

2021.5.10-12 Frontier research on glasses and related complex systems

Kinetic theory of inertial suspensions: Steady rheology and Mpemba effect

Satoshi Takada¹ & Disao Hayakawa²
 Inst. Eng., Tokyo Univ. Agri. & Tech. ² YITP, Kyoto Univ.
 Collaborators:
 Andrés Santos³ & Dicente Garzó³

³ Univ. Extremadura

S. Takada, H. Hayakawa, A. Santos, and V. Garzó, Phys. Rev. E 102, 022907 (2020)
 S. Takada, H. Hayakawa, and A. Santos, Phys. Rev. E 103, 032901 (2021).

Shear thickening

- Shear thickening: viscosity: $\eta_s(\varphi) = \sigma(\varphi)/\dot{\gamma} \nearrow$ against the shear rate $\dot{\gamma}$.
- Discontinuous shear thickening (DST): The viscosity discontinuously increases.
- DST is studied in many contexts and setups.
 - DST for dense systems (simulations)
 Mutual friction is important.
 M.Otsuki & H. Hayakawa, Phys. Rev. E 83, 051301 (2011)
 R. Seto, et al., Phys. Rev. Lett. 111, 218301 (2013)
 - DST for colloidal systems (experiments)
 Normal stress difference is also important.
 C. D. Cwalina & N.J. Wagner, J. Rheol. 58, 949 (2014)
- Industrial applications: protective vest and traction control

 \sim

Gas-solid suspensions

- Inertial suspensions (a model of aerosols)
- Homogeneity is kept.
- Relatively dilute system (theoretical treatment is available)

Previous (theoretical) study

Tsao and Koch, JFM 296, 211 (1995)
 Kinetic theory of dilute gas-solid suspensions
 without thermal noise

⇒ Quenched-Ingnited transition DST-like transition for temperature but not for viscosity

Mpemba effect: Anomalous temperature relaxation

E. B. Mpemba (1963) found that "some hot water (ice cream mix; a typical suspension) can freeze faster than cold water."

Is it true?

Many debates to this phenomena

- Existence of many control parameters and setups.
- Poor reproducibility

Physics World Physics World

"Even if the Mpemba effect is real

- if hot water can sometimes freeze more quickly than cold -

it is not clear whether the explanation would be trivial or illuminating."

Modern perspective on Mpemba effect

- Freezing is complex... (supercooling, evaporation, convection...)
 We focus on ...
 "a hot fluid can have lower temperature than a cold fluid" as time goes on
- Inverse Mpemba effect in heating processes can exist.

Recent theoretical studies

- Granular gas (temperature)

 ∠∋ Lasanta et al. PRL 119, 148001 (2017)
 Existence of both ME and inverse ME
 ⇒ origin: kurtosis of velocity distribution.
- Trapping process (dist. from equil.)
 ∠ Lu & Raz, PNAS 114, 5083 (2017)
 slow relaxation by trapping at local minima.

Question: But how can we control them?

Purpose of this talk

In this talk, we...

- construct the kinetic theory of the inertial suspensions.
- demonstrate that our theory gives a precise description of suspensions.
 - DST-like behavior (ignited-quench transition) in dilute systems.
 - **DST-like** \rightarrow **CST-like** as the density increases.
 - applicability to denser systems.
- discuss anomalous relaxation processes.
 - The normal Mpemba effect (NME) occurs quite naturally.
 - The anomalous ME (AME) also exists.

1st part: General framework of Enskog theory

Langevin model for suspensions

Suspended particles are described by

Langevin equation:
$$\frac{dp_i}{dt} = -\zeta p_i + F_i^{(imp)} + m\xi_i$$
(1) (2) (3)

ParametersPacking fraction: φ Restitution coeff.: eShear rate: $\dot{\gamma}$ Env. temp.: T_{env}

 $p_i \equiv m(v_i - \dot{\gamma} y_i e_x) = mV_i$: peculiar momentum rightarrow D. J. Evans & G. Morriss, "Statistical Mechanics of Nonequilibrium Liquids"(1) drag term

(2) impulsive force due to collisions $v'_{1} = v_{1} - \frac{1+e}{2}(v_{12} \cdot \hat{\sigma})\hat{\sigma}, \quad v'_{2} = v_{2} + \frac{1+e}{2}(v_{12} \cdot \hat{\sigma})\hat{\sigma}$ (3) thermal noise term satisfies $\langle \xi_{i}(t) \rangle = 0, \quad \langle \xi_{i,\alpha}(t)\xi_{j,\beta}(t') \rangle = \frac{2\zeta T_{\text{env}}}{m}\delta_{ij}\delta_{\alpha\beta}\delta(t-t')$

Langevin model for suspensions

Langevin equation:
$$\frac{dp_i}{dt} = -\zeta p_i + F_i^{(imp)} + m\xi_i$$

Assumptions:

- drag ∝ solvent velocity (Stokesian)
- drag coefficient $\zeta = \text{const.}$
- Existence of the noise term
 - ⇒ The system can reach a thermal equilibrium state.

