

Viscoelastic response of the impact process on dense suspensions

Pradipto and Hayakawa, Phys. Fluids 33, 093310 (2021)

Pradipto and Hisao Hayakawa

Yukawa Institute for Theoretical Physics Kyoto University

Kakenhi meeting, YITP 12/3/2021

Introduction

Suspensions

Mixture of macroscopic, undissolved particles in fluid

Our focus is on the simplest type of suspension: hard, athermal, nonattractive particles, suspended in a Newtonian fluid.

Introduction

Suspensions

Low Reynolds number

 $Re \ll 1$

Discontinuous shear thickening (DST) under shear

Stokes equation

 $\nabla p = \eta \nabla^2 \mathbf{u}$ $\nabla \cdot \mathbf{u} = \mathbf{0}$

Egres and Wagner, J. Rheol 49, 719-746 (2005)

Introduction Dense suspensions under impact

source: https://www.youtube.com/watch?v=hP88C-_LgnE&list=PLVjiIPzFTOLpxiwdwrFuPYSIBpr6jFm32

Impact-induced hardening

Occurs on the simplest type of suspensions

Cannot be observed in liquid or particles alone

Physical explanations remain elusive

- Inherently far-from-equilibrium
- Highly dissipative —> transient

Introduction Dense suspensions under impact

Impact-induced hardening

Even fracture can exist!

Roche et al, PRL 2013

Run on suspension

Brown, et. al., Rep. Prog. Phys 77, 046602 (2014).

Liquid body armor

https://www.youtube.com/watch?v=L5Ts9IYZIDk

Introduction Dense suspensions under impact **Elastic rebound** Egawa and Katsuragi, Phys. Fluids **31**, 053304 (2019) Solid projectile held on an electromagnet Height gauge High-speed camera E **Target fluid USB** camera Light Vibrator t = 5 mst = 2 mst = -2 mst = -1 mst = 0t = 1 mst = 3 mst = 4 ms

6

Simulation

Pradipto and Hayakawa, Phys. Rev. Fluids 6, 033301 (2021).

Introduction Dense suspensions under impact

Different from shear jamming and shear thickening

Pradipto and Hayakawa, Phys. Rev. Fluids 6, 033301 (2021).

Normal stress

Shear stress

Dynamically jammed region

- Localized and transient jammed area beneath the impactor
- High normal stress instead of shear stress

Experimentally observed Waitukaitis and Jaeger, Nature **487**, 205 (2012)

Rebound depends on impact velocity and frictional interactions between

particles Pradipto and Hayakawa, Phys. Rev. Fluids 6, 033301 (2021).

Rebounds also depend on the impact velocity ..

We can run on top suspension but we'll sink if we walk

.. and friction coefficients

Frictional interaction increases the contact duration between particles that leads to a stronger hardening Introduction Dense suspensions under impact

Power-law relations between u_0 , F_{max} , and t_{max}

Brassard, et. al, JFM **923**, A38 (2021)

Experiment

Ingredients of our simulation

Hydrodynamic Interaction

Contact between particles

Free surface of the liquid

Hydrodynamic interactions: LBM + Lubrication corrections

LBM

• Calculate hydrodynamic field on nodes from f_i

 $f_i \rightarrow$ lattice distribution function

• Calculate hydrodynamic force on the particles

Lubrication corrections

Nguyen and Ladd, PRE 66, 046708,(2002)

Corrections 2-body resistance matrix

$$\begin{pmatrix} \mathbf{F}_1 \\ \mathbf{T}_1 \\ \mathbf{T}_2 \\ \mathbf{S}_1 \\ \mathbf{S}_2 \end{pmatrix} = - \begin{pmatrix} \mathbf{A}_{11} & -\mathbf{B}_{11} & \mathbf{B}_{22} \\ \mathbf{B}_{11} & \mathbf{C}_{11} & \mathbf{C}_{12} \\ -\mathbf{B}_{22} & \mathbf{C}_{12} & \mathbf{C}_{22} \\ \mathbf{G}_{11} & \mathbf{H}_{11} & \mathbf{H}_{12} \\ \mathbf{G}_{22} & -\mathbf{H}_{21} & \mathbf{H}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{U}_{12} \\ \mathbf{\Omega}_1 \\ \mathbf{\Omega}_2 \end{pmatrix}$$

