

^{国立大学法人 東京農工大学} ^{mical} 機械システム工学専攻・学科 ^{ming} Mechanical Systems Engineering

Discontinuous shear thickening of a moderately dense inertial suspension composed of frictionless soft-core particles

Satoshi Takada (TUAT) Kazuhiro Hara (TUAT) Hisao Hayakawa (YITP, Kyoto Univ.)

Shear thickening

- 2
- Shear thickening: viscosity: $\eta_s(\varphi) = \sigma(\varphi)/\dot{\gamma} \nearrow$ against the shear rate $\dot{\gamma}$.

 Discontinuous shear thickening (DST) is fascinating, where the viscosity discontinuously increases.

 \Rightarrow DST is studied in many contexts and setups.

Shear thickening

DST for dense systems (simulations)

Mutual friction is important. M.Otsuki & H. Hayakawa, Phys. Rev. E **83**, 051301 (2011) R. Seto, et al., Phys. Rev. Lett. **111**, 218301 (2013)

DST for colloidal systems (experiments)

Normal stress difference

is also important. C. D. Cwalina & N.J. Wagner, J. Rheol. **58**, 949 (2014)

Gas-solid suspensions

• Inertial suspensions (a model of aerosols)

4

- Particle size: $1 70 \,\mu \text{m}$
- Homogeneity is kept.
- Not dense system (theoretical treatment is available)
- Ex.) spray, COVID-19, nursing bed,...

Previous (theoretical) studies for dilute systems

♂ Tsao and Koch, JFM 296, 211 (1995)
 Kinetic theoretical approach without thermal noise
 ⇒ DST-like (Quenched-Ingnited) transition for temperature, but not for viscosity

5

Previous study (soft-core, dense)

- 6

Complicated behaviors for moderately dense to dense systems

- > Thinning \rightarrow thickening \rightarrow thinning for $\varphi \leq 0.60$
- > No thickening for $\varphi \gtrsim 0.63$

Our previous studies (hard-core)

hard-core potential: $U(r) = \begin{cases} \infty \ (r < \sigma) \\ 0 \ (r \ge \sigma) \end{cases}$

- Rheology of inertial suspension of hard-core particles
 Hayakawa & Takada, PTEP (2019), Hayakawa, Takada, & Garzó, PRE (2017),
 - Takada, Hayakawa, Santos, & Garzó, PRE (2020)

7

- Collisional contribution is written in terms of the kinetic part,
- DST-like \rightarrow continuous shear thickening (CST)-like behavior at $\varphi \simeq 0.0176$.
- Kinetic theory reproduces simulation results even for $\varphi \simeq 0.50$.

Our previous study (dilute soft-core system)

- Kinetic theory is extended to soft-core system
 S. Sugimoto and S. Takada, J. Phys. Soc. Jpn. 89, 084803 (2020)
- System: similar to Kawasaki et al., but dilute limit is considered.
- Kinetic theory is constructed.

8

- DST occurs twice when (hardness ε^*) \nearrow
- Good agreement with simulation
- Shear thinning for large $\dot{\gamma}^*$
- No thinning for small $\dot{\gamma}^*$

Previous study (dilute soft-core system)

Relationship to hard-core limit?
 Softness is inevitable at a certain shear rate.

9

This shear rate \nearrow as $\varphi \nearrow$. Softness is the origin. Does this survive even when $\varphi \nearrow$?

This shear rate is common. Similar to hard-core system. This DST will vanish as the density ↗. (∠⊋ Hayakawa, Takada, Garzó, PRE (2017))

Motivation

10

 What causes DST?
 Tangential friction between particles?
 If for granular system; Otsuki & Hayakawa, PRE (2011)

> Hydrodynamic interaction?

<u>Our question</u>: Is it possible to observe DST for simple systems, especially, frictionless soft-core systems?

This question might sound crazy for people in rheology community. But this actually happens!

Theoretical oriented motivation of this study

Question:

11

- Can we observe DST of frictionless soft inertial suspension?
- If we can, is it possible to treat it by the kinetic theory?

