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• Shear thickening:
viscosity: 𝜂s 𝜑 = 𝜎 𝜑 / ሶ𝛾 ↗
against the shear rate ሶ𝛾.

• Discontinuous shear thickening (DST) is fascinating, 
where the viscosity discontinuously increases.

⇒ DST is studied in many contexts and setups.

R. Mari, et al., PNAS 112,15326 (2015)
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DST for dense systems (simulations)

• Mutual friction is important.
M.Otsuki & H. Hayakawa, Phys. Rev. E 83, 051301 (2011)

R. Seto, et al., Phys. Rev. Lett. 111, 218301 (2013)

DST for colloidal systems (experiments)

• Normal stress difference 
is also important.
C. D. Cwalina & N.J. Wagner, J. Rheol. 58, 949 (2014)
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Gas-solid suspensions
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• Inertial suspensions 
(a model of aerosols)

• Particle size: 1 − 70 𝜇m

• Homogeneity is kept.

• Not dense system 
(theoretical treatment is available)

• Ex.) spray, COVID-19, nursing bed,…

aerosol COVID-19
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Previous (theoretical) studies for dilute systems

👉 Tsao and Koch, JFM 296, 211 (1995) 

Kinetic theoretical approach without thermal noise
⇒ DST-like (Quenched-Ingnited) transition for temperature, 

but not for viscosity
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Previous study (soft-core, dense)

 Rheology of inertial suspension composed of soft-core particles

👉 Kawasaki, Ikeda, & Berthier, EPL (2014)

harmonic potential: 𝑈 𝑟 =
𝜀

2
1 − 𝑟/𝑑 2Θ 1 − 𝑟/𝑑

Langevin equation: 
𝑑𝒑𝑖

𝑑𝑡
= σ𝑗 𝑭𝑖𝑗 − 𝜁𝒑𝑖 + 𝝃𝑖
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Complicated behaviors for moderately dense 

to dense systems

➢ Thinning → thickening → thinning for 𝜑 ≲ 0.60
➢ No thickening for 𝜑 ≳ 0.63
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Our previous studies (hard-core)

 Rheology of inertial suspension of hard-core particles
👉 Hayakawa & Takada, PTEP (2019), 

Hayakawa, Takada, & Garzó, PRE (2017),
Takada, Hayakawa, Santos, & Garzó, PRE (2020)

 Collisional contribution is written in terms of the kinetic part, 

 Discontinuous shear thickening (DST)-like behavior for dilute systems

(≅ ignited-quenched transition of the kinetic temp.)

 DST-like → continuous shear thickening (CST)-like behavior at 𝜑 ≃ 0.0176.

 Kinetic theory reproduces simulation results even for 𝜑 ≃ 0.50.
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hard-core potential: 

𝑈 𝑟 = ቊ
∞ (𝑟 < 𝜎)
0 (𝑟 ≥ 𝜎)
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𝜑 = 0.01 𝜑 = 0.50



Our previous study (dilute soft-core system)

 Kinetic theory is extended to soft-core system
👉 S. Sugimoto and S. Takada, J. Phys. Soc. Jpn. 89, 084803 (2020)

 System: similar to Kawasaki et al., but dilute limit is considered.

 Kinetic theory is constructed.
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• DST occurs twice when (hardness 𝜀∗)↗

• Good agreement with simulation

• Shear thinning for large ሶ𝛾∗

• No thinning for small ሶ𝛾∗
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𝜀∗

𝑈 𝑟 =
𝜀

2
1 − 𝑟/𝑑 2Θ 1 − 𝑟/𝑑



Previous study (dilute soft-core system)

 Relationship to hard-core limit?

⇒ Softness is inevitable at a certain shear rate.
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ሶ𝛾∗

𝜂∗

𝜑 = 0.01, 𝜉env = 1.0
𝜀∗ is changed.

𝜀∗ This shear rate ↗ as 𝜑↗.

Softness is the origin.
Does this survive even when 𝜑↗？

This shear rate is common.

Similar to hard-core system.
This DST will vanish as the density ↗.
(👉 Hayakawa, Takada, Garzó, PRE (2017))
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Motivation

What causes DST?

➢ Tangential friction 

between particles?
👉 for granular system;

Otsuki & Hayakawa, PRE (2011)

➢Hydrodynamic interaction?
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Our question:

Is it possible to observe DST for simple systems, 

especially, frictionless soft-core systems?

This question might sound crazy for people in rheology community.

But this actually happens!
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Theoretical oriented motivation of this study

Question:

Can we observe DST of frictionless soft inertial suspension?

 If we can, is it possible to treat it by the kinetic theory?

