

Rheology of dense wet granular materials

Kiwamu Yoshii, Michio Otsuki (Osaka Univ.)

<u>Contents</u>

1. Introduction

- 2. Scaling laws
- 3. Structure analysis
- 4. Summary

Dry & Wet granular materials

 Small amounts of liquid drastically change the rheological property of granular materials.

- Cohesive interaction appears due to capillary bridges between grains.
- Hysteresis exists in the capillary force.

Liquid bridge interaction

- Approaching region: no interaction
- Overlap region : interaction
- When $\Delta_{ij} < -d_c$: no interaction
- ➡ Hysteresis
- d_i : radius of *i*-th particle, $d_{ij} = d_i + d_j$, $\Delta_{ij} = d_{ij} r_{ij}$, $F^{n,el}$: elastic interaction, F^{cap} :capillary force
- Rupture length d_c depends on
 contact angle θ and liquid
 volume V.

C. D. Willett, et.al, Langmuir (2000)

Shear modulus in dry system

Dry frictionless particles with repulsive interaction

- Dry granular materials exhibit critical scaling laws.
- Cohesive interaction between particles exists in many realistic situations.
 e.g.) van der Waals force, capillary force, electromagnetic force

Shear modulus in sticky system

2D frictionless particles with simple attractive interaction

 ϕ_J : Jamming dencity of dry granular materials

6 /20

Purpose :

To reveal elastic response of 3D wet granular materials with hysteresis

D. J. Koeze et.al., Phys. Rev. Research (2020)

Model : wet granular particles

Protocol

<u>Contents</u>

1. Introduction

2. Scaling laws

- 3. Structure analysis
- 4. Summary

Shear modulus

Dry : Contact force(F_{ij}^{con}) Wet : Contact force(F_{ii}^{con}) + Capillary force (F_{ii}^{cap})

Dry and wet systems satisfy the same scaling relation.

Pressure

The exponent for *P* is different between dry and wet systems.

Contact number

 ϕ_c : density whose shear modulus appears

• Wet: $Z - Z_{iso} > 0$ for $\phi \to \phi_c$

This behave is consistent with 2D attractive system.

D. J. Koeze et.al., Phys. Rev. Research (2020)

<u>Contents</u>

- 1. Introduction
- 2. Scaling laws
- 3. Structure analysis
- 4. Summary

Force chain

Local packing fraction

M. A. Klatt & S. Torquato. Phys. Rev. E (2014)

 $V^* = V/\bar{V}$: scaled volume

V: volume of voronoi cells,

$$\bar{V} = \frac{\sum V}{N}$$
: average volume

 $p(V^*)$: distribution function of V^*

- Dry : The distribution does not depend on ϕ .
- Wet : The distribution becomes broad for low ϕ .

Volume of voronoi : distribution

16/20

 $p(V^*, \sigma(\phi)) = \sigma^{-1} p(V^*/\sigma)$: scaled frequency distribution of V^* σ : variance of $p(V^*)$

- Scaled p(V*) has the same form for different parameters.
 Dry: σ is constant.
- Wet : As ϕ decreases, σ increases.

Volume of voronoi : distribution

17/20

Changes of shear modulus, and pressure correspond to change of variance.

Future Work : Exponent of P

Why are the exponents of *P* differs?

DRY :
$$P \propto (\phi - \phi_c)$$
 / WET : $P \propto (\phi - \phi_c)^{1/2}$

Theory : Dry grains

D : dimension, S_D : surface area of *D*-sphere, F^{el} : elastic interaction, g(r) : pair correlation function M. Otsuki and H. Hayakawa, Phys. Rev. E (2009)

Can we determine the exponent of *P* in wet system?

• The interaction force changes. ($F^{el}(r) \rightarrow F^{el}(r) + F^{cap}(r)$)

• The scaling $g(r, \phi - \phi_c)$ might change.

Work in progress…

<u>Contents</u>

- 1. Introduction
- 2. Scaling laws
- 3. Structure analysis
- 4. Summary

<u>Summary</u>

✓ Scaling laws

$$\begin{cases} G \propto (\phi - \phi_c)^{1/2} \\ P \propto (\phi - \phi_c) \\ \lim_{\phi \to \phi_c} Z(\phi) - Z_{iso} = 0 \end{cases}$$

WET
$$\begin{cases} G \propto (\phi - \phi_c)^{1/2} \\ P \propto (\phi - \phi_c)^{1/2} \\ \lim_{\phi \to \phi_c} Z(\phi) - Z_{iso} > 0 \end{cases}$$

 ϕ_c : density whose shear modulus appears

Structure

Change of shear modulus, pressure and contact number corresponds to change of variance.

PHYSICAL REVIEW E 90, 032206 (2014)

Rheology of cohesive granular materials across multiple dense-flow regimes

$$p = \begin{cases} p_{QS} + (p_{int} + p_{coh,2}) & \text{for } \phi \ge \phi_c \\ [(p_{inert} + p_{coh,1})^{-1} + (p_{int} + p_{coh,2})^{-1}]^{-1} & \text{for } \phi < \phi_c, \end{cases}$$

$$p_{QS}d/k = \alpha_{QS}|\phi - \phi_c|^{\epsilon},$$

$$p_{int}d/k = \alpha_{int}\hat{\gamma}^{2\epsilon/(\epsilon+\chi)}, \qquad p_{coh,1}d/k = \alpha_{coh,1}\text{Bo}^*\frac{|\phi - \phi_a|}{|\phi_c - \phi|},$$

$$p_{inert}d/k = \frac{\alpha_{inert}\hat{\gamma}^2}{|\phi_c - \phi|^{\chi}}. \qquad p_{coh,2}d/k = \alpha_{coh,2}(\text{Bo}^*)^{\epsilon/(\epsilon+\chi)}.$$