YONUPA "Young Nuclear and Particle Physicist Group of Japan" Summer School 2021: August 6-10, 2021 (via Zoom) 8/7 (Sat) 10:00-11:30 Sekizawa - Lecture 1

時間依存密度汎関数法で探る原子核ダイナミクス: 原子核反応から超流動現象,中性子星まで

Kazuyuki Sekizawa

Department of Physics, School of Science Tokyo Institute of Technology

Brief personal history

Main research field: Nuclear Theory

Theory (8/7 10:00-11:30)

#1. An introduction to microscopic mean-field approaches and (TD)DFT

Nuclear reactions (8/7 13:00-14:30)

#2. Recent advances in microscopic approaches for heavy-ion reactions Superheavy element synthesis & deep-inelastic collisions

Neutron stars (8/8 10:00-11:30)

#3. Neutron-star "glitch" and neutron superfluid

Dynamics of <u>quantized vortices</u> in the inner crust of neutron stars

Theory (8/7 10:00-11:30)

#1. An introduction to microscopic mean-field approaches and (TD)DFT

Nuclear reactions (8/7 13:00-14:30)

#2. Recent advances in microscopic approaches for heavy-ion reactions Superheavy element synthesis & deep-inelastic collisions

Neutron stars (8/8 10:00-11:30)

#3. Neutron-star "glitch" and neutron superfluid

Dynamics of <u>quantized vortices</u> in the inner crust of neutron stars

From quarks to atomic nuclei

Standard model of the elementary particles

- ✓ Elementary particles: fundamental particles without structure
- ✓ Four forces: **strong, weak, electromagnetic**, and gravitational forces
- ✓ Particle physics explores an <u>ultimate theory</u> of the Universe

Fermions

Gauge bosons

	1st gen.	2nd gen.	3rd gen.	Charge	Strong force
uarks	up u	charm c	top t	$+\frac{2}{3}$	Gluons
Q	down	strange s	bottom	$-\frac{1}{3}$	EM force
Leptons	e e	μ	τ		Photons
	electron	muon	tau	-1	Weak force
	electron neutrino	muon neutrino v_{μ}	tau neutrino	0	W^{\pm}, Z^0 bosons

From quarks to hadrons

The QCD phase diagram

Early universe

LHC

Exploring the evolution of the Universe through high-energy nuclear experiments

Quark Gluon Plasma (QGP)

Atomic

Nuclei

RHIC

Quark matter in NS core?→ color superconductivity

Density

✓ **Hadrons:** composite particles of quarks

Left figure: https://www.bnl.gov/newsroom/news.php?a=24281

Energy scales and degrees of freedom

Figure: https://www.asc.ohio-state.edu/physics/ntg/6805/slides/6805_overview_slides.php#Dofs

Not this "high energy" !!

Animation: Brookhaven National Laboratory (http://www.bnl.gov/rhic/); https://youtu.be/Vyq_AYWctSo

We collide two nuclei "gently"

and study quantum many-body dynamics of neutrons and protons

In "low-energy" nuclear physics, we treat neutrons and protons as building blocks

What we study is:

A quantum many-body problem of fermions interacting through the nuclear force

Single-particle vs. collective pictures

M.G. Mayer J.H.D. Jensen

Photos: https://www.nobelprize.org; B/A (九州大学名誉教授高田健次郎氏ウェブサイトより)

Many-body wave function is approximated by a single Slater determinant

How can we describe the pairing properties?

 \rightarrow One may build the BCS theory on top of the Hartree-Fock

— the HF+BCS approach —

Necessity of pairing

✓ Soon after the establishment of the BCS theory, pairing was recognized in nuclear physics

K. Sekizawa

Norm

$$\langle \text{BCS} | \text{BCS} \rangle = \langle 0 | \prod_{k>0}^{\infty} (u_k + v_k \hat{a}_{-k} \hat{a}_k) \prod_{l>0}^{\infty} (u_l + v_l \hat{a}_{-l}^{\dagger} \hat{a}_l^{\dagger}) | 0 \rangle$$