Approach:

Molecular dynamics 

(MD) simulation

 Kinetic theory of 

inertial suspension
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This study

Hard-core Soft-core

Dilute

Moderately 

dense

Hayakawa & 

Takada

PTEP (2019)

Sugimoto & 

Takada

JPSJ (2020)

Hayakawa, Takada, 

& Garzó

PRE (2017),

Takada, Hayakawa, 

Santos, & Garzó

PRE (2020)
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Simulation model and setup

Monodisperse particles (mass: 𝑚, diameter: 𝜎)

 Interaction = harmonic potential

𝑭 𝒓 = −
𝜕𝑈 𝑟

𝜕𝒓
, 𝑈 𝑟 =

𝜀

2
1 −

𝑟

𝜎

2

Θ 1 −
𝑟

𝜎

 Equation of motion = Langevin eq.
𝑑𝒑𝑖
𝑑𝑡

=෍

𝑗

𝑭(𝒓𝑖𝑗) − 𝜁𝒑𝑖 +𝑚𝝃𝑖

𝒑𝑖 ≡ 𝑚(𝒗𝑖 − ሶ𝛾𝑦𝑖 ො𝒆𝑥): peculiar momentum

 Shear is applied.

Sllod + Lees-Edwards b.c.
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𝜀 = 𝑘𝜎2
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Langevin model for suspensions

Langevin equation: 
𝑑𝒑𝑖

𝑑𝑡
= σ𝑗 𝑭𝑖𝑗 − 𝜁𝒑𝑖 +𝑚𝝃𝑖
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𝒑𝑖 ≡ 𝑚 𝒗𝑖 − ሶ𝛾𝑦𝑖𝒆𝑥 = 𝑚𝑽𝑖: peculiar 
momentum
① interparticle force between particles
② drag term (Stokesian)
③ thermal noise term satisfying

𝝃𝑖 𝑡 = 0,

𝜉𝑖,𝛼 𝑡 𝜉𝑗,𝛽 𝑡′ =
2𝜁𝑇env
𝑚

𝛿𝑖𝑗𝛿𝛼𝛽𝛿(𝑡 − 𝑡′)

① ② ③

Control parameters
① Packing fraction: 𝜑
② Shear rate: ሶ𝛾 ⇒ ሶ𝛾∗ ≡ ሶ𝛾/𝜁

③ Particle hardness: 𝜀 ⇒ 𝜀∗ ≡
𝜀

𝑚𝜎2𝜁2

④ Env. temp.: 𝑇env ⇒ 𝜉env ≡
𝑇env

𝑚

1

𝜁𝜎
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Langevin model for suspensions

Langevin equation: 
𝑑𝒑𝑖

𝑑𝑡
= σ𝑗 𝑭𝑖𝑗 − 𝜁𝒑𝑖 +𝑚𝝃𝑖
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drag from the solventshear particle interaction

Collision integral: 𝐽E 𝑽 𝑓, 𝑓 = ∫ 𝑑𝑽2∫ 𝑑෡𝒌𝜎s 𝜒, 𝑉12 𝑉12
× 𝑓(2) 𝒓, 𝒓 + 𝑟min

෡𝒌, 𝑽1
′′, 𝑽2

′′, 𝑡 − 𝑓 2 𝒓, 𝒓 − 𝑟min
෡𝒌, 𝑽1, 𝑽2, 𝑡

Enskog kinetic equation for the inertial suspension

𝜕

𝜕𝑡
− ሶ𝛾𝑉𝑦

𝜕

𝜕𝑉𝑥
𝑓 𝑽, 𝑡 = 𝜁

𝜕

𝜕𝑽
⋅ 𝑽 +

𝑇env
𝑚

𝜕

𝜕𝑽
𝑓 𝑽, 𝑡 + 𝐽E(𝑽|𝑓, 𝑓)

𝜎s 𝜒, 𝑉12 : collision cross section

determined from the scattering problem

𝑓 2 𝒓1, 𝒓2, 𝑽1, 𝑽2, 𝑡 ≃ 𝑔0𝑓(𝑟1, 𝑉1, 𝑡)𝑓(𝑟2, 𝑉2, 𝑡): decoupling arrox.
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Softness of particles

 Scattering analysis

⇒ Appearance of softness
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Omega integral: 

Ω2,2
∗ 𝑇∗ ≡ න

0

∞

𝑑𝑦 𝑦7𝑒−𝑦
2
න
0

1

𝑑𝑏∗𝑏∗sin2 𝜒 (𝑏∗, 2𝑦 𝑇∗)

• The ratio of the coll. freq. of soft particles to 

that of hard-core particles
Ω2,2
∗ = 𝜈soft/𝜈HC

• Low 𝑇: hard-core like (Ω2,2
∗ ≃ 1)

• High 𝑇: softer and softer (Ω2,2
∗ → 0)



Enskog kinetic equation for the inertial suspension
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𝜕

𝜕𝑡
− ሶ𝛾𝑉𝑦

𝜕

𝜕𝑉𝑥
𝑓 𝑽, 𝑡 = 𝜁

𝜕

𝜕𝑽
⋅ 𝑽 +

𝑇env
𝑚

𝜕

𝜕𝑽
𝑓 𝑽, 𝑡 + 𝐽E(𝑽|𝑓, 𝑓)