Approach:		Hard-core	Soft-core
 Molecular dynamics (MD) simulation Kinetic theory of inertial suspension 	Dilute Moderately dense	Hayakawa & Takada PTEP (2019) Hayakawa, Takada, & Garzó PRE (2017), Takada, Hayakawa, Santos, & Garzó PRE (2020)	Sugimoto & Takada JPSJ (2020) This study

Simulation model and setup

12

- Monodisperse particles (mass: m, diameter: σ) $\frac{k}{2}\sigma^2$

Interaction = harmonic potential $F(r) = -\frac{\partial U(r)}{\partial r}, \quad U(r) = \frac{\varepsilon}{2} \left(1 - \frac{r}{\sigma}\right)^2 \Theta\left(1 - \frac{r}{\sigma}\right)$

Equation of motion = Langevin eq. $\frac{dp_i}{dt} = \sum_i F(r_{ij}) - \zeta p_i + m\xi_i$

 $p_i \equiv m(v_i - \dot{\gamma}y_i\hat{e}_x)$: peculiar momentum

Shear is applied.
Sllod + Lees-Edwards b.c.

Langevin model for suspensions

13

Langevin equation:
$$\frac{dp_i}{dt} = \sum_j F_{ij} - \zeta p_i + m\xi_i$$
(1) (2) (3)

 $p_i \equiv m(v_i - \dot{\gamma} y_i e_x) = mV_i$: peculiar momentum 1 interparticle force between particles 2 drag term (Stokesian) 3 thermal noise term satisfying $\langle \boldsymbol{\xi}_i(t) \rangle = 0,$ $\langle \xi_{i,\alpha}(t)\xi_{j,\beta}(t')\rangle = \frac{2\zeta T_{\rm env}}{m}\delta_{ij}\delta_{\alpha\beta}\delta(t-t')$

Control parameters

- Packing fraction: \(\varphi\)
 Shear rate: \(\cdot \rightarrow \cdot \cdot \cdot \rightarrow \cdot \

3) Particle hardness:
$$\varepsilon \Rightarrow \varepsilon^* \equiv \frac{\varepsilon}{m\sigma^2 i}$$

4) Env. temp.:
$$T_{env} \Rightarrow \xi_{env}$$

Langevin model for suspensions

Langevin equation:
$$\frac{dp_i}{dt} = \sum_j F_{ij} - \zeta p_i + m\xi_i$$

Enskog kinetic equation for the inertial suspension

14

 $\sigma_{\rm s}(\chi, V_{12})$: collision cross section determined from the scattering problem $f^{(2)}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{V}_1, \mathbf{V}_2, t) \simeq g_0 f(r_1, V_1, t) f(r_2, V_2, t)$: decoupling arrox.

Softness of particles

15

Scattering analysis
 Appearance of softness

Omega integral:

$$\Omega_{2,2}^{*}(T^{*}) \equiv \int_{0}^{\infty} dy \, y^{7} e^{-y^{2}} \int_{0}^{1} db^{*} b^{*} \sin^{2} \chi \left(b^{*}, 2y \sqrt{T^{*}} \right)$$

 The ratio of the coll. freq. of soft particles to that of hard-core particles

 $\Omega_{2,2}^* = \nu_{\rm soft} / \nu_{\rm HC}$

- Low T: hard-core like $(\Omega_{2,2}^* \simeq 1)$
- High T: softer and softer $(\Omega_{2,2}^* \rightarrow 0)$

Enskog kinetic equation for the inertial suspension

$$\left(\frac{\partial}{\partial t} - \dot{\gamma} V_{y} \frac{\partial}{\partial V_{x}}\right) f(V, t) = \zeta \frac{\partial}{\partial V} \cdot \left(\left[V + \frac{T_{\text{env}}}{m} \frac{\partial}{\partial V} \right] f(V, t) \right) + J_{\text{E}}(V|f, f)$$

Evolution equation for the kinetic stress:

 $\frac{\partial}{\partial t}P_{\alpha\beta}^{k} + \dot{\gamma}\left(\delta_{\alpha x}P_{y\beta}^{k} + \delta_{\beta x}P_{y\alpha}^{k}\right) = -2\zeta\left(P_{\alpha\beta}^{k} - nT_{\rm env}\delta_{\alpha\beta}\right) - \Lambda_{\alpha\beta}$

Kinetic stress: $P_{\alpha\beta}^{k} = m \int dV V_{\alpha} V_{\beta} f(V, t)$ Moment of the collision integral: $\Lambda_{\alpha\beta} = -m \int dV V_{\alpha} V_{\beta} J_{\rm E}(V|f, f)$ This equation is NOT closed!

<u>Closure</u>: Grad's moment method $f(\mathbf{V}) = f_{\rm M}(\mathbf{V}) \left(1 + \frac{m}{2T} \left(\frac{P_{\alpha\beta}^k}{nT} - \delta_{\alpha\beta} \right) V_{\alpha} V_{\beta} \right)$

Maxwellian distribution $f_{\rm M}(V) = n \left(\frac{m}{2\pi T}\right)^{\frac{3}{2}} \exp\left(-\frac{mV^2}{2T}\right)$

2021/12/3 1st Kakenhi meeting

16

Further two assumptions:

17

 $\textbf{Preplacement} (for any F(\widehat{k}, r_{min})) \\ \int d\Omega \sigma_{s} (\chi, V_{12}) V_{12} F(\widehat{k}, r_{min}) \rightarrow \Omega_{2,2}^{*} d^{2} \int d\widehat{k} \Theta(V_{12} \cdot \widehat{k}) (V_{12} \cdot \widehat{k}) F(\widehat{k}, d)$

 $\sigma_{\rm s}$ $(\chi, V_{12})V_{12}$: collision cylinder of soft particles $\Rightarrow d^2 (V_{12} \cdot \hat{k})$: that of hard-core particles + $\Omega^*_{2,2}$ (softness) Same procedure as hard-core system

• Linear approximation with respect to $\dot{\gamma}^*$

We can obtain a set of equations for

(1) $\theta \equiv \frac{T}{T_{env}}$, (2) $\Delta \theta \equiv \frac{P_{xx}^k - P_{yy}^k}{nT_{env}}$, (3) $\delta \theta \equiv \frac{P_{xx}^k - P_{zz}^k}{nT_{env}}$, (4) $\Pi_{\alpha\beta}^* \equiv \frac{P_{\alpha\beta}^k}{nT_{env}} - \theta \delta_{\alpha\beta}$. (1): dim.less. temp., (2), (3): dim.less. anisotropic temp., (4) dim.less. shear stress)

※ The contact part of the stress is written in terms of the kinetic part. 2021/12/3 1st Kakenhi meeting

18
A set of dynamic equations:

$$-\frac{2\dot{\gamma}^{*}}{3}C\Pi_{xy}^{*} = 2(\theta - 1),$$

$$-2\dot{\gamma}^{*}\Pi_{xy}^{*} = (2 + \nu_{\text{soft}}^{*})\Delta\theta,$$

$$-2\dot{\gamma}^{*}\mathcal{E}\Pi_{xy}^{*} = (2 + \nu_{\text{soft}}^{*})\delta\theta,$$

$$(2 + \nu_{\text{soft}}^{*})\Pi_{xy}^{*} = \dot{\gamma}^{*}\left(\frac{2}{3}\mathcal{D}\Delta\theta - \frac{1}{3}\mathcal{E}\delta\theta - \mathcal{C}\theta\right),$$
Then, the rheology is described by

$$\dot{\gamma}^{*} = \sqrt{\frac{-3(1 - \theta^{-1})(2 + \nu_{\text{soft}}^{*})}{\mathcal{CF}}},$$

$$\Pi_{xy}^{*} = -\frac{3}{\dot{\gamma}^{*}\mathcal{C}}(\theta - 1),$$

$$\Delta\theta = \frac{3}{\mathcal{C}}\frac{2(\theta - 1)}{2 + \nu_{\text{soft}}^{*}},$$

