Jacobian analysis for frictional amorphous solids under quasistatic shear

<u>Daisuke Ishima¹</u>, Kuniyasu Saitoh², <u>Michio Otsuki³</u>, Hisao Hayakawa¹ ¹YITP, ²Kyoto Sangyo Univ., ³Osaka Univ.

Introduction Amorphous solids

Frictional amorphous solids

Previous researches for frictionless solids

Definition of Hessian $H_{ii}^{\alpha\beta}$

$$H_{ij}^{\alpha\beta} = \frac{\partial^2 U}{\partial r_i^{\alpha} \partial r_j^{\beta}} = -\frac{\partial F_i^{\alpha}}{\partial r_j^{\beta}},$$

U: Potential energy,

 F_i^{α} : α component of force acting on *i*-th particle,

 r_i^{α} : α component of *i*-th particle coordinate.

We obtain DOS from eigenvalues of *H*.

*Note that zero eigenmodes are related floppy mode or transnational mode.

C. S. O'Hern et al., Phys. Rev. E 68, 011306 (2003).

Previous researches for frictional solids

Definition of Jacobian $J_{ii}^{\alpha\beta}$

 $J_{ij}^{\alpha\beta} = -\frac{\partial \tilde{F}_{i}^{\alpha}}{\partial q_{j}^{\beta}}, \begin{array}{l} \tilde{F}_{i}^{\alpha} : \alpha \text{ component of generalized force acting on } i\text{-th particle } \vec{F}_{i} = (F_{i}^{x}, F_{i}^{y}, T_{i})^{T}, \\ q_{i}^{\alpha} : \alpha \text{ component of generalized } i\text{-th particle coordinate } q_{i} := (r_{i}^{x}, r_{i}^{y}, \theta_{i}), \\ T_{i} : \text{Torque of } i \text{ th particle,} \end{array}$

 θ_i : Rotational degree of *i* th particle.

They identify the floppy hole* from Jacobian's zero eigenvalue

*Floppy hole: NOT contribute rigidity

Colored rigid clusters & floppy holes

K. Liu et al., Phys. Rev. Lett. 126, 088002 (2021).

[4]

Previous researches for frictional solids

Definition of Jacobian $J_{ii}^{\alpha\beta}$

 $J_{ij}^{\alpha\beta} = -\frac{\partial \tilde{F}_{i}^{\alpha}}{\partial q_{j}^{\beta}}, \begin{array}{l} \tilde{F}_{i}^{\alpha} : \alpha \text{ component of generalized force acting on } i\text{-th particle } \vec{F}_{i} = (F_{i}^{x}, F_{i}^{y}, T_{i})^{T}, \\ q_{i}^{\alpha} : \alpha \text{ component of generalized } i\text{-th particle coordinate } q_{i} := (r_{i}^{x}, r_{i}^{y}, \theta_{i}), \\ T_{i} : \text{Torque of } i \text{ th particle,} \end{array}$

 θ_i : Rotational degree of *i* th particle.

*J. Chattoraj et al., Phys. Rev. Lett. 123, 098003 (2019).

[5]

Introduction

Question?

Can we predict G by Jacobian?

Purpose

To obtain the prediction of *G* in the limit $\gamma \rightarrow 0$

Our numerical protocol

- Preparation of initial configuration
- 1. Preparing the frictionless configuration at density ϕ with energy minimization by FIRE*
- 2. Incorporating the tangential forces
- 3. Relaxation by dissipation until $|F_i^{\alpha}| < F_{Th}$

*E. Bitzek et al., Phys. Rev. Lett., 97, 170201 (2006).

Athermal quasistatic shear protocol

- I. Applying affine shear deformation $\Delta \gamma$ to the system with Lees-Edwards periodic boundary condition
- II. Relaxation by dissipation until $|F_i^{\alpha}| < F_{Th}$

Numerical methods

Equation of motion

$$m_{i}\frac{d^{2}\vec{x}_{i}}{dt^{2}} = \vec{F}_{i}$$

$$I_{i}\frac{d^{2}\theta_{i}}{dt^{2}} = T_{i}$$

$$\vec{F}_{i}: \text{ Force of } T_{i}: \text{ Torque } \theta_{i}: \text{ rotation } \theta_{i}: \text{ rotation } f_{i}: \text{ rotation } f_{i}: f_{i}=\sum_{j} \left(\vec{f}_{N,ij} = k_{j}\right)$$

$$\vec{f}_{N,ij}=k_{j}$$

$$\vec{f}_{T,ij}=-k_{j}$$

 \overrightarrow{F}_i : Force of *i* particle

 T_i : Torque of *i* particle

 θ_i : rotational degree of *i* particle

$$\vec{F}_{i} = \sum_{j} \left(\vec{f}_{N,ij} + \vec{f}_{T,ij} \right) \Theta(a_{i} + a_{j} - r_{ij}),$$
$$\vec{f}_{N,ij} = k_{N} \xi_{N,ij}^{3/2} \overrightarrow{n}_{ij} - \eta_{N} \overrightarrow{v}_{N,ij},$$
$$\vec{f}_{T,ij} = -k_{T} \xi_{N,ij}^{1/2} \overrightarrow{\xi}_{T,ij} - \eta_{T} \overrightarrow{v}_{T,ij}$$

*nonslip model

-Our simulated system

2 dimensional binary disks (N = 128),

Step strain: $\Delta \gamma = 10^{-10}$,

Threshold value of mechanical equilibrium condition: $F_{\text{Th}}/(k_N d_0) = 10^{-14}$, Density $0.80 \le \phi \le 0.90$, Tangential ratio $0.0 \le k_T/k_N \le 10.0$.