With $\mathbf{U}_{12} = \mathbf{U}_2 - \mathbf{U}_1$ and $\mathbf{F}_2 = - \, \mathbf{F}_1$

- No external or local flow field contributions
- Only activated when the gap is small
- Submatrices are calculated with leading order coefficients in Kim and Karilla, Microhydrodynamics (1991)

Underestimate hydrodynamic force on small gap due to shared nodes

c.f. The actual 2-body resistance matrix

Jeffrey and Ohnishi, JFM, (1984)

Jeffrey, Phys. Fluids, (1992)

Ichiki, et. al, arXiv:1302.0461

$$\begin{bmatrix} \boldsymbol{F}^{(1)} \\ \boldsymbol{F}^{(2)} \\ \boldsymbol{T}^{(1)} \\ \boldsymbol{T}^{(2)} \\ \boldsymbol{S}^{(2)} \end{bmatrix} = -\begin{bmatrix} \mathsf{A}_{11} & \mathsf{A}_{12} & \widetilde{\mathsf{B}}_{11} & \widetilde{\mathsf{B}}_{12} & \widetilde{\mathsf{G}}_{11} & \widetilde{\mathsf{G}}_{12} \\ \mathsf{A}_{21} & \mathsf{A}_{22} & \widetilde{\mathsf{B}}_{21} & \widetilde{\mathsf{B}}_{22} & \widetilde{\mathsf{G}}_{21} & \widetilde{\mathsf{G}}_{22} \\ \mathsf{B}_{11} & \mathsf{B}_{12} & \mathsf{C}_{11} & \mathsf{C}_{12} & \widetilde{\mathsf{H}}_{11} & \widetilde{\mathsf{H}}_{12} \\ \mathsf{B}_{21} & \mathsf{B}_{22} & \mathsf{C}_{21} & \mathsf{C}_{22} & \widetilde{\mathsf{H}}_{21} & \widetilde{\mathsf{H}}_{22} \\ \mathsf{G}_{11} & \mathsf{G}_{12} & \mathsf{H}_{11} & \mathsf{H}_{12} & \mathsf{H}_{11} & \mathsf{M}_{12} \\ \mathsf{G}_{21} & \mathsf{G}_{22} & \mathsf{H}_{21} & \mathsf{H}_{22} & \mathsf{M}_{21} & \mathsf{M}_{22} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{U}^{(1)} - \boldsymbol{u}^{\infty}(\boldsymbol{x}_{1}) \\ \boldsymbol{U}^{(2)} - \boldsymbol{u}^{\infty}(\boldsymbol{x}_{2}) \\ \boldsymbol{\Omega}^{(1)} - \boldsymbol{\Omega}^{\infty} \\ \boldsymbol{\Omega}^{(2)} - \boldsymbol{\Omega}^{\infty} \\ \boldsymbol{E}^{(1)} - \boldsymbol{E}^{\infty} \\ \boldsymbol{E}^{(2)} - \boldsymbol{E}^{\infty} \end{bmatrix}$$

Hydrodynamic interactions: Benchmark tests

1. Two particles under simple shear

Theory

Jeffrey and Ohnishi, JFM, (1984) Jeffrey, Phys. Fluids, (1992) Ichiki, et. al, arXiv:1302.0461

Particles don't make contact

LBM+Lubrication corrections

LBM Only

Particles don't make contact

Particles make contact

Free surface - Mass tracking algorithm

Leonardi, et al., Phys. Rev. E 92, 052204 (2015)

Real interface Gas-liquid interface Interface nodes Liquid nodes Gas nodes

$$m_f(\mathbf{r}, t) = \lambda \rho_f(\mathbf{r}, t)$$

Liquid fraction $\begin{cases} \lambda = 1 & \text{if the node is liquid} \\ 0 < \lambda < 1 & \text{if the node is interface,} \\ \lambda = 0 & \text{if the node is gas.} \end{cases}$

