準静的剪断下における摩擦のある アモルファス固体の固有関数解析

<u>井嶋大輔1, 齊藤国靖2, 大槻道夫3, 早川尚男1</u> 1京大基研, 2京産大理, 3阪大基礎工

Introduction

Amorphous solids

L. Berthier and G. Biroli, Rev. Mod. Phys., 83, 587 (2011).

They have rigidity above jamming density.

D: density of state Sphere *ω*: Frequency 2 \$--φ_c=10⁻ 1.5 D(60) 0.5 0 _____ 10^{__2} 10° 10-1 ω

M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten, Phys. Rev. E, **72**, 051306 (2005).

Many researchers have investigated the density of state (DOS) for frictionless amorphous solids

Introduction

Rigidity formula* exists? *C. E. Maloney & A. Lemaître, Phys. Rev. E, 74, 016118 (2006).

Purpose

To investigate DOS and rigidity of frictional amorphous materials

[3]

Our numerical protocol

- Preparation of initial configuration
- 1. Preparing the frictionless configuration at density ϕ with energy minimization by FIRE*
- 2. Incorporating the tangential forces
- 3. Relaxation by dissipation $-\eta \vec{v}_{ij}$ until $|F_i^{\alpha}| < F_{\text{Th}}$

*E. Bitzek et al., Phys. Rev. Lett., 97, 170201 (2006).

Athermal quasistatic shear protocol

- I. Applying affine shear deformation $\Delta \gamma$ to the system with Lees-Edwards periodic boundary condition
- II. Relaxation by dissipation $-\eta \vec{v}_{ij}$ until $|F_i^{\alpha}| < F_{Th}$

Numerical methods

Equation of motion

$$m_{i}\frac{d^{2}\vec{x}_{i}}{dt^{2}} = \vec{F}_{i},$$

$$\vec{F}_{i}: \text{Force of } i \text{ particle}$$

$$T_{i}: \text{Torque of } i \text{ particle}$$

$$\vec{h}_{i}: \text{rotational degree of } i \text{ particle}$$

$$\theta_{i}: \text{rotational degree of } i \text{ particle}$$

$$\vec{F}_{i} = \sum_{j} \left(\vec{f}_{ij,n} + \vec{f}_{ij,i}\right) \Theta(\xi_{ij,n}),$$

$$\vec{f}_{ij,n} = k_{n}\xi_{ij,n}^{3/2}\vec{n}_{ij} - \eta \vec{v}_{ij,n},$$

$$\vec{f}_{ij,i} = -k_{t}\xi_{ij,n}^{1/2}\xi_{ij,i}\vec{t}_{ij} - \eta \vec{v}_{ij,i}$$
*nonslip model

-Our simulated system - 2 dimensional binary disks (N = 1024),

Step strain: $\Delta \gamma = 10^{-6}$,

Threshold value of mechanical equilibrium condition: $F_{\text{Th}}/(k_n d_0^{3/2}) = 10^{-14}$,

Density $0.80 \le \phi \le 0.90$,

Tangential ratio $0.0 \le k_t/k_n \le 10.0$.

Density of state

Definition of Jacobian $J_{ii}^{\alpha\beta}$

J. Chattoraj et al., Phys. Rev. Lett. 123, 098003 (2019).

$$J_{ij}^{\alpha\beta} := -\frac{\partial \tilde{F}_{i}^{\alpha}}{\partial q_{j}^{\beta}}, \quad \stackrel{\text{If } \tilde{F}_{i}^{\alpha} = -\frac{\partial U}{\partial q_{i}^{\alpha}}}{\longrightarrow} \quad J_{ij}^{\alpha\beta} := -\frac{\partial \tilde{F}_{i}^{\alpha}}{\partial q_{j}^{\beta}} = \frac{\partial^{2} \tilde{U}}{\partial q_{i}^{\alpha} \partial q_{j}^{\beta}} =: H_{ij}^{\alpha\beta},$$

 \tilde{F}_{i}^{α} : α component of generalized force acting on *i* particle $\vec{F}_{i} = (F_{i}^{x}, F_{i}^{y}, T_{i})^{T}$, q_{i}^{α} : α component of generalized *i* particle coordinate $q_{i} := (r_{i}^{x}, r_{i}^{y}, \theta_{i})$, T_{i} : Torque of *i* particle,

 θ_i : Rotational degree of *i* particle.