Density of State

frequency region* **C*. *F*. Schreck et al., Phys. Rev. E, **85**, 061305 (2012).

Expression of G by J

We obtain shear modulus G by J:

$$G(0) = \frac{1}{2L^2} \sum_{i,j(i\neq j)} \left[y_{ij}^2(0) J_{N,ij}^{xx}(0) + \sum_{\kappa=x,y} y_{ij}(0) J_{ij}^{\kappa x}(0) \frac{du_{ij}^{\kappa}(0)}{d\gamma} + y_{ij}(0) J_{ij}^{\ell x}(0) \left(\frac{du_i^{\ell}(0)}{d\gamma} + \frac{du_j^{\ell}(0)}{d\gamma} \right) \right] \cdots (1)$$

Affine shear modulus Non affine shear modulus

with $J_{ij}^{\alpha\beta} = -\frac{\partial f_{ij}^{\beta}}{\partial q_i^{\alpha}}, J_{N,ij}^{\alpha\beta} = -\frac{\partial f_{N,ij}^{\beta}}{\partial q_i^{\alpha}}, u_{ij}^{\alpha} := u_i^{\alpha} - u_j^{\alpha}, u_i^{\alpha}(0) = q_i^{\alpha}(\Delta\gamma) - q_i^{\alpha}(0) - \Delta\gamma\delta_{\alpha x}$: non affine displacement.

Calculation methods of G

ϕ -dependence

Jacobian's expression reproduces ϕ dependence.

 $G(\phi)$ has a linear dependence of $\phi - \phi_J^*$.

C*. *S*. *O'Hern et al.*, *Phys. Rev. Lett.*, **88, 7 (2002), *E*. Somfai et al., *Phys. Rev. E*, **75**, 020301(*R*) (2007).

[11]

Eigenfunction expansion for $k_T = 0$

We obtain shear modulus *G* by *H*:

$$G(0) = \frac{1}{2L^2} \sum_{i,j(i\neq j)} \left[y_{ij}^2(0) H_{ij}^{xx}(0) + \sum_{\kappa=x,y} y_{ij}(0) H_{ij}^{\kappa x}(0) \frac{du_{ij}^{\kappa}(0)}{d\gamma} \right] \quad \dots \quad (2)$$

with Hessian:
$$H_{ij}^{\alpha\beta} = -\frac{\partial f_{N,ij}^{\beta}}{\partial q_i^{\alpha}} = \frac{\partial^2 U_N}{\partial q_i^{\alpha} \partial q_j^{\beta}}$$
 $(\alpha, \beta = x, y).$

Eigenfunction expansion of $|du/d\gamma\rangle$ by H^* :

$$\left|\frac{du}{d\gamma}\right\rangle = \sum_{n} \frac{\langle n \mid \Xi \rangle}{\lambda_n} \mid n \rangle \quad \cdots \quad (3)$$

*A. Lemaître & C. Maloney, J. Stat. Phys. 123, 2 (2006).

where λ_n , $|n\rangle$: *n*-th eigenvalue & vector, $|\Xi\rangle =$

Non affine displacement $k_t = 0$

We can predict G from initial information by using Eqs. (2) & (3).

 $\sum_{j \neq 1} H_{1j}^{xx}$ $\sum_{j \neq 1} H_{1j}^{xy}$

 $\sum_{j \neq N} H_{Nj}^{xx}$ $\sum_{j \neq N} H_{Nj}^{xy}$

ϕ -dependence for $k_T = 0$ (frictionless)

We can predicts $G(\phi)$ from initial information.

Eigenfunction expansion for small k_T

We ignore the tangential part of J for small k_T :

$$J = J_N + J_T$$

$$\simeq J_N \quad (k_T \ll k_N)$$

$$= H,$$

where
$$J_N := -\frac{\partial f_N}{\partial q}, J_T := -\frac{\partial f_T}{\partial q}$$

We use Hessian's formula

$$G(0) = \frac{1}{2L^2} \sum_{i,j(i\neq j)} \left[y_{ij}^2(0) H_{ij}^{xx}(0) + \sum_{\kappa=x,y} y_{ij}(0) H_{ij}^{\kappa x}(0) \frac{du_{ij}^{\kappa}(0)}{d\gamma} \right] \quad \dots \quad (2)$$

$$\frac{du}{d\gamma} \right\rangle = \sum_{n} \frac{\langle n \mid \Xi \rangle}{\lambda_n} \mid n \rangle \quad \dots \quad (3)$$

Can we predict G from initial information by using Eqs. (2) & (3)?

Non affine displacement $k_t = 0.001$

ϕ -dependence for $0 \le k_t/k_n \le 1.0$

Hessian's approach predicts G at $\hat{k}_T = 0.001$. We have to consider the tangential part for $k_T \ge 0.01$.

Summary

Frictional amorphous solids under quasi-static shear are analyzed using the Jacobian.

Density of state $D(\omega_r)$ in the limit $\gamma \to 0$

• As k_T increases, low frequency part moves high

frequency region

Shear modulus *G* in the limit $\gamma \rightarrow 0$

- Jacobain's representation can reproduce G.
- Hessian'a approach predict G for $k_T \le 0.001$.

Future work

• Expanding non affine displacements $u_i^{\alpha}(0)$ by eigenfunctions of Jacobian

