YONUPA "Young Nuclear and Particle Physicist Group of Japan" Summer School 2021: August 6-10, 2021 (via Zoom) 8/7 (Sat) 13:00-14:30 Sekizawa - Lecture 2

時間依存密度汎関数法で探る原子核ダイナミクス: 原子核反応から超流動現象,中性子星まで

Kazuyuki Sekizawa

Department of Physics, School of Science Tokyo Institute of Technology

Theory (8/7 10:00-11:30)

#1. An introduction to microscopic mean-field approaches and (TD)DFT

Nuclear reactions (8/7 13:00-14:30)

#2. Recent advances in microscopic approaches for heavy-ion reactions Superheavy element synthesis & deep-inelastic collisions

Neutron stars (8/8 10:00-11:30)

#3. Neutron-star "glitch" and neutron superfluid

Dynamics of <u>quantized vortices</u> in the inner crust of neutron stars

Theory (8/7 10:00-11:30)

#1. An introduction to microscopic mean-field approaches and (TD)DFT

Nuclear reactions (8/7 13:00-14:30)

#2. Recent advances in microscopic approaches for heavy-ion reactions Superheavy element synthesis & deep-inelastic collisions

Neutron stars (8/8 10:00-11:30)

#3. Neutron-star "glitch" and neutron superfluid

Dynamics of <u>quantized vortices</u> in the inner crust of neutron stars

Voyage towards the limit of existence

The continent of stability has been well explored..

The Great Wall of China by Stacy Funderburke @shutterstock

Now we are sailing towards the edge of the nuclear landscape..

Stable nuclei: 288 Experiment: ~3300 Theory: ~7000-10000

□ drip lines

- shell structure
- deformation
- skin, halo

- □ nuclear matter properties
- nucleosynthesis

"Flat Earth" by iStock; "Fanciful view of ship sailing over edge of Earth" by Georgia Studies Images

How can we create yet-unknown neutron-rich nuclei?

M. Thoennessen, Rep. Prog. Phys. 76, 056301 (2013)

Multinucleon transfer (MNT) and quasi-fission (QF) may be useful

Production cross section for N=126 **isotones in** ¹³⁶Xe+²⁰⁸Pb

Langevin: V.I. Zagrebaev and W. Greiner, PRC**83**(2011)044618 Fragmentation: T. Kurtukian-Nieto *et al.*, PRC**89**(2014)024616 Multinucleon transfer (MNT) and quasi-fission (QF) may be useful

Production cross section for N=126 **isotones in** ¹³⁶Xe+¹⁹⁸Pt

Fragmentation: T. Kurtukian-Nieto et al., PRC89(2014)024616

Multinucleon transfer (MNT) and quasi-fission (QF) may be useful

Production cross section for primary products in ²³⁸U+²⁴⁸Cm

Langevin calculation by: V.I. Zagrebaev and W. Greiner, PRC87(2013)034608

Let's see how TDDFT works in practice

"TDHF" - past and present

For reviews, see: J.W. Negele, Rev. Mod. Phys. **54**, 913 (1982); C. Simenel, Eur. Phys. J. A **48**, 152 (2012); T. Nakatsukasa *et al.*, Rev. Mod. Phys. **88**, 045004 (2016); C. Simenel and A.S. Umar, Prog. Part. Nucl. Phys. **103**, 19 (2018); P.D. Stevenson and M.C. Barton, Prog. Part. Nucl. Phys. **104**, 142 (2019); K.S., Front. Phys. **7**, 20 (2019)

- ✓ Various symmetry restrictions
- ✓ Simplified interactions
- ✓ Limited computational power

 84 Kr+ 209 Bi, E_{lab} = 850 MeV K.T.R. Davis, K.R.S. Devi, and M.R. Strayer, PRL**44**(1980)23

- ✓ Full 3D
- ✓ Modern interactions (or EDF)
- Accurate numerical methods and use of supercomputers