Eigenvalue equation:

$$J | R_n \rangle = \lambda_n | R_n \rangle$$

$$\downarrow$$

$$\omega_n = \sqrt{\lambda_n}$$

 ω_n : eigen frequency

We obtain $D(\omega)$ from

distribution of ω_n .

Density of State: Region II

$$\psi_n^T := \sum_{i=1}^N \left[(R_{n,i}^x)^2 + (R_{n,i}^y)^2 \right], \quad \psi_n^R := \sum_{i=1}^N (R_{n,i}^\ell)^2 = 1 - \psi_n^T$$

 $R_{n,i}^{\alpha}$: (i, α) component of *n*-th eigenvector $(i = 1, 2, \dots, N, \alpha = x, y, \ell)$

Region II consists of rotational modes*.

*C. F. Schreck et al., Phys. Rev. E, 85, 061305 (2012).

[7]

Density of State: Region II

$$\psi_n^T := \sum_{i=1}^N \left[(R_{n,i}^x)^2 + (R_{n,i}^y)^2 \right], \quad \psi_n^R := \sum_{i=1}^N (R_{n,i}^\ell)^2 = 1 - \psi_n^T$$

 $R_{n,i}^{\alpha}$: (i, α) component of *n*-th eigenvector $(i = 1, 2, \dots, N, \alpha = x, y, \ell)$

Transnational modes is dominant for Region III.

Density of State

Density of State

Density of State: Region I

Expression of G by J

We obtain shear modulus G by J:

$$G = \frac{1}{2L^{2}} \sum_{i,j(i\neq j)} \left[y_{ij}^{2} J_{N,ij}^{xx} \right] + \frac{1}{L^{2}} \sum_{n} \left(\frac{\tilde{\zeta}_{n} |\Xi\rangle \langle \Theta | \tilde{R}_{n} \rangle}{\tilde{\lambda}_{n}} \right) \dots (1)$$

$$\overline{\text{Affine shear modulus shear modulus }}_{(=: G_{A})} (=: G_{NA}) (=: G_{NA}) (=: G_{NA})$$

$$0.09 \\ 0.08 \\ 0.07 \\ 0.01$$

Eq. (1) reproduces $\phi \& k_T$ dependence.

0.89

0.9

ϕ -dependence

We obtain shear modulus G by J:

$$G = \frac{1}{2L^{2}} \sum_{i,j(i\neq j)} \left[y_{ij}^{2} J_{N,ij}^{x} \right] + \frac{1}{L^{2}} \sum_{n} \frac{\langle \tilde{L}_{n} | \Xi \rangle \langle \Theta | \tilde{R}_{n} \rangle}{\tilde{\lambda}_{n}} \cdots (1)$$

$$\boxed{\text{Affine shear modulus shear modulus } (=: G_{A}) \quad (=: G_{NA}) \quad (=: G_$$

Region III (translational modes) only contributes shear modulus.

Summary

Frictional amorphous solids under quasi-static shear are analyzed using the Jacobian.

Density of state *D* in the limit $\gamma \rightarrow 0$

• DOS consists of 3 region for $k_T/k_N \le 1.0 \times 10^{-8}$ Region I consists of rattlers. Region II consists of rotational modes. Translational modes is dominant for region III.

Shear modulus *G* in the limit $\gamma \rightarrow 0$

- Jacobain's representation can reproduce G.
- Region III only contributes G.

Future work

• Expanding our theory to apply to finite sheared system

Density of State

(Jacobian*) *J. Chattoraj et al., Phys. Rev. Lett. 123, 098003 (2019).

 $\partial \tilde{F}_i^{\alpha}$

 ∂q_i^l

 $J_{ij}^{lphaeta}:=-$