$$= \langle 0 | (u_1 + v_1 \hat{a}_{-1} \hat{a}_1) \cdots (u_{\infty} + v_{\infty} \hat{a}_{-\infty} \hat{a}_{\infty}) \underbrace{(u_1 + v_1 \hat{a}_1^{\dagger} \hat{a}_{-1}^{\dagger})}_{l>0} \cdots (u_{\infty} + v_{\infty} \hat{a}_{-\infty}^{\dagger} \hat{a}_{\infty}) \underbrace{(u_1 + v_1 \hat{a}_1^{\dagger} \hat{a}_{-1}^{\dagger})}_{l>0} \cdots (u_{\infty} + v_{\infty} \hat{a}_{\infty}^{\dagger} \hat{a}_{-\infty}^{\dagger}) | 0 \rangle$$

$$= \langle 0 | \prod_{k>0}^{\infty} (u_k + v_k \hat{a}_{-k} \hat{a}_k) (u_k + v_k \hat{a}_k^{\dagger} \hat{a}_{-k}^{\dagger}) | 0 \rangle$$

$$= \langle 0 | \prod_{k>0}^{\infty} [u_k^2 + u_k v_k (\hat{a}_k^{\dagger} \hat{a}_{-k}^{\dagger} + \hat{a}_{-k} \hat{a}_k) + v_k^2 \hat{a}_{-k} \hat{a}_k \hat{a}_k^{\dagger} \hat{a}_{-k}^{\dagger}] | 0 \rangle$$

$$= \hat{a}_{-k} (1 - \hat{a}_k^{\dagger} \hat{a}_k) \hat{a}_{-k}^{\dagger} = 1 - \hat{a}_{-k}^{\dagger} \hat{a}_{-k} + \hat{a}_{-k} \hat{a}_k^{\dagger} \hat{a}_{-k}^{\dagger} \hat{a}_{-k}$$

$$= \prod_{k>0}^{\infty} (u_k^2 + v_k^2)$$

Norm of the BCS wave function: \checkmark

$$\left< \mathrm{BCS} \middle| \mathrm{BCS} \right> = \prod_{k>0}^{\infty} (u_k^2 + v_k^2)$$

 $\succ u_k^2 + v_k^2 = 1$ must be fulfilled for all k to normalize the BCS wave function!

We will just use:

Particle-number expectation value

Particle number operator: $\hat{N} = \sum_{k>0} (\hat{a}_k^{\dagger} \hat{a}_k + \hat{a}_{-k}^{\dagger} \hat{a}_{-k})$ $\hat{a}_{\infty} + v_{\infty} \hat{a}_{\infty}^{\dagger} \hat{a}_{-\infty}^{\dagger}) |0\rangle$ 1

$$BCS|\hat{N}|BCS\rangle = \langle 0|(u_{1} + v_{1}\hat{a}_{-1}\hat{a}_{1})\cdots(u_{\infty} + v_{\infty}\hat{a}_{-\infty}\hat{a}_{\infty})\hat{N}(u_{1} + v_{1}\hat{a}_{1}^{\dagger}\hat{a}_{-1}^{\dagger})\cdots(u_{\infty} + v_{\infty}\hat{a}_{\infty}^{\dagger}\hat{a}_{-\infty}^{\dagger})|0\rangle$$

$$= \sum_{k>0}^{\infty} \langle 0|(u_{k} + v_{k}\hat{a}_{-k}\hat{a}_{k})(\hat{a}_{k}^{\dagger}\hat{a}_{k} + \hat{a}_{-k}^{\dagger}\hat{a}_{-k})(u_{k} + v_{k}\hat{a}_{k}^{\dagger}\hat{a}_{-k}^{\dagger})| \prod_{l(\neq k)>0}^{\infty} (u_{l} + v_{l}\hat{a}_{-l}\hat{a}_{l})(u_{l} + v_{l}\hat{a}_{l}^{\dagger}\hat{a}_{-l}^{\dagger})| 0\rangle$$

$$= \sum_{k>0}^{\infty} v_{k}^{2} \langle 0|\hat{a}_{-k}\hat{a}_{k}(\hat{a}_{k}^{\dagger}\hat{a}_{k} + \hat{a}_{-k}^{\dagger}\hat{a}_{-k})\hat{a}_{k}^{\dagger}\hat{a}_{-k}^{\dagger}| 0\rangle$$
From each of two terms, one finds a unity (others vanish acting on the bra/ket)
$$= \sum_{k>0}^{\infty} v_{k}^{2} \langle 0|\hat{a}_{-k}\hat{a}_{k}(\hat{a}_{k}^{\dagger}\hat{a}_{k} + \hat{a}_{-k}^{\dagger}\hat{a}_{-k})\hat{a}_{k}^{\dagger}\hat{a}_{-k}^{\dagger}| 0\rangle$$

$$= 2\sum_{k>0}^{\infty} v_k^2$$

✓ Expectation value of the particle-number operator:

$$\langle \mathrm{BCS} \big| \hat{N} \big| \mathrm{BCS} \rangle = 2 \sum_{k>0}^{\infty} v_k^2$$