Kinetic stress: 𝑃𝛼𝛽
𝑘 = 𝑚∫ 𝑑𝑽𝑉𝛼𝑉𝛽𝑓(𝑽, 𝑡)

Moment of the collision integral: Λ𝛼𝛽 = −𝑚∫ 𝑑𝑽𝑉𝛼𝑉𝛽𝐽E(𝑉|𝑓, 𝑓)

Evolution equation for the kinetic stress:

𝜕

𝜕𝑡
𝑃𝛼𝛽
𝑘 + ሶ𝛾 𝛿𝛼𝑥𝑃𝑦𝛽

𝑘 + 𝛿𝛽𝑥𝑃𝑦𝛼
𝑘 = −2𝜁 𝑃𝛼𝛽

𝑘 − 𝑛𝑇env𝛿𝛼𝛽 − Λ𝛼𝛽

Closure: Grad’s moment method

𝑓 𝑽 = 𝑓M 𝑽 1 +
𝑚

2𝑇

𝑃𝛼𝛽
𝑘

𝑛𝑇
− 𝛿𝛼𝛽 𝑉𝛼𝑉𝛽

Maxwellian distribution

𝑓M 𝑽 = 𝑛
𝑚

2𝜋𝑇

3
2
exp −

𝑚𝑉2

2𝑇

This equation is NOT closed!
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Further two assumptions:

 Replacement (for any 𝐹 ෡𝒌, 𝑟𝑚𝑖𝑛 )

න𝑑𝜴𝜎s 𝜒, 𝑉12 𝑉12 𝐹 ෡𝒌, 𝑟min → Ω2,2
∗ 𝑑2 න𝑑෡𝒌 Θ 𝑽12 ⋅ ෡𝒌 𝑽12 ⋅ ෡𝒌 𝐹 ෡𝒌, 𝑑

𝜎s 𝜒, 𝑉12 𝑉12: collision cylinder of soft particles

⇒ 𝑑2 𝑽12 ⋅ ෡𝒌 : that of hard-core particles + Ω2,2
∗ (softness)

Same procedure as hard-core system

 Linear approximation with respect to ሶ𝜸∗

2021/12/3 1st Kakenhi meeting
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We can obtain a set of equations for

① 𝜃 ≡
𝑇

𝑇env
,② Δ𝜃 ≡

𝑃𝑥𝑥
𝑘 −𝑃𝑦𝑦

𝑘

𝑛𝑇env
,③ 𝛿𝜃 ≡

𝑃𝑥𝑥
𝑘 −𝑃𝑧𝑧

𝑘

𝑛𝑇env
,④ Π𝛼𝛽

∗ ≡
𝑃𝛼𝛽
𝑘

𝑛𝑇env
− 𝜃𝛿𝛼𝛽.

(①: dim.less. temp., ②,③: dim.less. anisotropic temp., ④ dim.less. shear stress)

※ The contact part of the stress is written in terms of the kinetic part.
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A set of dynamic equations:

Then, the rheology is described by

All quantities are written 

as a function of the temperature.



Flow curves

 Temperature and viscosity against the shear rate
𝜑 = 0.10, 0.20, 0.30; 𝜀∗ = 104, 𝜉env = 1.0

 DST-like behavior survives even for the finite density! 
(softness induced DST)

 Shear thinning in the high shear regime

 Good agreement with the simulation

19
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Kinetic and contact parts of shear stress

 𝜑 = 0.30, 𝜀∗ = 104, 𝜉env = 1.0

 Both contributions are well reproduced.

 Kinetic (contact) part increases (decreases) after DST.

20
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Flow curves for denser situations

 𝜑 = 0.40, 0.50, ; 𝜀∗ = 104, 𝜉env = 1.0

 Still good agreement with the simulation

⇒ Kinetic theory is available in the wide range of 𝜑.
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Flow curves (3D)

Continuously change the packing fraction
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Softness induced DST exists in the wide range of 𝜑
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Black curves: 
𝜕𝜂∗

𝜕 ሶ𝛾∗
→ ∞



Comparison with simulations

 Also change 𝜀∗ = 104 and 𝜉env

 Still good agreement for 𝜉env ≥ 1
⇒ Kinetic theory is available 

in the wide range of the control parameters.

23
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Discussion

 Hydrodynamic interaction

Our current model: an oversimplified model.

Drag from the background = Stokes’s drag

For denser systems, 

drag ⇒ the resistance matrix 
👉 Kim & Karrila, “Microhydrodynamics” (1991)

⇒ depends on the configuration of particles.
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ሶ𝛾∗

𝜃

Is it possible to observe DST?

⇒What we should do next.



Summary

We construct the kinetic theory of inertial suspensions of 

soft particles.

 Softness is characterized by Ω2,2
∗ .

 DST-like behavior survives even for finite 𝜑.

Good agreement with the simulation 

in the wide range of the control parameters

What we should do

 Hydrodynamic effect 
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