Softening and loop trajectories of jammed grains under oscillatory shear

Michio Otsuki (Osaka Univ.) Hisao Hayakawa (Kyoto Univ.)

arXiv:2101.07473 arXiv:2103.14457 (to be published in EPJE)

Rheology of jammed materials

Jammed materials : collections of grains (sand, emulsion)

Outline

- 1. Introduction : Elasticity of jammed grains
- 2. Frictionless grains

arXiv:2101.07473

- 3. Frictional grains arXiv:2103.14457 (to be published in EPJE)
- 4. Summary

Model: 2D frictionless grains

Detecting plastic deformation

Loop trajectory in reversible phase

Storage modulus

Irreversible yielding : Decrease of G' in the irreversible phase.

Reversible softening : Decrease of G' in the reversible phase.

Reversible softening

Reversible softening : Decrease of G' in the reversible phase.

G' decreases to less than half.

Residual loss modulus

G" is almost independent of ϕ and γ o.

Residual loss modulus : G" remains for $\omega \rightarrow 0$ without plastic deformation.

cf. Linear visco elasticity : $\sigma = G\gamma + \eta \dot{\gamma}$ (Kelvin-Voigt model) $G' = G, G'' = \eta \omega$ Dissipation (G'') disappears for $\omega \to 0$.

Origin of anomalous response?

Fourier analysis of loop trajectories

Fourier coefficients

Fourier coefficient

 $\phi = 0.87, \gamma_0 = 0.02$

4

 $a_i^{(1)}$ is the largest

6

 $\tilde{\boldsymbol{r}}_{\boldsymbol{i}}(\boldsymbol{\theta}) = \boldsymbol{a}_{\boldsymbol{i}}^{(1)} \sin \boldsymbol{\theta}$

 $h^{(n)}$

Straight line

8

 n^{10}

0.06 -

Fourier series of non-affine motion

$$\tilde{r}_{i}(\theta) = \sum_{n} \left\{ a_{i}^{(n)} \sin n\theta + b_{i}^{(n)} \cos n\theta \right\}$$
Shear strain : $\gamma(\theta) = \gamma_{0} \sin \theta$
Area of loop

$$A_i = \oint \tilde{x}_i(\theta) d\tilde{y}_i(\theta) = \pi \sum n \{ \boldsymbol{b}_i^{(n)} \times \boldsymbol{a}_i^{(n)} \}_z$$

Fourier coefficients characterizes the area.

Four 0.01 10^{-1}

c.f. $a_i, b_i \sim (\gamma_0 d), A \sim (\gamma_0 d)^2$ indicate the trajectory is scaled by $\gamma_0 d$. d: diameter of grain

Analysis : Reversible softening

Shear strain :
$$\gamma(\theta) = \gamma_0 \sin \theta$$
Normal repulsive force : $F(r)$ (quasi-static limit)Position : $r_i(\theta) = R_i + \gamma(\theta)Y_i e_x + \tilde{r}_i(\theta)$ Storage modulus :Position : $r_i(\theta) = R_i + \gamma(\theta)Y_i e_x + \tilde{r}_i(\theta)$ $G' = \frac{1}{\pi} \int_0^{2\pi} d\theta \frac{\sigma(t)\sin \theta}{\gamma_0}$ Initial position : $R_i = (X_i, Y_i)$ Stress : $\sigma(\theta) = -\sum_{i,j} \frac{x_{ij}(\theta)y_{ij}(\theta)}{L^2 r_{ij}(\theta)} F(r_{ij}(\theta))$ $\tilde{r}_i(\theta) = \sum_n \left\{ \underline{a_i^{(n)}} \sin n\theta + \underline{b_i^{(n)}} \cos n\theta \right\}$ First order approximation of $\gamma_0, a_i^{(n)}$, and $b_i^{(n)}$ Only modes with $n = 1 \ (\sin \theta)$ remain in the integral of θ . $G' \simeq G_1' = \langle A' \rangle - \sum_i \left\langle B_i' \cdot \frac{a_i^{(1)}}{\gamma_0} \right\rangle$ Detail : $G_1' = -\left\langle \frac{1}{L^2} \sum_{i,j} \left\{ \frac{X_{ij}^2 Y_{ij}^2 \Psi'(R_{ij}) + Y_{ij}^2 \Psi(R_{ij})}{\gamma_0} \right\} \right\rangle$ A', B_i' : functions of R_i $-\left\langle \frac{1}{L^2} \sum_{i,j} \left\{ \frac{a_{ij}^{(1)} Y_{ij} \Psi'(R_{ij}) \frac{R_{ij} \cdot a_{ij}^{(1)}}{\gamma_0 R_{ij}} \right\rangle$ G' depends only on $a_i^{(1)}$.Fourier coefficient (n=1) for loop trajectories \rightarrow Reversible Softening