K. Sekizawa

Properties of the BCS wave function

Particle-number dispersion

The **dispersion** of the particle-number expectation value is defined by:

 $(\Delta N)^2 = \langle BCS | \hat{N}^2 | BCS \rangle - \langle BCS | \hat{N} | BCS \rangle^2$

In a very similar manner, one can calculate (try it!):

$$\left\langle \mathrm{BCS} \left| \hat{N}^2 \right| \mathrm{BCS} \right\rangle = 4 \sum_{k>0}^{\infty} v_k^2 + 4 \sum_{\substack{k,l(>0)\\(k \neq l)}}^{\infty} v_k^2 v_l^2$$

Since we have

$$\left\langle \text{BCS} \left| \hat{N} \right| \text{BCS} \right\rangle^2 = 4 \sum_{k>0}^{\infty} v_k^4 + 4 \sum_{\substack{k,l > 0 \\ (k \neq l)}}^{\infty} v_k^2 v_l^2$$

one finds:

Particle-number dispersion in the BCS state:

$$(\Delta N)^2 = 4 \sum_{k>0}^{\infty} (1 - v_k^2) v_k^2 = 4 \sum_{k>0}^{\infty} u_k^2 v_k^2$$

> Particle-number fluctuation originates from the fractionally-occupied states around the Fermi level. (where $u_k^2 \neq 1, v_k^2 \neq 1$)

Particle number operator:

$$\hat{N} = \sum_{k>0} (\hat{a}_k^{\dagger} \hat{a}_k + \hat{a}_{-k}^{\dagger} \hat{a}_{-k})$$

K. Sekizawa

Energy expectation value and its variation

Let us consider a simple Hamiltonian with a constant pairing interaction:

$$\hat{H} = \sum_{k,l(\geq 0)} t_{kl} \,\hat{a}_k^{\dagger} \hat{a}_l - G \sum_{k,l(>0)} \hat{a}_k^{\dagger} \hat{a}_{-k}^{\dagger} \hat{a}_{-l} \hat{a}_l$$

The energy expectation value reads (try it!):

$$\left(\left\langle \text{BCS} \left| \hat{H} - \lambda \hat{N} \right| \text{BCS} \right\rangle = 2 \sum_{l>0} v_l^2 \left(t_{ll} - \lambda \right) - G\left(\sum_{l>0} u_l v_l\right)^2 - G \sum_{l>0} v_l^4 \right)$$

Taking a variation with respect to v_k , one obtains:

$$\frac{\delta \langle \text{BCS} | \hat{H} - \lambda \hat{N} | \text{BCS} \rangle}{= \left(\frac{\partial}{\partial v_k} + \left(\frac{\partial u_k}{\partial v_k} \right) \frac{\partial}{\partial u_k} \right) \langle \text{BCS} | \hat{H} - \lambda \hat{N} | \text{BCS} \rangle \\
= -v_k / u_k \quad \because u_k = \sqrt{1 - v_k^2} \\
= 4(t_{kk} - \lambda) v_k - 4Gv_k^3 - 2G\left(\sum_{l>0} u_l v_l\right) u_k + 2G\frac{v_k}{u_k} \left(\sum_{l>0} u_l v_l\right) v_k \\
= 4(t_{kk} - \lambda - Gv_k^2) v_k + 2\Delta\left(\frac{v_k^2}{u_k} - u_k\right) = 0 \\
\Leftrightarrow 2(\varepsilon_k - \lambda) u_k v_k + \Delta(v_k^2 - u_k^2) = 0 \quad \cdots \text{ The BCS condition} \quad \begin{aligned} \Delta \equiv G\sum_{k>0} u_k v_k \\
\varepsilon_k \equiv t_{kk} - Gv_k^2
\end{aligned}$$

