定圧振動剪断流下における摩擦のある粉体系の スケーリング則とダイラタンシー Scaling laws & dilatancy of frictional materials under oscillatory shear with constant pressure

ガラスおよび関連する複雑系の最先端研究

Zoom, 2021/05/11

Daisuke Ishima, Hisao Hayakawa

YITP, Kyoto Univ.

Introduction

Examples of granular materials

Characteristics

- Athermal particles Thermal fluctuations can be neglected.
 - The particles are repulsive & dissipative upon contact.

https://www.youtube.com/watch?v=29ht6SSWQMs

https://www.youtube.com/watch?v=wa9yX4xuCv4

It is important to understand the behavior of granular materials.

Introduction

Dilatancy

F. da Cruz et al., Phys. Rev. E 72, 021309 (2005).

 ϕ : density, $\dot{\gamma}$: shear rate, P : pressure, m : mass

M. Nicolas et al., Eur. Phys. J. E 3, 309 (2000).

Shear induced dilatancy & compaction.

"https://en.wikipedia.org/wiki/Dilatancy_(granular_material)#cite_note-Houlsby-8"

Can we observe compaction for high pressure?

Mutual friction μ **& pressure** *P* **dependence?**

Rigidity & Viscosity under oscillatory shear

We can measure G' (rigidity) & G'' (viscosity) simultaneously.

Previous researches

- 2D oscillatory shear
- Frictionless particles
- Background friction رج

 $(\sim -\eta \vec{\mathbf{v}})$

$$G'_{\text{res}} := \lim_{\substack{\gamma_0 \to 0}} G'$$
$$G''_{\text{res}} := \lim_{\substack{\gamma_0 \to 0}} G''$$

No scaling law We cannot ignore the friction between grains.

Previous researches

- 2D oscillatory shear
- Frictionless particles
- Background friction

$$(\sim -\eta \overrightarrow{\mathbf{v}})$$

$$G'_{\text{res}} := \lim_{\substack{\gamma_0 \to 0}} G'$$
$$G''_{\text{res}} := \lim_{\substack{\gamma_0 \to 0}} G''$$

S. Dagois-Bohy, E. Somfai, B. P. Tighe and M. van Hecke, Soft matter 13, 9036 (2017).

How to apply shear

- Without $-\eta \vec{v}$
- Frictional particles

N = 4000

$$\gamma_{0,\text{eff}} := \frac{A}{L_x}$$

$$1.0 \times 10^{-6} \le \gamma_{0,\text{eff}} \le 1.0$$

The walls are pressed with pressure *P* and they move according to $\pm A \sin(\Omega t)$.

Discrete element method

Contact force: linear spring and dashpot

 $0 \le \mu \le 1.0$

Influence of preparation

Influence of preparation

$\delta \phi$ depends on how to prepare initial configuration.

Ŧ

-

-

10⁰

Influence of μ for dilation & compaction

$$\delta \phi := \phi(\Omega t = 2n\pi, \hat{P}, \gamma_{0,\text{eff}}) - \phi_0(\hat{P})$$

 $\phi_0(\hat{P})$: density without shear

Dilatancy always takes place at large $\gamma_{0,eff}$. Compaction can be observed for $\mu < 0.4$ at intermediate $\gamma_{0,eff}$.

Influence of \hat{P} for dilatancy

D. Ishima & H. Hayakawa, Phys. Rev. E 101, 042902 (2020).

Dilatancy is almost independent of \hat{P} . Bending point of G' depends on \hat{P} .

Relation - Mean square displacement

Reversible motion above bending point of G' at $\hat{P} = 2.0 \times 10^{-5}$ Relation between MSD & dilatancy

Relation - Mean square displacement

Reversible motion above bending point of G' at $\hat{P} = 2.0 \times 10^{-5}$ Relation between MSD & dilatancy

Relation - Mean square displacement

Reversible motion above bending point of G' at $\hat{P} = 2.0 \times 10^{-5}$ Relation between MSD & dilatancy

Scaling laws for G' & G''

Scaling laws for G' & G''

Scaling law for G'

G' satisfies the scaling law

The scaling function of G': $G'(\gamma_{0,\text{eff}}, \hat{P}) := G'_{\text{res}}(\hat{P})\mathscr{G}'\left(\frac{\gamma_{0,\text{eff}}}{\hat{p}\beta'_{\mu}}\right)$

$$G'_{\text{res}}(\hat{P}) := \lim_{\gamma_{0,\text{eff}} \to 0} G'(\gamma_{0,\text{eff}}, \hat{P}),$$

$$\lim_{x \to 0} \mathcal{G}'(x) = 1, \quad \lim_{x \to \infty} \mathcal{G}' \sim x^{-1}$$

Phenomenological discussion for G'

- $\cdot \sigma \propto \gamma_{0,\text{eff}}$ for Hookean regime,
 - .: For Hookean regime

G' is independent of $\gamma_{0,eff}$.

- Because $\mu_{\rm m} := \sigma/P$ is constant for plastic regime, $\sigma \propto P$.
 - .: For plastic regime

 $G' \simeq \sigma / \gamma_{0,\text{eff}} \propto P / \gamma_{0,\text{eff}},$

We can estimate that the turning point between

$$G' \simeq G'_{\text{res}} \simeq k_t \& G' \simeq P/\gamma_{0,\text{eff}} \sim O(1) \text{ is } \gamma_{0,\text{eff}}/\hat{P} \sim O(1).$$

 $(\hat{P} := P/k_n, k_t/k_n = 0.5)$

Scaling law for G''

Because of the limitation of my talk time, I would like to skip the explanation of $G'' \propto \gamma_{0,eff} / \hat{P}$. For details see D.Ishima & H. Hayakawa, Phys. Rev. E, 101, 042902 (2020).

Summary

We have investigated the oscillatory sheared granular materials under constant pressure.

- Compaction \cdots It depends on μ & how to prepare initial configuration.
- Dilatancy is caused by irreversible motion of particles. However, it is not directly related to bending point of G'.
- Scaling laws … G' & G" satisfy scaling laws for frictional grains.

See more details in

D.Ishima & H. Hayakawa, Phys. Rev. E, 101, 042902 (2020),

D.Ishima & H. Hayakawa, arXiv: 2011.06891.

