pm}$	1/2(??)	POTTOM		• $\chi_{b2}(1P)$ $n_{\mu}(2S)$	$0^{+}(0^{-}^{+})$
 ω(1650) ωp(1670) 	0 (1			D1(2430)0	1/2(1+)	(B = C =	HARIVIED : ±1)	• T(25)	$0^{-}(1^{-})$
• \$2(10/0)	0 (3			• $D_2^*(2460)^5$	1/2(2 ⁺)	• B ⁺	0(0-)	• T ₂ (1D)	0-(2)
				• $D_2(2400)^-$	$\frac{1}{2(2^{\circ})}$	$B_c(2S)^{\pm}$	0(0-)	• χ _{b0} (2P)	0+(0++)
		- T		D5(2600)	$\frac{1}{2}(?)$,	()	• χ _{b1} (2P)	0+(1++)
				D*(2640) [±]	$1/2(?^{?})$	CC (+ possibly nor	-aa states)	$h_b(2P)$	$0^{-}(1^{+})$
				D(2740) ⁰	1/2(??)	(1 possibly not	$p \pm (0 = \pm)$	• χ _{b2} (2P) • γ(35)	$0^{-}(2^{-})$
				$D_{3}^{*}(2750)$	1/2(3_)	• 1/w(15)	0 - (1)	• Y M (3P)	$0^{+}(1^{+})$
				D(3000) ⁰	1/2(?')	• X ₍₁ P)	$0^{+}(0^{+}+)$	• χ _{b2} (3P)	$0^{+(2^{++})}$
						• χ _{c1} (1P)	$0^{+}(1^{+})$	• T(4S)	0-(1)
•	1 1	1 🔨 .	-	SAT	E	 <i>h_c</i>(1<i>P</i>) 	$0^{-}(1^{+})$	• Z _b (10610)	$1^+(1^+)$
	K '/		7	IMA		• $\chi_{C2}(1P)$	$0^+(2^{++})$	 Z_b(10650) 22(107E2) 	$\frac{1}{(1)}$
						• n _c (25)	$0^{-}(0^{-1})$	T(10860)	(1 - 1)
						- φ(20))_(1)	 <i>γ</i>(11020) 	0-(1)
				I				(/	

ほとんどのハドロンは不安定(ハドロン崩壊の閾値より上)

安定核 (~300)、不安定核 (~2000)

https://www.nishina.riken.jp/enjoy/kakuzu/index.html

- クラスター、ハロー原子核、エフィモフ効果

共鳴状態と散乱問題

共鳴状態とは?

- 量子力学的に準安定な"状態"
- 時間がたつと<mark>崩壊</mark>する

散乱問題の用語

- 弾性散乱: 始状態=終状態
- 閾値: 散乱が始まる最低エネルギー

非弾性散乱

- 同じ量子数を持つ異なる終状態へ遷移 ($\pi\Sigma \rightarrow \bar{K}N,...$)
- チャンネル: 遷移できる状態 (*π*Σ, *K̄N*,...)

- *E* > 0 **の**状態を実現する方法
- 1) 形状(ポテンシャル)共鳴
 - 1 チャンネル問題 (P)
 - ポテンシャル障壁で E > 0
 - トンネル効果で崩壊
- 2) フェッシュバッハ共鳴
 - チャンネル結合問題 (P+Q)
 - *Q*の束縛状態だが *E_P* > 0
 - チャンネル遷移で崩壊

(束縛状態)

- -3)と4)は等価で理論的に不定性のない定義
- 1) と 2) は理想的な極限でのみ 3) と 4) に一致

G. Gamow, Z. Phys. 51, 204 (1928)

Zur Quantentheorie des Atomkernes.

Von G. Gamow, z. Zt. in Göttingen. Mit 5 Abbildungen. (Eingegangen am 2. August 1928.)