The BCS theory

✓ As a result of the variation, $\delta E = 0$, we got the BCS condition:

$$2(\varepsilon_k - \lambda)u_k v_k + \Delta(v_k^2 - u_k^2) = 0$$

Single-particle energy: $\varepsilon_k \equiv t_{kk} - Gv_k^2$

Pairing gap:

$$\Delta \equiv G \sum_{k>0} u_k v_k$$

satisfy

One can analytically solve it for v_k^2 and u_k^2 , leading to:

$$v_k^2 = \frac{1}{2} \left(1 - \frac{\varepsilon_k - \lambda}{\sqrt{(\varepsilon_k - \lambda)^2 + \Delta^2}} \right)$$

$$u_k^2 = \frac{1}{2} \left(1 + \frac{\varepsilon_k - \lambda}{\sqrt{(\varepsilon_k - \lambda)^2 + \Delta^2}} \right)$$
These amplitudes is the BCS condition (i.e., $\delta E = 0$)

Since we have

$$v_k^2 u_k^2 = \frac{1}{4} \left(1 - \frac{(\varepsilon_k - \lambda)^2}{(\varepsilon_k - \lambda)^2 + \Delta^2} \right) = \frac{1}{4} \frac{\Delta^2}{(\varepsilon_k - \lambda)^2 + \Delta^2}$$

one obtains:

> The gap equation:

$$\Delta = \frac{G}{2} \sum_{k>0} \frac{\Delta}{\sqrt{(\varepsilon_k - \lambda)^2 + \Delta^2}}$$
where λ can be determined by

$$N = 2 \sum_{k>0} v_k = \sum_{k>0} \left(1 - \frac{\varepsilon_k - \lambda}{\sqrt{(\varepsilon_k - \lambda)^2 + \Delta^2}} \right) :$$
Particle-number condition

Since the above set of equations sustains the relation " \bigstar ", which is equivalent to the BCS condition, it offers a practical way of determining Δ , λ , and v_k , for a given set of ε_k .

K. Sekizawa

More sophisticated approach to include pairing

→ the Hartree-Fock-Bogoliubov theory (a.k.a. the Bogoliubov-de Gennes theory) > The BCS wave function can be interpreted as a vacuum of *quasi-particles*, *i.e.*:

$$\hat{\alpha}_{k} | \text{BCS} \rangle = 0 \quad i.e. \quad | \text{BCS} \rangle = \prod_{k} \hat{\alpha}_{k} | 0 \rangle$$
where
$$\hat{\alpha}_{k} = u_{k} \hat{a}_{k} - v_{k} \hat{a}_{-k}^{\dagger} \qquad \hat{\alpha}_{-k} = u_{k} \hat{a}_{-k} + v_{k} \hat{a}_{k}^{\dagger}$$
Annihilation of a quasiparticle in a state k
Creation of a quasiparticle in a state $-k$
A quasiparticle is a mixture of particle and hole states

> The HFB wave function would be the most generalized mixture of particle and hole states:

$$\hat{\beta}_{\mu} | \mathrm{HFB} \rangle = 0$$
 i.e. $| \mathrm{HFB} \rangle = \prod_{\mu} \hat{\beta}_{\mu} | 0 \rangle$

✓ The "generalized" Bogoliubov transformation is given by:

$$\hat{\beta}_{\mu} = \sum_{k=1}^{M} \left(U_{k\mu}^{*} \hat{a}_{k} + V_{k\mu}^{*} \hat{a}_{k}^{\dagger} \right) \qquad \hat{\beta}_{\mu}^{\dagger} = \sum_{k=1}^{M} \left(U_{k\mu} \hat{a}_{k}^{\dagger} + V_{k\mu} \hat{a}_{k} \right)$$

or in a matrix form:

$$\begin{pmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\beta}}^{\dagger} \end{pmatrix} = \begin{pmatrix} U^{\dagger} & V^{\dagger} \\ V^{\mathrm{T}} & U^{\mathrm{T}} \end{pmatrix} \begin{pmatrix} \hat{\boldsymbol{a}} \\ \hat{\boldsymbol{a}}^{\dagger} \end{pmatrix} = \mathcal{W}^{\dagger} \begin{pmatrix} \hat{\boldsymbol{a}} \\ \hat{\boldsymbol{a}}^{\dagger} \end{pmatrix}$$

where there hold

$$\{\hat{\beta}^{\dagger}_{\mu}, \hat{\beta}_{\nu}\} = \delta_{\mu\nu} \qquad \{\hat{\beta}_{\mu}, \hat{\beta}_{\nu}\} = \{\hat{\beta}^{\dagger}_{\mu}, \hat{\beta}^{\dagger}_{\nu}\} = 0$$
$$\mathcal{W}^{\dagger}\mathcal{W} = \mathcal{W}\mathcal{W}^{\dagger} = I$$