²³⁸U+²³⁸U, E_{lab} = 900 MeV C. Golabek and C. Simenel, PRL**103**(2009)042701 \checkmark There is no adjustable parameter on reaction dynamics

Parameters in an EDF are determined to reproduce known nuclear properties

K. Sekizawa

Once an EDF is given, there are no empirical parameters

1. Prepare ground states of projectile and target nuclei

KS equations

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + v_{\rm \tiny KS}[\rho(\boldsymbol{r})]\right]\phi_i(\boldsymbol{r}) = \varepsilon_i \,\phi_i(\boldsymbol{r})$$

Once an EDF is given, there are no empirical parameters

1. Prepare ground states of projectile and target nuclei

Complex Quantum Mechanical Processes

TDDFT

Distribution of reaction outcomes

/sicsfun = = = = =

1. Multinucleon transfer reactions

 58 Ni+ 208 Pb at E_{lab} =328.4 MeV

K.S. and K. Yabana, PRC88(2013)014614

TDDFT predicts two distinct transfer mechanisms

b=1.6 fm

Neck formation/breaking

b=4 fm

Fast charge equilibration

There appear two transfer mechanisms

K. Sekizawa

Particle-number projection method

$$P_n = \left\langle \Phi \middle| \hat{P}_n \middle| \Phi \right\rangle$$

 $\hat{P}_n = \frac{1}{2\pi} \int_0^{2\pi} e^{i(n-\hat{N}_V)\theta} d\theta$: Particle-number projection operator

Particle-number projection method

$$P_n = \left\langle \Phi \middle| \hat{P}_n \middle| \Phi \right\rangle$$

 $\hat{P}_n = \frac{1}{2\pi} \int_0^{2\pi} e^{i(n-\hat{N}_V)\theta} d\theta$: Particle-number projection operator

Transfer cross sections: TDDFT vs. Expt.

Comparable to measurements, disagreements for many-nucleon transfer

Expt.: L. Corradi et al., PRC66(2002)024606

2. Quasifission processes

Quasifission process

A fast (~10⁻²¹-10⁻²⁰ sec) fission process before compound nucleus formation (fusion)

Quasifission process

A fast (~10⁻²¹-10⁻²⁰ sec) fission process before compound nucleus formation (fusion)

 64 Ni+ 238 U at E_{lab} =390 MeV

K.S. and K. Yabana, PRC93(2016)054616

Quasifission dynamics in TDDFT

Tip collision

Shell effects of ²⁰⁸Pb

Side collision

More mass-symmetric

 64 Ni+ 238 U at E_{lab} =390 MeV

TDDFT provides quantitative description of quasifission dynamics

TKE-A distribution: Comparison with experimental data

Expt.: E.M. Kozulin et al., PLB686(2010)227

K. Sekizawa

However, TDDFT can not properly describe the distribution of observables

Stochastic extensions

Complex Quantum Mechanical Processes

TDDFT

Distribution of reaction outcomes

sicsfur

Stochastic Mean-Field (SMF) approach

S. Ayik, Phys. Lett. **B658**, 174 (2008) D. Lacroix and S. Ayik, Eur. Phys. J. A **50**, 95 (2014)

K. Sekizawa

Lecture 2: Recent advances in microscopic approaches for heavy-ion reactions

Sat., Aug. 7, 2021

The widths develop in time by nucleon exchanges through the window

The SMF approach predicts a much wider distribution

$$\sigma(N,Z) = 2\pi \int_{b_{\min}}^{b_{\max}} b P_{N,Z}(b) db$$

* $P_{N,Z}(b)$: transfer probability Particle-number projection for TDHF Correlated Gaussian for SMF

$$P_{N,Z}^{\rm SMF}(b) = \frac{1}{2\pi\sigma_{NN}(b)\sigma_{ZZ}(b)\sqrt{1-\rho^{2}(b)}} \\ \times \exp\left\{-\frac{1}{2(1-\rho^{2}(b))}\left[\left(\frac{N-\bar{N}(b)}{\sigma_{NN}(b)}\right)^{2} + \left(\frac{Z-\bar{Z}(b)}{\sigma_{ZZ}(b)}\right)^{2} + 2\rho(b)\left(\frac{N-\bar{N}(b)}{\sigma_{NN}(b)}\right)\left(\frac{Z-\bar{Z}(b)}{\sigma_{ZZ}(b)}\right)\right]\right\} \qquad \rho(b) = \frac{\sigma_{NZ}^{2}(b)}{\sigma_{NN}(b)\sigma_{ZZ}(b)}$$

