準静的剪断下における摩擦のある アモルファス固体のヤコビアン行列による解析

<u>井嶋 大輔1, 齊藤 国靖2, 大槻 道夫3, 早川 尚男1</u> 1京大基研, 2京産大理, 3阪大基礎工

Introduction

Definition of Jacobian $J_{ii}^{\alpha\beta}$

 $J_{ij}^{\alpha\beta} = -\frac{\partial \tilde{F}_{i}^{\alpha}}{\partial q_{j}^{\beta}}, \begin{array}{l} \tilde{F}_{i}^{\alpha} : \alpha \text{ component of generalized force acting on } i\text{-th particle } \vec{F}_{i} = (F_{i}^{x}, F_{i}^{y}, T_{i})^{T}, \\ q_{i}^{\alpha} : \alpha \text{ component of generalized } i\text{-th particle coordinate } q_{i} := (r_{i}^{x}, r_{i}^{y}, \theta_{i}), \\ T_{i} : \text{Torque of } i \text{ th particle,} \end{array}$

 θ_i : Rotational degree of *i* th particle.

*J. Chattoraj et al., Phys. Rev. Lett. 123, 098003 (2019).

Introduction

Question?

Can we predict *G* by Jacobian?

Purpose

To obtain the prediction of *G* in the limit $\gamma \rightarrow 0$

Our numerical protocol

- Preparation of initial configuration
- 1. Preparing the frictionless configuration at density ϕ with energy minimization by FIRE*
- 2. Incorporating the tangential forces
- 3. Relaxation by drag force $-\eta \vec{v}_i$ until $|F_i^{\alpha}| < F_{\text{Th}}$

*E. Bitzek et al., Phys. Rev. Lett., 97, 170201 (2006).

Athermal quasistatic shear protocol

- I. Applying affine shear deformation $\Delta \gamma$ to the system with Lees-Edwards periodic boundary condition
- II. Relaxation by drag force $-\eta \vec{v}_i$ until $|F_i^{\alpha}| < F_{\text{Th}}$

Numerical methods

Equation of motion

- \vec{F}_i^c : Contact force of *i* particle
- T_i^c : Torque of *i* particle
- θ_i : rotational degree of *i* particle

$$\vec{F}_{i}^{c} = \sum_{j} \left(\vec{f}_{ij,n} + \vec{f}_{ij,t} \right) \Theta(a_{i} + a_{j} - r_{ij}),$$

$$\vec{f}_{ij,n} = k_{n} \xi_{ij,n}^{3/2} \overrightarrow{n}_{ij},$$

$$\vec{f}_{ij,t} = -k_{t} \xi_{ij,n}^{1/2} \overrightarrow{\xi}_{ij,t}$$

*nonslip model

-Our simulated system

2 dimensional binary disks (N = 128),

Step strain: $\Delta \gamma = 10^{-10}$,

Threshold value of mechanical equilibrium condition: $F_{\text{Th}}/(k_n d_0) = 10^{-14}$, Density $0.80 \le \phi \le 0.90$, Tangential ratio $0.0 \le k_t/k_n \le 10.0$.

Expression of G by J

We obtain shear modulus G by J:

$$G(0) = \frac{1}{2L^2} \sum_{i,j(i\neq j)} \left[y_{ij}^2(0) J_{N,ij}^{xx}(0) + \sum_{\kappa=x,y} y_{ij}(0) J_{ij}^{\kappa x}(0) \frac{du_{ij}^{\kappa}(0)}{d\gamma} + y_{ij}(0) J_{ij}^{\ell x}(0) \left(\frac{du_i^{\ell}(0)}{d\gamma} + \frac{du_j^{\ell}(0)}{d\gamma} \right) \right] \cdots (1)$$

Affine shear modulus Non affine shear modulus

with $J_{ij}^{\alpha\beta} = -\frac{\partial f_{ij}^{\beta}}{\partial q_i^{\alpha}}$, $J_{N,ij}^{\alpha\beta} = -\frac{\partial f_{N,ij}^{\beta}}{\partial q_i^{\alpha}}$, $u_{ij}^{\alpha} := u_i^{\alpha} - u_j^{\alpha}$, $u_i^{\alpha}(0) = q_i^{\alpha}(\Delta\gamma) - q_i^{\alpha}(0) - \Delta\gamma\delta_{\alpha x}$: non affine displacement.

Calculation methods of G

ϕ -dependence

Jacobian's expression reproduces ϕ dependence.

 $G(\phi)$ has a linear dependence of $\phi - \phi_J^*$.

C*. *S*. *O'Hern et al.*, *Phys. Rev. Lett.*, **88, 7 (2002), *E*. Somfai et al., *Phys. Rev. E*, **75**, 020301(*R*) (2007).

[7]

Density of State

 $\phi = 0.87$

An isolated band at low frequency^{*} appears for $\hat{k}_t \ge 0.01$.

*C. F. Schreck et al., Phys. Rev. E, 85, 061305 (2012).

Summary

Frictional amorphous solids under quasi-static shear are analyzed using the Jacobian.

Shear modulus G in the limit $\gamma \rightarrow 0$

• Jacobain's representation can reproduce G.

Density of state $D(\omega_r)$ in the limit $\gamma \to 0$

• An isolated band at low frequency appears for $\hat{k}_t \ge 0.01$.

Future work

• Expanding non affine displacements $u_i^{\alpha}(0)$ by eigenfunctions of Jacobian