Result of a variation

$$[\mathcal{H},\mathcal{R}]=0$$
 \cdots The HFB condition

Generalized density matrix:

$$\mathcal{H} = \begin{pmatrix} h - \lambda I & \Delta \\ -\Delta^* & -h^* + \lambda I \end{pmatrix} \qquad \qquad \mathcal{R} = \begin{pmatrix} \rho & \kappa \\ -\kappa^* & I - \rho^* \end{pmatrix}$$

or equivalently

HFB matrix:

$$\begin{pmatrix} h - \lambda I & \Delta \\ -\Delta^* & -h^* + \lambda I \end{pmatrix} \begin{pmatrix} U \\ V \end{pmatrix} = \begin{pmatrix} U \\ V \end{pmatrix} \begin{pmatrix} E_1 & 0 \\ E_2 \\ 0 & \ddots \end{pmatrix}$$

> By diagonalizing the HFB matrix, one can determine U and V, which fulfill the HFB condition!

A theory which gives us access to the *exact* solution

P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964)

A theory which gives us access to the *exact* solution

Great Success of the Density Functional Theory

Si crystal

Fullerene: C₆₀

C-Z. Gao et al., J. Phys. B: At. Mol. Opt. Phys. **48**, 105102 (2015)

0.0e+000 2.5e-002 5.0e-002 7.5e-002 1.0e-001

Y. Shinohara, K. Yabana, Y. Kawashita, J.-I. Iwata, T. Otobe, and G. F. Bertsch, Phys. Rev. B 82, 155110 (2010)

The seminal papers on DFT

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964) 19,015 citations!
 W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965) 24,384 citations!

What's behind the wonder of DFT?

 \rightarrow Hohenberg-Kohn theorem & Kohn-Sham scheme

Assumption:

Two different wave functions Ψ and Ψ' provide the same one-body density $\rho(\mathbf{r})$

$$\hat{H} = \hat{T} + \hat{V} + \hat{V}_{\text{ext}} \qquad \hat{H}' = \hat{T} + \hat{V} + \hat{V}'_{\text{ext}}$$
$$\hat{H} |\Psi\rangle = E |\Psi\rangle \qquad \hat{H}' |\Psi'\rangle = E' |\Psi'\rangle$$

Now, one finds:

$$E = \langle \Psi | \hat{H} | \Psi \rangle < \langle \Psi' | \hat{H} | \Psi' \rangle$$

= $\langle \Psi' | \hat{H}' | \Psi' \rangle + \langle \Psi' | \hat{V}_{ext} - \hat{V}'_{ext} | \Psi' \rangle$
= $E' + \int \rho(\mathbf{r}) [v_{ext}(\mathbf{r}) - v'_{ext}(\mathbf{r})] d\mathbf{r} \quad \cdot \cdot \cdot (a)$

However, one also gets:

$$E' = \langle \Psi' | \hat{H}' | \Psi' \rangle < \langle \Psi | \hat{H}' | \Psi \rangle$$

= $E + \int \rho(\mathbf{r}) [v'_{\text{ext}}(\mathbf{r}) - v_{\text{ext}}(\mathbf{r})] d\mathbf{r}$ (b)
(a) + (b) $E + E' < E + E'$?

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)

K. Sekizawa

DFT in a tiny nutshell (1/2) - Hohenberg-Kohn theorem

K. Sekizawa

Assumption:

The 1st HK theorem:

There is a one-to-one correspondence between Ψ and ρ

$\Psi \leftrightarrow ho(oldsymbol{r})$

(a)

Now, one finds:

$$E = \langle \Psi | \hat{H} | \Psi \rangle < \langle \Psi' | \hat{H} | \Psi' \rangle \qquad \text{``reductio ad absurdum''} \\ = \langle \Psi' | \hat{H}' | \Psi' \rangle + \langle \Psi' | \hat{V}_{ext} - \hat{V}'_{ext} | \Psi' \rangle \\ = E' + \int \rho(\mathbf{r}) [v_{ext}(\mathbf{r}) - v'_{ext}(\mathbf{r})] d\mathbf{r} \qquad \cdot \qquad \cdot$$

However, one also gets:

$$E' = \langle \Psi' | \hat{H}' | \Psi' \rangle < \langle \Psi | \hat{H}' | \Psi \rangle$$

= $E + \int \rho(\mathbf{r}) [v'_{\text{ext}}(\mathbf{r}) - v_{\text{ext}}(\mathbf{r})] d\mathbf{r}$ (b)
(a) + (b) $E + E' < E + E'$?