ハミルトニアンの"固有状態"としての共鳴状態

- 複素エネルギー

Um diese Schwierigkeit zu überwinden, müssen wir annehmen, daß die Schwingungen gedämpft sind, und E komplex setzen:

$$E = E_0 + i \frac{h \lambda}{4 \pi}$$

wo E_0 die gewöhnliche Energie ist und λ das Dämpfungsdekrement (Zerfallskonstante). Dann sehen wir aber aus den Relationen (2a) und (2b),

- 時間依存性:存在確率が時間とともに減少

 $\psi = \Psi(q) \cdot e^{+\frac{2\pi i E}{\hbar}t}, \quad \propto e^{+2\pi i E_0 t/\hbar} e^{-(\lambda/2)t}, \quad |\Psi|^2 \propto e^{-\lambda t}$

エルミート演算子の固有値は実数では?

- 固有値が実数なのはヒルベルト空間(~2乗可積分な関数空間) $\left| |\psi(\mathbf{r})|^2 d^3 r < \infty \right|$
- 定義域を拡張すると複素固有値を持つことができる

s波の動径波動関数のシュレディンガー方程式 ($\hbar = 1, m = 1$)

$$-\frac{1}{2}\frac{d^2\chi(r)}{dr^2} + V(r)\chi(r) = E\chi(r)$$

- 波動関数は $\psi_{\ell,m}(\mathbf{r}) = \frac{\chi_{\ell}(\mathbf{r})}{r} Y_{\ell}^{m}(\hat{\mathbf{r}})$
- 井戸型ポテンシャル

$$V(r) = \begin{cases} -V_0 & (0 \le r \le b) \\ 0 & (b < r) \end{cases}$$

- 散乱解 (E > 0、連続固有状態、境界条件 $\chi(r = 0) = 0$) $\chi(r) = \begin{cases} C \sin(\sqrt{2(E + V_0)}r) & (0 \le r \le b) \\ A^{-}(p)e^{-i\sqrt{2Er}} + A^{+}(p)e^{+i\sqrt{2Er}} & (b < r) \end{cases}$
- 注)散乱解は規格化できない

- 波動関数が2乗可積分:境界条件 ψ(r→∞) = 0
 -> A⁻(iκ) = 0:内向き波が消える条件、解の条件式に対応
 離散固有状態は r→∞ で外向き境界条件を満たす

10

束縛解の純虚数の運動量 $p = i\kappa$

- 物理的な散乱の運動量 p は実数
- -> 束縛状態は運動量を純虚数に解析接続して得られた解

共鳴解:運動量 pを複素数に解析接続した解

- 外向き境界条件: *A*⁻(*p*) = 0, *p* ∈ ℂ

- $V_0 = 10b^{-2}$ の場合の数値解

複素 p 平面の 1/|A⁻(p)|

	$p \ [b^{-1}]$	$E = p^2/2 \ [b^{-2}]$
束縛状態 B	+ 3.68i	- 6.78
第1共鳴 R_1	1.06 - 1.02i	0.05 - 1.08i
第2共鳴 R ₂	6.29 - 1.41i	18.8 - 8.86i
第 <u>3</u> 共鳴 R ₃	9.90 - 1.69i	47.6 - 16.8i

共鳴解の波動関数

- 複素 p 平面の 1/|A⁻(p)|
 共鳴解は複素 p 平面の
 下半面 (Im p < 0) に存在 $p = p_R ip_I, p_R, p_I > 0$ 波動関数の振る舞い
 - $\chi(r) \to A^+(p)e^{ipr} \propto e^{ip_R r}e^{+p_l r}$ 振動 増大 —> $r \to \infty$ で振動しながら発散する 通常の規格化ができない

物理量の期待値の計算

束縛状態の波動関数による期待値の計算 $N = \langle B | B \rangle = \int [\psi_B(r)]^* \psi_B(r) d^3 r = \int |\psi_B(r)|^2 d^3 r \ge 0$ $\langle r^2 \rangle = \langle B | r^2 | B \rangle = \int [\psi_B(r)]^* r^2 \psi_B(r) d^3 r \in \mathbb{R}$ -> 観測量(エルミート演算子)の期待値は実数

共鳴状態の場合(ガモフベクトルの定義と内積の拡張)