K. Sekizawa

Secondary production cross sections for heavier fragments

Expt.: W. Królas et al., Nucl. Phys. A 724, 289 (2010)

At the frontiers in nuclear physics:

3. Synthesis of superheavy elements

→ also relevant to **chemistry**

Nucleosynthesis at accelerator facilities

The world-leading factory of unstable nuclei!

50 m

RI Beam Factory (RIBF) Orgen Image: Construction of the state of

Superconducting Ring Cyclotron (SRC)

The periodic table is growing!

Synthesis of "superheavy element" is the most challenging subject in nuclear physics

Nihonium is the only one discovered by Asian country: The element 113

Nov. 30, 2016: Name confirmed June 8, 2016: Name announced Dec. 31, 2015: Naming rights given

2019 was the 150th anniversary of the Periodic Table!

2019

IYPT 2019 CLOSING CEREMONY

2621

m

n

2661

praseodymium

140.91

protactinium

neodymium

60

144.24

Iranium

5 December, Tokyo Prince Hotel

wifi D:ClesingCoremony1YPT2019 Password:20191205

Dec. 5, 2019 @Tokyo Prince Hotel

IYPT2019 Special Tie of the Elements

How special?

Designed by GINZA TAYA, Tokyo & Kohei Tamao

◄ VISIT OUR WEBSITE

The north-east part of the nuclear map

Yuri Oganessian, Pure Appl. Chem. 78, 889 (2006)

The north-east part of the nuclear map

We do need theoretical predictions!

The next is: 119 or 120

TDDFT simulation for SHE synthesis on a supercomputer

Collaborative works are in progress with Kyoto U., Kindai U., and Kyushu U. cf. K.S. and K. Hagino, Phys. Rev. C **99**, 051602(R) (2019)

Quasifission process

A fast (~10⁻²¹-10⁻²⁰ sec) fission process before compound nucleus formation (fusion)

Quasifission process

A fast (~10⁻²¹-10⁻²⁰ sec) fission process before compound nucleus formation (fusion)

K.S. and K. Hagino, Phys. Rev. C **99**, 051602(R) (2019) Rapid Comm. with Editors' Suggestion

> Analytical formula can be derived: $1 \left[(\Delta V) \right]$

$$P_{\rm CN} = \frac{1}{2} \left[1 - \operatorname{erf}\left(\frac{\Delta V}{T}\right) \right]$$

We use fusion-by-diffusion model to describe the "up-hill diffusion" over the inner barrier

Fusion-by-diffusion model:

W.J. Świątecki, K. Siwek-Wilczyńska, and J. Wilczyński,
Acta Phys. Pol. B 34(2003)2049; PRC71(2005)014602
K. Hagino, PRC98(2018)014607

Magicity of ⁴⁸Ca affects the survival probability via the lower excitation energy

			TDDFT	FBD			-
System	CN	E^*	R_{\min}	$P_{\rm CN}$	$W_{\rm sur}$	$P_{\rm CN} W_{\rm sur}$	
		(MeV)	(fm)	$(\times 10^4)$	$(\times 10^9)$	$(\times 10^{13})$	
$({}^{48}\text{Ca} + {}^{254}\text{Fm})$	$^{302}120$	(29.0)	12.93	1.72	176	302	
$^{54}\mathrm{Cr} + ^{248}\mathrm{Cm}$	$^{302}120$	33.2	13.09	1.89	1.31	2.47	
$^{51}V + ^{249}Bk$	$^{300}120$	37.0	12.94	3.95	0.117	0.461	
$(^{48}\text{Ca}+^{257}\text{Fm})$	$^{305}120$	(30.5)	12.94	2.49	0.729	1.82	
Very similar Thus, P_{CN} is for all systems also similar (higher E^* , larger P_{CN})					Note: Survival probability also dependent on the fission barrier height!		