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)

K. Sekizawa

DFT in a tiny nutshell (1/2) - Hohenberg-Kohn theorem

The 1st HK theorem:

There is a one-to-one correspondence between Ψ and ρ

$$\Psi \leftrightarrow
ho(oldsymbol{r})$$

The one-body density can be the fundamental degree of freedom!

Kohn-Sham scheme makes DFT computationally solvable

Kohn-Sham scheme:

W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965)

 \checkmark The EDF of the many-body system:

 $E[\rho] = \langle \Psi[\rho] | \hat{H} | \Psi[\rho] \rangle$ This contains all necessary info to get the many-body ground state

 \checkmark Let us rewrite it as:

$$E[\rho] = \int d\boldsymbol{r} \, \frac{\hbar^2}{2m} \sum_{i=1}^N |\nabla \phi_i(\boldsymbol{r})|^2 + E'[\rho]$$

E' is the rest of EDF except the one-body kinetic term

 \checkmark Taking the variation w.r.t. single-particle orbitals,

$$\frac{\delta}{\delta\phi_i^*} \Big[E[\rho] - \sum_{kl} \varepsilon_{kl} \Big(\left\langle \phi_k \big| \phi_l \right\rangle - \delta_{kl} \Big) \Big] = 0$$

one finds:

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + v_{\rm \tiny KS}[\rho(\boldsymbol{r})]\right]\phi_i(\boldsymbol{r}) = \varepsilon_i\phi_i(\boldsymbol{r}) : \text{Kohn-Sham equation}$$

Kohn-Sham potential:One-body density:Kohn-Sham orbitals:
$$v_{\rm KS}[\rho(\boldsymbol{r})] = \frac{\delta E'[\rho]}{\delta \rho}$$
 $\rho(\boldsymbol{r}) = \sum_{i=1}^{N} |\phi_i(\boldsymbol{r})|^2$ $\phi_i(\boldsymbol{r}) \quad (i = 1, \dots, N)$

Then, how it works?

All nuclei can be described with a single EDF

Neutron number

K. Sekiza<u>wa</u>

All nuclei can be described with a single EDF

Neutron number

TDDFT is a time-dependent extension of DFT

E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984); R. van Leeuwen, Phys. Rev. Lett. 82, 3863 (1999).

K. Sekizawa

TDDFT in a tiny nutshell - Runge-Gross theorem

E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

One-body density:

$$\rho(\mathbf{r},t) = N \int d\mathbf{r}_2 \cdots \int d\mathbf{r}_N |\Psi(t)|^2 \qquad \mathbf{j}(\mathbf{r},t) = \frac{\hbar N}{2im} \int d\mathbf{r}_2 \cdots \int d\mathbf{r}_N \left[\Psi^*(t) \nabla \Psi(t) - \Psi(t) \nabla \Psi^*(t) \right] \qquad i\hbar \frac{\partial \Psi}{\partial t} = H \Psi$$

$$\Psi = \Psi(\mathbf{r}_1, \dots, \mathbf{r}_N, t)$$

The rate of change of the current density reads:

$$\frac{\partial \boldsymbol{j}}{\partial t} = \frac{N}{2m} \int d\boldsymbol{r}_2 \cdots \int d\boldsymbol{r}_N \left[(H\Psi)^* \nabla \Psi - \Psi^* \nabla (H\Psi) + (H\Psi) \nabla \Psi^* - \Psi \nabla (H\Psi)^* \right] \quad \cdot \quad \cdot \quad (\mathbf{a})$$

$$\frac{\partial \boldsymbol{j}'}{\partial t} = \frac{N}{2m} \int d\boldsymbol{r}_2 \cdots \int d\boldsymbol{r}_N \Big[(H'\Psi')^* \nabla \Psi' - \Psi'^* \nabla (H'\Psi') + (H'\Psi') \Psi'^* - \Psi' \nabla (H'\Psi')^* \Big] \quad \boldsymbol{\cdot} \quad \boldsymbol{\cdot} \quad \boldsymbol{\cdot} \quad \boldsymbol{(b)}$$

*One can obtain equations for higher-order derivatives in the same manner

As in the case of static DFT, we have a TDKS scheme according to the following one-to-one correspondences:

$$\hat{H}(t) \stackrel{\text{TDSE}}{\Leftrightarrow} \Psi(t) \stackrel{\text{RG}}{\Leftrightarrow} \boldsymbol{j}(\boldsymbol{r}, t) \& \rho(\boldsymbol{r}, t)$$

*Taking divergence of Eq.(\bigstar) and using the continuity equation, one can obtain equations for the density.