N. Hokkyo, Prog. Thoer. Phys. 33, 1116 (1965), T. Berggren, Nucl. Phys. 109, 265 (1968) $H | R \rangle = E_R | R \rangle, \quad E_R \in \mathbb{C}, \quad \langle R | R \rangle \to \infty$

 $\langle \tilde{R} | H = \langle \tilde{R} | E_R < - 同 U E_R を持つように定義$

$$N = \langle \tilde{R} | R \rangle = \int \psi_R(\mathbf{r}) \psi_R(\mathbf{r}) d^3 r \in \mathbb{C}, \quad \langle r^2 \rangle = \langle \tilde{R} | r^2 | R \rangle \in \mathbb{C}, \dots$$

4 R

エネルギーと同様に期待値は複素数 --> 解釈?

講義2のまとめ(前半)

バミルトニアンの離散固有状態は「外向き境界条件」で与えられる

- 束縛状態:固有運動量を純虚数にした解
 - 共鳴状態:固有運動量を複素数にした解
 ->固有エネルギーが複素数

共鳴状態の波動関数

- 遠方で発散する規格化できない波動関数 - 内積を拡張した期待値は複素数になる

講義1:導入 - エキゾチックハドロンの現状 - カイラル対称性と有効場の理論 講義2:共鳴状態の記述 - ハミルトニアンの固有状態 - 散乱振幅と共鳴状態 講義3: A(1405)共鳴の構造 - *RN* 散乱振幅と共鳴状態 - ハドロンの複合性

最も基本的な散乱

- 非相対論的、質量 *m*₁, *m*₂ の粒子の2体散乱
- 弾性散乱、内部自由度(スピン、フレーバーなど)なし
- 回転対称性(球対称ポテンシャル、[H,L]=0)
- 短距離力(ポテンシャルが遠方で十分はやく消える)

散乱を特徴づけるパラメーター2つ

- エネルギー E または運動量の大きさ p (E と p は1対2対応)

$$E = \frac{p^2}{2\mu}, \quad \mu = \frac{m_1 m_2}{m_1 + m_2}$$

- 散乱角 θ
- 部分波分解すれば θ は角運動量 ℓ

散乱理論:物理量

散乱を表す物理量の関係

J.R. Taylor, Scattering theory (Wiley, New York, 1972)

- 部分波 ℓ のS行列要素 ~ 入射波がどれだけ散乱されたか $s_{\ell}(p) \in \mathbb{C}$
- 部分波 ℓ の位相差 $\delta_{\ell}(p) \in \mathbb{R}$

 $s_{\ell}(p) = \exp\{2i\delta_{\ell}(p)\}$

- 部分波 ℓ の散乱振幅(T行列の定義より) $f_{\ell}(p) \in \mathbb{C}$

 $f_{\ell}(p) = \frac{s_{\ell}(p) - 1}{2ip}$

- 散乱断面積(全断面積)

$$\sigma(p) = \sum_{\ell} 4\pi (2\ell+1) |f_{\ell}(p)|^{2} = \sum_{\ell} \sigma_{\ell} < -$$
部分波 ℓ の断面積

波動関数との関係

散乱の波動関数の漸近形(以下角運動量 l = 0 を考える)

$$\psi_p(r) \rightarrow \frac{i}{2} [J(p)e^{-ipr} - J(-p)e^{+ipr}] \quad (r \rightarrow \infty)$$

- **ヨスト関数** J(p):内向きの波 e^{-ipr}の振幅
- 外向きの波の振幅は J(–p) で与えられる
- regular solutionという規格化をした場合の漸近形

S行列、散乱振幅とヨスト関数

 $\Delta i p$

$$s(p) = \frac{J(-p)}{J(p)} \sim 内向き振幅で規格化した外向き振幅$$
$$f(p) = \frac{s(p) - 1}{2in} = \frac{J(-p) - J(p)}{2inI(n)}$$

 $\Delta i \rho \mathbf{J}(\rho)$

固有値の条件:外向き境界条件

$$\psi_p(r) \rightarrow \frac{i}{2} [J(p)e^{-ipr} - J(-p)e^{+ipr}] \quad (r \rightarrow \infty)$$