 $lpha_i$ depends on the neighbors

$$\alpha_{i} = \begin{cases} \frac{1}{2} [\lambda(\mathbf{r}, t) + \lambda(\mathbf{r} + \mathbf{c}_{i'}, t)] \\ 1 \\ 0 \end{cases}$$

if neighbor is interface if neighbor is fluid if neighbor is gas

Evolution equation $m_f(t + \Delta t) = m_f(t) + \sum_i \alpha_i (f_{i'}(\mathbf{r} + \mathbf{c}_{i'}, t) - f_i(\mathbf{r}, t)),$

$$m_f(\mathbf{x}, t) = 0$$

Transform interface to gas

 $m_f(\mathbf{x}, t) = \rho_f^*(\mathbf{x}, t)$

Transform interface to liquid

Liquid neighbors become interface

Gas neighbors become interface

Contact between suspended particles

Maximum force exerted on the impactor (F_{max}) and time to reach it (t_{max})

Force exerted on the impactor

Crossover and power-law relationship between $F_{\rm max}$ and u_0

- **Crossover** from low u_0 to high u_0 regime
- Low u_0 regime: Independent of u_0
- High u_0 regime: $F_{\text{max}} \propto u_0^{\alpha}$ and $t_{\text{max}} \propto u_0^{\beta}$
- Independent of system size

How does this relationship connects with the rebound process?

Experiments:

 $\alpha \approx 1.5 t_{\rm max} \approx -0.5$

Brassard, et. al, **JFM** 923, A38 (2021)

Revisiting rebound process

Rebound depends on the depth of the container

Revisiting rebound process

Rebound and t_{max} **takes place on different time**

Phenomenology Floating model

Stokes drag Pressure drag Friction drag
$$F_D^I = F_{D,p}^I + F_{D,f}^I$$

For partially sinking sphere

$$\begin{split} F_{D,p}^{I} &= 3\pi \eta_{\text{eff}} a_{I} \dot{z}_{I} \int_{0}^{\theta_{0}} \cos^{2} \theta \sin \theta d\theta, \\ F_{D,f}^{I} &= 3\pi \eta_{\text{eff}} a_{I} \dot{z}_{I} \int_{0}^{\theta_{0}} \sin^{3} \theta d\theta \\ &= 3\pi \eta_{\text{eff}} a_{I} \dot{z}_{I} (1 - \cos \theta_{0}) - F_{D,p}^{I}, \end{split}$$

Drag on the impactor is proportional to its depth before completely immersed

$$|z| = a_I(1 - \cos \theta_0)$$

$$F_D^I = 3\pi \eta_{\text{eff}} \dot{z}_I |z|$$

Drag term in floating model

 $\eta_{\rm eff} \rightarrow \,$ Effective viscosity of the region beneath the impactor

Phenomenology Capturing rebound

The origin of the elastic rebound is the transmission of force from the impactor to the bottom plate and vice versa

Include elastic term to the model,

$$F_D^I = 3\pi \eta_{\text{eff}} a_I \dot{z}_I |z| + n(t) k_n z_I \qquad k_n \to \text{Spring constant of the DEM}$$
(particle's stiffness)

 $n(t) \longrightarrow \stackrel{\text{Numbers of percolating force chains from the impactor to the bottom boundary}}{}$

Phenomenology

22

• Floating model can capture the crossover as well as the power-law exponent for high u_0

- Floating model can be solved analytically
- For $u_0 \gg 1/\eta_{\text{eff}}$ one can obtain:
 - $F_{\rm max} \propto u_0^{\frac{3}{2}}$ and $t_{\rm max} \propto u_0^{-\frac{1}{2}}$
- Elastic term from percolating force chains is necessary to recover rebound

Discussions

Viscoelastic response of suspensions under impact

- $F_{\rm max} \rightarrow$ viscous process
- Rebound \rightarrow Elastic force from the the percolating force chains

The value of $\eta_{\rm eff}$ is about 100 times larger than the solvent viscosity and 5 times larger than the one observed in DST Pradipto and Hayakawa, Soft Matter **16**, 945 (2020)

Viscosity enhancement of the dynamically jammed region

Conclusions

We found a crossover of $F_{\rm max}$ and $t_{\rm max}$ from low u_0 to high u_0 regime

For high u_0 regime: $F_{\text{max}} \propto u_0^{1.432}$ and $t_{\text{max}} \propto u_0^{-0.523}$, independent of system size

Rebound motion depends on the system size and takes place later than t_{max}

Our phenomenology shows that $F_{\rm max}$ arises solely from the viscous process and rebound is originated from elastic force due to the percolating force chains