 $\frac{\partial \rho}{\partial t} + \nabla \cdot \boldsymbol{j} = 0$

K. Sekizawa

TDDFT in Nuclear Physics

TDDFT is a versatile tool!!

Phys. Rev. C 84, 051309(R) (2011) I. Stetcu, A. Bulgac, P. Magierski, and K.J. Roche

Vortex-nucleus dynamics

Phys. Rev. Lett. **117**, 232701 (2016) G. Wlazłowski, K.S., P. Magierski, A. Bulgac, and M.M. Forbes

-

Phys. Rev. Lett. **116**, 122504 (2016) A. Bulgac, P. Magierski, K.J. Roche, and I. Stetcu

Low-energy heavy-ion reactions

Phys. Rev. Lett. **119**, 042501 (2017) P. Magierski, K.S., and G. Wlazłowski

Q. What are difference and relevance between Hartree-Fock theory and DFT?

A. HF ≠ DFT, but HF with an "effective interaction" may be regarded as Kohn-Sham DFT

Hartree-Fock theory vs. DFT

Regarding E_{Skyrme} as an EDF, Skyrme-HF eq. may be regarded as KS eq. in DFT

Unrestricted variation

Schrödinger eq: $\hat{H}|\Psi\rangle = E|\Psi\rangle$

so, of course, $HF \neq DFT$

Hartree-Fock eq: *Integro-differential eq. $\left(-rac{\hbar^2}{2m}
abla^2 + \Gamma_{
m H}(m{r})
ight)\phi_i(m{r}) + \int \Gamma_{
m F}(m{r},m{r}')\phi_i(m{r}')dm{r}' = arepsilon_i\phi_i(m{r})$

Slater determinant:

$$\Phi(\boldsymbol{r}_1,\ldots,\boldsymbol{r}_N) = \frac{1}{\sqrt{N!}} \det\{\phi_i(\boldsymbol{r}_j)\} \qquad \langle \phi_i | \phi_j \rangle$$

Hartree potential (direct term):

$$r = m' + c(m') dm'$$
 $\Gamma = (m m')$

 $=\delta_{ii}$

Orthonormal condition:

 $E = \frac{\left\langle \Psi \middle| \hat{H} \middle| \Psi \right\rangle}{\left\langle \Psi \middle| \Psi \right\rangle}$ $\hat{H} = -\sum_{i} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i < i} v(\boldsymbol{r}_i, \boldsymbol{r}_j)$

$$\Gamma_{
m H}(m{r}) = \int v(m{r},m{r}')
ho(m{r}')dm{r}$$

Fock potential (exchange term):

$$\Gamma_{\mathrm{F}}(\boldsymbol{r}, \boldsymbol{r}') = v(\boldsymbol{r}, \boldsymbol{r}') \sum_{i} \phi_{i}(\boldsymbol{r}) \phi_{i}^{*}(\boldsymbol{r}')$$

Hartree-Fock theory vs. DFT

Regarding E_{Skyrme} as an EDF, Skyrme-HF eq. may be regarded as KS eq. in DFT

K. Sekizawa

Takeaway message

 (TD)DFT is a powerful theoretical framework to study quantum many-body problems of nucleons at low energy from nuclei to neutron stars

K. Sekizawa

Theory

#1. An introduction to microscopic mean-field approaches and (TD)DFT

Nuclear reactions

#2. Recent advances in microscopic approaches for heavy-ion reactions Superheavy element synthesis & deep-inelastic collisions

Neutron stars

#3. Neutron-star "glitch" and neutron superfluid

Dynamics of <u>quantized vortices</u> in the inner crust of neutron stars

Kazuyuki Sekizawa Associate Professor Department of Physics, School of Science Tokyo Institute of Technology 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan sekizawa @ phys.titech.ac.jp http://sekizawa.fizyka.pw.edu.pl/english/