- ヨスト関数のゼロ点 $J(p_R) = 0$ ただし p_R は複素数

- *p_R* はS行列の極

$$s(p_R) = \frac{J(-p_R)}{J(p_R)} \to \infty$$

- *p_R* は散乱振幅の極

$$f(p_R) = \frac{J(-p_R) - J(p_R)}{2ip_R J(p_R)} \to \infty$$

ヨスト関数の性質 $J(-p^*) = [J(p)]^* - p^* が解なら - p^* も解$

複素エネルギーとリーマン面

エネルギー E と運動量 p の関係

$$E = \frac{p^2}{2\mu} = \frac{|p|^2}{2\mu} e^{2i\theta_p} = |E| e^{i\theta_E}$$

- 運動量を複素数にする: $p = |p|e^{i\theta_p}$
- エネルギーの位相 θ_E

 $2\theta_p = \theta_E$

- $\theta_p \, \mathbf{i} \, \mathbf{0} \to 2\pi \, \mathbf{0} \, \mathbf{b} \, \mathbf{i} \, \mathbf{0} \to 4\pi$
- $p \ge -p$ ($\theta_p \ge \theta_p + \pi$) は同じ E に写像される

pの有理型関数 (s(p), f(p)) は E の2枚のリーマン面上で定義

- $0 \le \theta_E < 2\pi$: E の第1リーマン面 (pの上半面)
- $2\pi \le \theta_E < 4\pi$: *E* の第2リーマン面 (*p* の下半面)

離散固有状態(虚軸上)

複素 p 平面と複素 E 平面での純虚数の解 ($p = -p^*$)

- 束縛状態 (B) : $E_B < 0$ で第1リーマン面 Re $[p_B] = 0$, Im $[p_B] > 0$
- virtual状態 (V) : $E_V < 0$ で第2リーマン面 Re $[p_V] = 0$, Im $[p_V] < 0$

離散固有状態(複素平面)

複素数の解 ($p \neq -p^*$ 、必ず対で存在)

- 共鳴状態(R): Re $[E_R] > 0$, Im $[E_R] < 0$ で第2リーマン面 Re $[p_R] > 0$, Im $[p_R] < 0$

- anti-resonance (\bar{R}) : Re $[E_{\bar{R}}] > 0$, Im $[E_{\bar{R}}] > 0$ で第2リーマン面 Re $[p_{\bar{R}}] < 0$, Im $[p_{\bar{R}}] < 0$

共鳴極と実軸上での散乱振幅

 $E = E_R$ の共鳴極のまわりでローラン展開 $f(E) = \frac{C_{-1}}{E - E_R} + \sum_{n=0}^{\infty} C_n (E - E_R)^n$ Breit-Wigner項 非共鳴項

 $E_R = M_R - i\Gamma_R/2$ とすれば、Breit-Wigner項は

$$f_{BW}(E) = -\frac{\Gamma_R}{2p} \frac{1}{E - M_R + i\Gamma_R/2}$$
$$= -\frac{\Gamma_R}{2p} \frac{E - M_R - i\Gamma_R/2}{(E - M_R)^2 + \Gamma_R^2/4}$$

 f_{BW} は $E = E_R$ で発散するが非共鳴項は正則

- 非共鳴項が f_{BW} に比べて無視できると仮定した場合

 $-> E = M_R$ で散乱振幅の実部が0、虚部が極大

断面積と位相差への影響

 $\sigma(E)$

- $E = M_R$ で散乱振幅の虚部が極大
- 光学定理

$$\operatorname{Im} f(E) = \frac{p}{4\pi} \sigma(E)$$

- 散乱断面積 σ がピーク –> 共鳴の定義 1)

- 分子が実であれば良いので Im [s(M_R)] = 0

- $s = e^{2i\delta}$ より $E = M_R$ で位相差が $\delta = \pi/2$ -> 共鳴の定義 2)

どちらも非共鳴項が小さく無視できると<mark>仮定した</mark>場合のみ成立

ネルギーで断面積がピーク、位相差が π/2 となる