Enskog kinetic equation for the inertial suspension

■ Langevin model ⇔ kinetic (Enskog) equation $\begin{pmatrix} \frac{\partial}{\partial t} - \dot{\gamma}V_{y} \frac{\partial}{\partial V_{x}} \end{pmatrix} f(V,t) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \right) + f(V) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \right) + f(V) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \right) + f(V) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \right) + f(V) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \right) + f(V) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \right) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \right) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \right) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \right) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{env}}{m} \frac{\partial}{\partial V} \right] f(V,t) \\ f(V) = \begin{cases} \frac{\partial}{\partial$

• No inhomogeneity: $f(\mathbf{r}, \mathbf{V}, t) = f(\mathbf{V}, t)$

Collision integral:

$$J_{\mathrm{E}}(\boldsymbol{V}_{1}|\boldsymbol{f}^{(2)}) = \sigma^{d-1} \int d\boldsymbol{V}_{2} \int d\boldsymbol{\hat{\sigma}} \Theta(\boldsymbol{\hat{\sigma}} \cdot \boldsymbol{V}_{12})(\boldsymbol{\hat{\sigma}} \cdot \boldsymbol{V}_{12}) \\ \times \left[\frac{1}{e^{2}}f^{(2)}(\boldsymbol{V}_{1}^{*}, \boldsymbol{V}_{2}^{*} + \dot{\gamma}\sigma\hat{\sigma}_{y}\boldsymbol{e}_{x}, t) - f^{(2)}(\boldsymbol{V}_{1}, \boldsymbol{V}_{2} - \dot{\gamma}\sigma\hat{\sigma}_{y}\boldsymbol{e}_{x}, t)\right]$$

Decoupling: (two-body VDF) \rightarrow (RDF)×(one-body VDF)×(one-body VDF) $f^{(2)}(\boldsymbol{v}_1, \boldsymbol{v}_2, t) = g_0(\varphi)f(\boldsymbol{v}_1, t)f(\boldsymbol{v}_2, t)$

radial distribution function (RDF)

Enskog kinetic equation for the inertial suspension

Enskog equation

Evolution equation for the kinetic stress: $\frac{\partial}{\partial t}P_{\alpha\beta}^{k} + \dot{\gamma}(\delta_{\alpha x}P_{y\beta}^{k} + \delta_{\beta x}P_{y\alpha}^{k}) = -2\zeta(P_{\alpha\beta}^{k} - nT_{env}\delta_{\alpha\beta}) - \Lambda_{\alpha\beta}$ Kinetic stress: $P_{\alpha\beta}^{k} = m\int dVV_{\alpha}V_{\beta}f(V,t)$ Moment of the collision integral: $\Lambda_{\alpha\beta} = -m\int dVV_{\alpha}V_{\beta}J_{E}(V|f,f)$ **Closure: Grad's moment method** $\Pi_{\alpha\beta} \equiv \frac{P_{\alpha\beta}^{k}}{m} - \delta_{\alpha\beta}$: dimensionless stress

 $f(\mathbf{V}) = f_{\rm M}(\mathbf{V}) \left(1 + \frac{m}{2T} \Pi_{\alpha\beta} V_{\alpha} V_{\beta}\right)$

 $\Pi_{\alpha\beta} \equiv \frac{P_{\alpha\beta}^{k}}{nT} - \delta_{\alpha\beta}: \text{ dimensionless stress}$ $f_{M}(V) = n \left(\frac{m}{2\pi T}\right)^{\frac{3}{2}} \exp\left(-\frac{mV^{2}}{2T}\right)$

In principle, we can explicitly evaluate $\Lambda_{\alpha\beta}$.

First, we consider the dilute limit, $P_{\alpha\beta} \simeq P_{\alpha\beta}^k$.