Analysis : Residual loss modulus

Shear strain :
$$\gamma(\theta) = \gamma_0 \sin \theta$$

(quasi-static limit)
Loss modulus :
 $G'' = \frac{1}{\pi} \left\langle \int_0^{2\pi} d\theta \frac{\sigma(t)\cos\theta}{\gamma_0} \right\rangle$
Initial position : $r_i(\theta) = R_i + \gamma(\theta)Y_i e_x + \tilde{r}_i(\theta)$
Initial position : $R_i = (X_i, Y_i)$
Non-affine motion : Loop
Stress : $\sigma(\theta) = -\sum_{i,j} \frac{x_{ij}(\theta)y_{ij}(\theta)}{L^2 r_{ij}(\theta)} F(r_{ij}(\theta))$
First order approximation of γ_0 , $a_i^{(n)}$, and $b_i^{(n)}$
Only modes with $n = 1 (\cos \theta)$ remain in the integral of θ .
 $G'' \simeq G''_1 = \sum_i \left\langle B''_i \cdot \frac{b'_i}{\gamma_0} \right\rangle$
 B''_i : function of R_i
 G'' depends only on $b_i^{(1)}$.
Fourier coefficient (n=1) for loop trajectories \rightarrow Residual loss modulus

15

Validity of theoretical prediction

Outline

- 1. Introduction : Elasticity of jammed grains
- 2. Frictionless grains arXiv:2101.07473
- **3. Frictional grains** arXiv:2103.14457 (to be published in EPJE)

4. Summary

Model: 2D frictional grains

Trajectory in reversible phase

Rheological properties in reversible phase

Reversible softening : G' decreases in the reversible phase. The softening disappears for small γ_0 and large μ . Residual loss modulus : G" remains in the reversible phase. The loss modulus disappears for small γ_0 and large μ .

Rheological properties and loop

Outline

- 1. Introduction : Elasticity of jammed grains
- 2. Frictionless grains

arXiv:2101.07473

3. Frictional grains arXiv:2103.14457 (to be published in EPJE)

4. Summary

Summary

arXiv:2101.07473 arXiv:2103.14457

- Topic : Non-linear elasticity of jammed grains.
- · Result 1 : Non-linear elasticity (reversible softening and residual loss modulus) .
- Result 2 : Loop trajectories in the reversible phase.
- Result 3 : The non-linear elasticity is analytically related to the Fourier coefficients of loop trajectories for frictionless grains.
- Result 4 : We numerically connect the non-linear elasticity with the area of loop trajectories in frictional systems.
- · Future work : Analysis for frictional grains.

Analysis (frictionless):

$$\tilde{r}_{i}(\theta) = \sum_{n} \left\{ a_{i}^{(n)} \sin n\theta + b_{i}^{(n)} \cos n\theta \right\}$$

$$G_{1}' = \langle A' \rangle - \sum_{i} \left\langle B_{i}' \cdot \frac{a_{i}^{(1)}}{\gamma_{0}} \right\rangle$$

$$G_{1}'' = \sum_{i} \left\langle B_{i}'' \cdot \frac{b_{i}^{(1)}}{\gamma_{0}} \right\rangle$$