How much does pairing affect the reaction dynamics?

4. Solitonic excitations in heavy-ion reactions

TDSLDA (Time-Dependent Superfluid Local Density Approximation)

TDSLDA: TDDFT with local treatment of pairing

Kohn-Sham scheme is extended for non-interacting quasiparticles

TDSLDA equations (formally equivalent to TDHFB or TD-BdG equations)

A large number (10⁴-10⁶) of 3D coupled non-linear PDEs have to be solved!! # of qp orbitals ~ # of grid points

K. Sekizawa

3D, TDSLDA calculations (Fayans w/o LS) predicts novel phenomena associated with <u>solitonic excitations</u>!!

P. Magierski, K.S., G. Wlazłowski, Phys. Rev. Lett. 119, 042501 (2017)

TDSLDA results: $^{240}Pu + ^{240}Pu$ head-on collisions (E/V_{Bass}=1.1)

P. Magierski, K.S., G. Wlazłowski, Phys. Rev. Lett. 119, 042501 (2017)

Additional energy is required to attach two superfluids with different phases

P. Magierski, K.S., G. Wlazłowski, Phys. Rev. Lett. 119, 042501 (2017)

Additional energy is required to attach two superfluids with different phases

P. Magierski, K.S., G. Wlazłowski, Phys. Rev. Lett. 119, 042501 (2017)

Fusion reaction is suppressed by the phase difference

P. Magierski, K.S., G. Wlazłowski, Phys. Rev. Lett. 119, 042501 (2017)

K. Sekizawa

Fusion reaction is suppressed by the phase difference

P. Magierski, K.S., G. Wlazłowski, Phys. Rev. Lett. 119, 042501 (2017)

K. Sekizawa

Fusion reaction is suppressed by the phase difference

 $*E_{\text{fusion}}$: the lowest energy at which fusion reaction is observed

P. Magierski, K.S., G. Wlazłowski, Phys. Rev. Lett. 119, 042501 (2017)

When two superfluid nuclei with different phases collide solitonic excitations might be induced

P. Magierski, K.S., G. Wlazłowski, Phys. Rev. Lett. 119, 042501 (2017)

When two superfluid nuclei with different phases collide solitonic excitations might be induced

K. Sekizawa

Lecture 2: Recent advances in microscopic approaches for heavy-ion reactions

Sat., Aug. 7, 2021

Takeaway message

 ✓ TDDFT can properly describe the main reaction outcomes in low-energy heavy-ion reactions, and may be further improved with extended techniques

Main reaction outcomes

TDDFT

Average number of nucleons, TKE, scattering angles, Fluctuations/correlations contact times, ... Further extensions

SMF (or TDRPA)

Width of mass, charge distributions, correlation between *n/p* transfers,

e.g. TDDFT+Langevin

Providing input information for other theoretical approaches

K. Sekizawa

Theory (8/7 10:00-11:30)

#1. An introduction to microscopic mean-field approaches and (TD)DFT

Nuclear reactions (8/7 13:00-14:30)

#2. Recent advances in microscopic approaches for heavy-ion reactions Superheavy element synthesis & deep-inelastic collisions

Neutron stars (8/8 10:00-11:30)

#3. Neutron-star "glitch" and neutron superfluid

Dynamics of <u>quantized vortices</u> in the inner crust of neutron stars

Kazuyuki Sekizawa Associate Professor Department of Physics, School of Science Tokyo Institute of Technology 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan sekizawa @ phys.titech.ac.jp http://sekizawa.fizyka.pw.edu.pl/english/