Results: DST in dilute suspensions

Flow curves for various restitution coefficient *e* ⇒ perfect agreement between theory and simulation

From "DST-like" to "CST-like" transitions

- Collisional stress $P_{\alpha\beta}^{c}$ plays an important role in dense cases.
 - $P_{\alpha\beta}^{c} = \frac{1+e}{4}m\sigma^{3}g_{0}\int d\widehat{\boldsymbol{\sigma}}\widehat{\sigma}_{\alpha}\widehat{\sigma}_{\beta}I^{(2)}(\widehat{\boldsymbol{\sigma}})$
- **DST-like trans.** becomes **CST-like trans.** as the density increases. ($\varphi_c \approx 0.0176$)

To what extent does the theory work?

Shear viscosity at finite densities

Our theory works well without any fitting parameter for $\varphi \leq 0.5$! (slightly above the Alder trans. point)

Denser systems

• $\varphi \simeq 0.50$ is insufficient (or, rather dilute) for glass and jamming communities.

Question:

Is our theory applicable to denser situations?

- Monodisperse system is inappropriate for φ ≥ 0.49.
 ⇒ Binary systems can avoid crystallization.
- We are now constructing the theory of binary mixtures (not yet completed).
- The theory can describe the long-time correlation?

Flow curves for denser binary systems

- Trial to compare the simulation results with the theory
- Theory = monodisperse theory

with RDF at contact $g_0(\varphi) = \frac{1-\frac{\varphi_f}{2}}{(1-\varphi_f)^3} \frac{\varphi_J - \varphi_f}{\varphi - \varphi_f} \leq S$. Torquato, Phys. Rev. E 51, 3170 (1995).

Description of DST for dense suspensions

Question:

Can we describe DST for dense frictional suspensions by the kinetic theory?

Simulation for frictional hard-core models. The answer is $NO! \Rightarrow$ Why?

- Stable finite duration of contact must be important for DST.
- This stable contact can be described by the soft-core models. η^{*} 10²
 ∠₇ S. Sugimoto & S. Takada, JPSJ 89, 084803 (2020) for dilute case

Low shear rate: crystallization effect High shear rate: Bagnodlian

2nd part: Mpemba effect

Mpemba is NOT anomalous in inertial suspensions!

Mpemba effect occurs quite naturally.

• For simplicity, we consider the elastic case (e = 1). Then, the equation of temperature becomes

Eq. system must have faster cooling than noneq. system. \Rightarrow Initial overshoot is the origin of the Mpemba effect.

Typical time evolutions

- We call this as "NME+AME."
- Good agreement without any fitting parameters.
 (Simulation: 100 samples)

2021/05/11 Frontier research on glasses and related complex systems

Existence of

- normal Mpemba effect (NME) and
- anomalous Mpemba effect (AME)

AME: nontrivial

- = nonlinear consequence
 - after the early relaxation.
- \doteqdot damped vibration after the overshoot

Phase diagram

- The phase diamgram includes "No Mpemba," "NME," "AME," and "NME+AME."
- "AME" disappears at around at $\varphi = 0.04$.
- "NME+AME" tends to disappear at around $\varphi = 0.10$.

Inverse, mixed, & viscosity Mpemba effects

- We also find the existence of
 - inverse Mpemba effect (in heating process) and
 - mixed Mpemba effect (one in heating and another cooling processes).

<u>Mpemba effect for viscosity</u>

ME is also observed for the viscosity. But, at most only once

Discussion:

Hydrodynamic interaction

Our current model is an oversimplified model.

 \Rightarrow For denser systems,

the drag becomes the resistance matrix

(instead of the constant drag force ζ).

∠ Kim & Karrila, "Microhydrodynamics" (1991)

 \Rightarrow The resistance depends on the configurations of particles.

Local potential trapping

Recent experiments Single colloidal particle is trapped in a potential by optical tweezers. ⇒ Mpemba effect = hopping process from one local minimum to another.

Conclusion of the talk

- We have constructed the kinetic theory to describe the rheology of the inertial suspensions
- We have demonstrated that our theory gives a precise description of suspensions.
 - **DST-like** behavior (ignited-quench transition) in dilute systems.
 - **DST-like** \rightarrow **CST-like** as the density increases.
 - applicable to denser regime (not yet completed)
- We have examined anomalous relaxation processes observed in the inertial suspension.
 - Normal and anomalous Mpemba effects (NME and AME) when we control the parameters.