$$\delta\theta = \frac{3\mathcal{E}}{\mathcal{C}}\frac{2(\theta - 1)}{2 + \nu_{\text{soft}}^{*}}.$$
2021

$$\mathcal{C} \equiv 1 + \frac{8}{5}\varphi g_0 \Omega_{2,2}^*,$$
$$\mathcal{D} \equiv 1 - \frac{4}{35}\varphi g_0 \Omega_{2,2}^*,$$
$$\mathcal{E} \equiv 1 - \frac{16}{35}\varphi g_0 \Omega_{2,2}^*.$$

$$\mathcal{F} \equiv \frac{2}{3} \mathcal{D} \frac{\Delta \theta}{\theta} - \frac{1}{3} \mathcal{E} \frac{\delta \theta}{\theta} - \mathcal{C} = \frac{2\mathcal{D} - \mathcal{E}^2}{\mathcal{C}} \frac{2(1 - \theta^{-1})}{2 + \nu_{\text{soft}}^*} - \mathcal{C}.$$

All quantities are written as a function of the temperature.

Flow curves

19

• Temperature and viscosity against the shear rate $\varphi = 0.10, 0.20, 0.30; \varepsilon^* = 10^4, \xi_{env} = 1.0$

- DST-like behavior survives even for the finite density! (softness induced DST)
- Shear thinning in the high shear regime
- Good agreement with the simulation

Kinetic and contact parts of shear stress

20

$$\varphi = 0.30, \varepsilon^* = 10^4, \xi_{env} = 1.0$$

- Both contributions are well reproduced.
- Kinetic (contact) part increases (decreases) after DST.

Flow curves for denser situations

21

•
$$\varphi = 0.40, 0.50, ; \varepsilon^* = 10^4, \xi_{env} = 1.0$$

- Still good agreement with the simulation
 - \Rightarrow Kinetic theory is available in the wide range of φ .

Flow curves (3D)

22

Continuously change the packing fraction

Softness induced DST exists in the wide range of φ

Comparison with simulations

23

• Also change $\varepsilon^* = 10^4$ and ξ_{env}

- Still good agreement for $\xi_{env} \ge 1$
 - \Rightarrow Kinetic theory is available
 - in the wide range of the control parameters.

Discussion

Hydrodynamic interaction

Our current model: an oversimplified model. Drag from the background = Stokes's drag

For denser systems, $drag \Rightarrow$ the resistance matrix $\therefore Kim \& Karrila, "Microhydrodynamics" (1991) \theta$ θ 10² \Rightarrow depends on the configuration of particles. 10⁰

$$egin{split} \left[egin{array}{c} F_i \ F_j \ \sigma_i \ \sigma_j \end{bmatrix} &= -\eta egin{bmatrix} A_{ij}^{(11)} & A_{ij}^{(12)} & \widetilde{G}_{ij}^{(11)} & \widetilde{G}_{ij}^{(12)} \ A_{ij}^{(21)} & A_{ij}^{(22)} & \widetilde{G}_{ij}^{(21)} & \widetilde{G}_{ij}^{(22)} \ G_{ij}^{(12)} & A_{ij}^{(12)} & M_{ij}^{(11)} & M_{ij}^{(12)} \ G_{ij}^{(11)} & G_{ij}^{(12)} & M_{ij}^{(11)} & M_{ij}^{(12)} \ G_{ij}^{(21)} & G_{ij}^{(22)} & M_{ij}^{(21)} & M_{ij}^{(22)} \end{bmatrix} egin{bmatrix} v_i - E & \cdot x_i \ v_j - E & \cdot x_j \ -E \ -E \ \end{bmatrix}$$

Is it possible to observe DST? \Rightarrow What we should do next.

Summary

25

- We construct the kinetic theory of inertial suspensions of soft particles.
- Softness is characterized by $\Omega_{2,2}^*$.
- **DST-like behavior** survives even for finite φ .
- Good agreement with the simulation in the wide range of the control parameters

What we should do

Hydrodynamic effect